
Linear and
Nonlinear
Programming
Fifth Edition

David G. Luenberger
Yinyu Ye

International Series in
Operations Research & Management Science

International Series in Operations Research &
Management Science
Founding Editor

Frederick S. Hillier, Stanford University, Stanford, CA, USA

Volume 228

Series Editor

Camille C. Price, Department of Computer Science, Stephen F. Austin State
University, Nacogdoches, TX, USA

Associate Editor

Joe Zhu, Foisie Business School, Worcester Polytechnic Institute, Worcester, MA,
USA

More information about this series at http://www.springer.com/series/6161

http://www.springer.com/series/6161

David G. Luenberger • Yinyu Ye

Linear and Nonlinear
Programming

Fifth Edition

David G. Luenberger
Department of Management Science
and Engineering
Stanford University
Stanford, CA, USA

Yinyu Ye
Department of Management Science
and Engineering
Stanford University
Stanford, CA, USA

ISSN 0884-8289 ISSN 2214-7934 (electronic)
International Series in Operations Research & Management Science
ISBN 978-3-030-85449-2 ISBN 978-3-030-85450-8 (eBook)
https://doi.org/10.1007/978-3-030-85450-8

© Springer Nature Switzerland AG 2016, 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-85450-8

To Susan, Robert, Jill, and Jenna;
Daisun, Fei, Tim, Kaylee, and Rylee

Preface

This book is intended as a text covering the central concepts of practical optimiza-
tion techniques. It is designed for either self-study by professionals or classroom
work at the undergraduate or graduate level for students who have a technical
background in engineering, mathematics, or science. Like the field of optimization
itself, which involves many classical disciplines, the book should be useful to system
analysts, operations researchers, numerical analysts, management scientists, and
other specialists from the host of disciplines from which practical optimization
applications are drawn. The prerequisites for convenient use of the book are
relatively modest; the prime requirement being some familiarity with introductory
elements of linear algebra. Certain sections and developments do assume some
knowledge of more advanced concepts of linear algebra, such as eigenvector
analysis, or some background in sets of real numbers, but the text is structured so
that the mainstream of the development can be faithfully pursued without reliance
on this more advanced background material.

Although the book covers primarily material that is now fairly standard, this
edition emphasizes methods that are both state-of-the-art and popular in emerging
fields such as Data Sciences, Machine Learning, and Decision Analytics. One major
insight is the connection between the purely analytical character of an optimization
problem, expressed perhaps by properties of the optimality conditions, and the
behavior of algorithms used to solve a problem. This was a major theme of the
first edition of this book, and the fifth edition further expands and illustrates this
relationship.

As in the earlier editions, the material in this fifth edition is organized into three
separate parts. Part I is a self-contained introduction to classical and conic linear
programming, a key component of optimization theory. The presentation in this
part is fairly conventional, covering the main elements of the underlying theory of
linear programming, many of the most effective numerical algorithms, and many
of its important special and emerging applications. Part II, which is independent of
Part I, covers the theory of unconstrained optimization, including both derivations of
the appropriate optimality conditions and an introduction to basic algorithms. This
part of the book explores the general properties of algorithms and defines various

vii

viii Preface

notions of convergence. Part III extends the concepts developed in the second part
to constrained optimization problems. Except for a few isolated sections, this part is
also independent of Part I. It is possible to go directly into Parts II and III omitting
Part I, and, in fact, the book has been used in this way in many universities. Each
part of the book contains enough material to form the basis of a one-quarter course.
In either classroom use or for self-study, it is important not to overlook the suggested
exercises at the end of each chapter. The selections generally include exercises of a
computational variety designed to test one’s understanding of a particular algorithm,
a theoretical variety designed to test one’s understanding of a given theoretical
development, or of the variety that extends the presentation of the chapter to new
applications or theoretical areas. One should attempt at least four or five exercises
from each chapter. In progressing through the book, it would be unusual to read
straight through from cover to cover. Generally, one will wish to skip around. In
order to facilitate this mode, we have indicated sections of a specialized or digressive
nature with an asterisk (∗).

New to this edition is, in Chap. 2, the introduction of quite a few problems in
Machine Learning and Data Science that are closely related to linear programming.
We added a section in Chap. 2 devoted to Farkas’ lemma and the Alternative
System theory. Consequently, we moved the Duality and Complementarity Chapter
(Chap. 4) before the Simplex Method Chapter (Chap. 3). We restructured topics
in Chap. 3 substantially, since linear programs are nowadays solved by computers
rather than by hand. Therefore, we focus on introducing methods and algorithms
most efficiently implementable by computer codes. Due to a recent breakthrough,
we also add a section in Chap. 3 on proving the efficiency of the Simplex method,
which remains a dominate solver for linear programming.

As the field of optimization advances, researchers and practitioners face more
challenges: addressing data-driven and dynamic programs, making decisions with
uncertainty, developing online algorithms, and expanding the overall theory. We
introduce modern optimization topics, such as Markov Decision Process, Rein-
forcement Learning, Distributionally Robust Stochastic Optimization, and Online
Optimization. In particular, we have added a section in Chap. 3 to illustrate online
linear programming algorithms, where the decisions need to be made “on the fly” in
problem settings. One of the algorithms is related to the online Stochastic Gradient
Decent method that is added in Chap. 8.

Another new topic is multiplicative descent direction methods that exhibit good
convergence properties in Chap. 8. We have included the affine-scaling and mirror-
descent methods that are especially effective for optimization, where decision
variables are subject to nonnegativity constraints. We have also added a couple of
globally convergent Newton’s methods there.

We have added a section on Lagrangian duality for constrained nonlinear
optimization in Chap. 11. The Lagrangian duality plays a fundamental role, as
the duality does for linear optimization, in both theory and algorithm design. We
introduce detailed rules on how to construct the dual explicitly for certain type of
problems, such as the support vector machine problem.

Preface ix

Then, we have added two sections into Chap. 12. The first is a “descent-first
and feasible-second” steepest descent projection method for linear and nonlinear
constrained optimization, which is simple and effective in practice. The second is
an interior-trust region sequential quadratic optimization method, which is suitable
for computing a solution that meets the second-order optimality condition. The
convergence analyses of the two methods are presented.

We have added a new section in Chap. 14 to introduce the randomized multi-
block alternative direction method with multipliers, which is effective for optimiza-
tion problems arising of both private and distributed data.

Finally, we have added two sections in Chap. 15 introducing the nonlinear
monotone complementarity problem that includes the optimality condition problem
as a special case. We also present the homogeneous model or algorithm that is a
one-phase algorithm with capability to detect possible primal or dual infeasibility,
which becomes an important task in nonlinear optimization.

In this revision, we have also removed a few sections where the methods and/or
materials are not suitable for large-scale optimization and computer coding in our
modern computation age.

We wish to thank the many students and researchers who over the years have
given us comments concerning the book and those who encouraged us to carry out
this revision. We are especially thankful to Xiaocheng Li and Robert Luenberger for
their careful readings and comments on this revised edition.

Stanford, CA, USA D.G. Luenberger
August 2021 Y. Ye

Contents

1 Introduction . 1
1.1 Optimization . 1
1.2 Types of Problems . 2
1.3 Complexity of Problems . 6
1.4 Iterative Algorithms and Convergence .. 7

Part I Linear Programming

2 Basic Properties of Linear Programs . 13
2.1 Introduction . 13
2.2 Examples of Linear Programming Problems . 16
2.3 Basic Feasible Solutions . 24
2.4 The Fundamental Theorem of Linear Programming 26
2.5 Relations to Convex Geometry .. 28
2.6 Farkas’ Lemma and Alternative Systems . 33
2.7 Summary . 34
2.8 Exercises . 35

3 Duality and Complementarity . 41
3.1 Dual Linear Programs and Interpretations .. 41
3.2 The Duality Theorem . 47
3.3 Geometric and Economic Interpretations .. 50
3.4 Sensitivity and Complementary Slackness . 52
3.5 Selected Applications of the Duality . 56
3.6 Max Flow–Min Cut Theorem . 61
3.7 Summary . 67
3.8 Exercises . 67

4 The Simplex Method . 77
4.1 Adjacent Basic Feasible Solutions (Extreme Points). 78
4.2 The Primal Simplex Method . 81
4.3 The Dual Simplex Method . 88

xi

xii Contents

4.4 The Simplex Tableau Method . 93
4.5 The Simplex Method for Transportation Problems 101
4.6 Efficiency Analysis of the Simplex Method . 114
4.7 Summary . 117
4.8 Exercises . 118

5 Interior-Point Methods. 129
5.1 Elements of Complexity Theory . 131
5.2 ∗The Simplex Method Is Not Polynomial-Time.. 132
5.3 ∗The Ellipsoid Method . 134
5.4 The Analytic Center . 137
5.5 The Central Path . 141
5.6 Solution Strategies . 146
5.7 Termination and Initialization .. 154
5.8 Summary . 160
5.9 Exercises . 160

6 Conic Linear Programming . 165
6.1 Convex Cones . 165
6.2 Conic Linear Programming Problem . 166
6.3 Farkas’ Lemma for Conic Linear Programming 172
6.4 Conic Linear Programming Duality. 176
6.5 Complementarity and Solution Rank of SDP .. 185
6.6 Interior-Point Algorithms for Conic Linear Programming.. 190
6.7 Summary . 194
6.8 Exercises . 195

Part II Unconstrained Problems

7 Basic Properties of Solutions and Algorithms . 201
7.1 First-Order Necessary Conditions. 202
7.2 Examples of Unconstrained Problems . 205
7.3 Second-Order Conditions. 209
7.4 Convex and Concave Functions . 212
7.5 Minimization and Maximization of Convex Functions 215
7.6 Global Convergence of Descent Algorithms . 217
7.7 Speed of Convergence . 225
7.8 Summary . 230
7.9 Exercises . 231

8 Basic Descent Methods . 235
8.1 Line Search Algorithms . 236
8.2 The Method of Steepest Descent: First-Order . 252
8.3 Applications of the Convergence Theory and Preconditioning .. . 264
8.4 Accelerated Steepest Descent . 268
8.5 Multiplicative Steepest Descent . 271
8.6 Newton’s Method: Second-Order . 275

Contents xiii

8.7 Sequential Quadratic Optimization Methods . 281
8.8 Coordinate and Stochastic Gradient Descent Methods.. 287
8.9 Summary . 294
8.10 Exercises . 295

9 Conjugate Direction Methods . 301
9.1 Conjugate Directions . 301
9.2 Descent Properties of the Conjugate Direction Method.. 304
9.3 The Conjugate Gradient Method . 307
9.4 The C–G Method as an Optimal Process . 309
9.5 The Partial Conjugate Gradient Method . 312
9.6 Extension to Nonquadratic Problems . 315
9.7 ∗Parallel Tangents . 318
9.8 Exercises . 321

10 Quasi-Newton Methods . 325
10.1 Modified Newton Method . 326
10.2 Construction of the Inverse .. 328
10.3 Davidon–Fletcher–Powell Method .. 331
10.4 The Broyden Family . 334
10.5 Convergence Properties . 337
10.6 Scaling .. 341
10.7 Memoryless Quasi-Newton Methods . 346
10.8 ∗Combination of Steepest Descent and Newton’s Method 348
10.9 Summary . 351
10.10 Exercises . 352

Part III Constrained Optimization

11 Constrained Optimization Conditions . 361
11.1 Constraints and Tangent Plane . 361
11.2 First-Order Necessary Conditions (Equality Constraints) 366
11.3 Equality Constrained Optimization Examples. 369
11.4 Second-Order Conditions (Equality Constraints) 376
11.5 Inequality Constraints . 381
11.6 Mix-Constrained Optimization Examples . 387
11.7 Lagrangian Duality and Zero-Order Conditions.. 390
11.8 Rules for Constructing the Lagrangian Dual Explicitly 395
11.9 Summary . 397
11.10 Exercises . 398

12 Primal Methods . 405
12.1 Infeasible Direction and the Steepest Descent Projection

Method . 406
12.2 Feasible Direction Methods: Sequential Linear Programming . . . 412
12.3 The Gradient Projection Method .. 414
12.4 Convergence Rate of the Gradient Projection Method 420

xiv Contents

12.5 The Reduced Gradient Method.. 429
12.6 Convergence Rate of the Reduced Gradient Method 435
12.7 Sequential Quadratic Optimization Methods . 442
12.8 Active Set Methods . 445
12.9 Summary . 449
12.10 Exercises . 450

13 Penalty and Barrier Methods . 455
13.1 Penalty Methods . 456
13.2 Barrier Methods .. 460
13.3 Lagrange Multipliers in Penalty and Barrier Methods 463
13.4 Newton’s Method for the Logarithmic Barrier Optimization 470
13.5 Newton’s Method for Equality Constrained Optimization 473
13.6 Conjugate Gradients and Penalty Methods . 476
13.7 Penalty Functions and Gradient Projection .. 477
13.8 Summary . 481
13.9 Exercises . 482

14 Local Duality and Dual Methods . 487
14.1 Local Duality and the Lagrangian Method . 488
14.2 Separable Problems and Their Duals . 494
14.3 The Augmented Lagrangian and Interpretation 498
14.4 The Augmented Lagrangian Method of Multipliers 503
14.5 The Alternating Direction Method of Multipliers 508
14.6 The Multi-Block Extension of the Alternating Direction

Method of Multipliers . 513
14.7 ∗Cutting Plane Methods . 515
14.8 Exercises . 521

15 Primal–Dual Methods . 525
15.1 The Standard Problem and Monotone Function 525
15.2 A Simple Merit Function . 529
15.3 Basic Primal–Dual Methods. 531
15.4 Relation to Sequential Quadratic Optimization 537
15.5 Primal–Dual Interior-Point (Barrier) Methods . 542
15.6 The Monotone Complementarity Problem . 547
15.7 Detect Infeasibility in Nonlinear Optimization 550
15.8 Summary . 553
15.9 Exercises . 554

A Mathematical Review . 559
A.1 Sets . 559
A.2 Matrix Notation . 560
A.3 Spaces . 561
A.4 Eigenvalues and Quadratic Forms. 562
A.5 Topological Concepts . 564
A.6 Functions . 564

Contents xv

B Convex Sets . 571
B.1 Basic Definitions . 571
B.2 Hyperplanes and Polytopes .. 573
B.3 Separating and Supporting Hyperplanes .. 575
B.4 Extreme Points . 577

C Gaussian Elimination . 579
C.1 The LU Decomposition .. 579
C.2 Pivots . 582

D Basic Network Concepts . 587
D.1 Flows in Networks . 589
D.2 Tree Procedure . 589
D.3 Capacitated Networks . 591

Bibliography . 593

Index . 607

Chapter 1
Introduction

1.1 Optimization

The concept of optimization is now well rooted as a principle underlying the
analysis of many complex decision or allocation problems. It offers a certain
degree of philosophical elegance that is hard to dispute, and it often offers an
indispensable degree of operational simplicity. Using this optimization philosophy,
one approaches a complex decision problem, involving the selection of values for
a number of interrelated variables, by focusing attention on a single objective
designed to quantify performance and measure the quality of the decision. This one
objective is maximized (or minimized, depending on the formulation) subject to
the constraints that may limit the selection of decision variable values. If a suitable
single aspect of a problem can be isolated and characterized by an objective, be it
profit or loss in a business setting, speed or distance in a physical problem, expected
return in the environment of risky investments, or social welfare in the context of
government planning, optimization may provide a suitable framework for analysis.

It is, of course, a rare situation in which it is possible to fully represent all the
complexities of variable interactions, constraints, and appropriate objectives when
faced with a complex decision problem. Thus, as with all quantitative techniques
of analysis, a particular optimization formulation should be regarded only as an
approximation. Skill in modeling, to capture the essential elements of a problem,
and good judgment in the interpretation of results are required to obtain meaningful
conclusions. Optimization, then, should be regarded as a tool of conceptualization
and analysis rather than as a principle yielding the philosophically correct solution.

Skill and good judgment, with respect to problem formulation and interpretation
of results, is enhanced through concrete practical experience and a thorough under-
standing of relevant theory. Problem formulation itself always involves a tradeoff
between the conflicting objectives of building a mathematical model sufficiently
complex to accurately capture the problem description and building a model that is

© Springer Nature Switzerland AG 2021
D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
https://doi.org/10.1007/978-3-030-85450-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85450-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-85450-8_1

2 1 Introduction

tractable. The expert model builder is facile with both aspects of this tradeoff. One
aspiring to become such an expert must learn to identify and capture the important
issues of a problem mainly through example and experience; one must learn to
distinguish tractable models from nontractable ones through a study of available
technique and theory and by nurturing the capability to extend existing theory to
new situations.

This book is centered around a certain optimization structure—that characteristic
of linear and nonlinear programming. Examples of situations leading to this
structure are sprinkled throughout the book, and these examples should help to
indicate how practical problems can be often fruitfully structured in this form. The
book mainly, however, is concerned with the development, analysis, and comparison
of algorithms for solving general subclasses of optimization problems. This is
valuable not only for the algorithms themselves, which enable one to solve given
problems, but also because identification of the collection of structures they most
effectively solve can enhance one’s ability to formulate problems.

1.2 Types of Problems

The content of this book is divided into three major parts: Linear Programming,
Unconstrained Problems, and Constrained Problems. The last two parts together
comprise the subject of nonlinear programming.

Linear Programming

Linear programming, hereafter LP , is without doubt the most natural mechanism
for formulating a vast array of problems with modest effort. A linear programming
problem is characterized, as the name implies, by linear functions of the unknowns;
the objective is linear in the unknowns, and the constraints are linear equalities
or linear inequalities in the unknowns. One familiar with other branches of linear
mathematics might suspect, initially, that linear programming formulations are
popular because the mathematics is nicer, the theory is richer, and the computation
simpler for linear problems than for nonlinear ones. But, in fact, these are not the
primary reasons. In terms of mathematical and computational properties, there are
much broader classes of optimization problems than linear programming problems
that have elegant and potent theories and for which effective algorithms are
available. It seems that the popularity of linear programming lies primarily with the
formulation phase of analysis rather than the solution phase—and for good cause.
For one thing, a great number of constraints and objectives that arise in practice are
indisputably linear. Thus, for example, if one formulates a problem with a budget
constraint restricting the total amount of money to be allocated among two different
commodities, the budget constraint takes the form x1+x2 ≤ B, where xj , i = 1, 2,

1.2 Types of Problems 3

is the amount allocated to activity i, and B is the budget. Similarly, if the objective
is, for example, maximum weight, then it can be expressed as w1x1 + w2x2, where
wj , i = 1, 2, is the unit weight of the commodity i. The overall problem would
be expressed as

maximize w1x1 + w2x2

subject to x1 + x2 ≤ B,

x1 ≥ 0, x2 ≥ 0,

which is an elementary linear program. The linearity of the budget constraint is
extremely natural in this case and does not represent simply an approximation to a
more general functional form.

Another reason that linear forms for constraints and objectives are so popular in
problem formulation is that they are often the least difficult to define. Thus, even if
an objective function is not purely linear by virtue of its inherent definition (as in
the above example), it is often far easier to define it as being linear than to decide on
some other functional form and convince others that the more complex form is the
best possible choice. Linearity, therefore, by virtue of its simplicity, often is selected
as the easy way out or, when seeking generality, as the only functional form that will
be equally applicable (or nonapplicable) in a class of similar problems.

Of course, the theoretical and computational aspects do take on a somewhat spe-
cial character for linear programming problems—the most significant development
being the simplex method. This algorithm is developed in Chaps. 2 and 4. More
recent interior point methods are nonlinear in character and these are developed in
Chap. 5.

Conic Linear Programming

Conic Linear Programming, hereafter CLP, is a natural extension of linear pro-
gramming. In LP, the variables may form a vector or point that is subjected to be
componentwise nonnegative, while in CLP they form a point in a general pointed
convex cone (see Appendix B.1) of an Euclidean space, such as a vector or a matrix
of finite dimensions. Consider the three optimization problems below:

min 2x1 + x2 + x3

s.t. x1 + x2 + x3 = 1,

(x1; x2; x3) ≥ 0,

min 2x1 + x2 + x3

s.t. x1 + x2 + x3 = 1,√
x2

2 + x2
3 ≤ x1,

min 2x1 + x2 + x3

s.t. x1 + x2 + x3 = 1,(
x1 x2

x2 x3

)
� 0.

While these problems share the identical linear objective function and single linear
equality constraint, the three variables form a point in three different cones as

4 1 Introduction

indicated by the bottom constraint: on the left they form a vector in the nonnegative
orthant cone, in the middle they form a vector in a cone shaped like an ice cream
cone, called a second-order cone, and on the right they form a 2-dimensional
symmetric matrix required to be positive semidefinite or to be in a semidefinite
cone.

Optimization problems involving quadratic functions may be formulated as
problems with the second-order cone constraint, hereafter SOCP , which find
wide applications in Financial Engineering. Optimization problems involving a
variable matrix, like matrix completion in Machine Learning and covariance matrix
estimation in Statistics, may be formulated as problems with the semidefinite cone
constraint, hereafter SDP. Many applications and solution methods will be discussed
in Chap. 6.

Unconstrained Problems

It may seem that unconstrained optimization problems are so devoid of structural
properties as to preclude their applicability as useful models of meaningful
problems. Quite the contrary is true for two reasons. First, it can be argued, quite
convincingly, that if the scope of a problem is broadened to the consideration of
all relevant decision variables, there may then be no constraints—or put another
way, constraints represent artificial delimitations of scope, and when the scope is
broadened the constraints vanish. Thus, for example, it may be argued that a budget
constraint is not characteristic of a meaningful problem formulation; since by
borrowing at some interest rate it is always possible to obtain additional funds, and
hence rather than introducing a budget constraint, a term reflecting the cost of funds
should be incorporated into the objective. A similar argument applies to constraints
describing the availability of other resources which at some cost (however great)
could be supplemented.

The second reason that many important problems can be regarded as having
no constraints is that constrained problems are sometimes easily converted to
unconstrained problems. For instance, the sole effect of equality constraints is
simply to limit the degrees of freedom, by essentially making some variables
functions of others. These dependencies can sometimes be explicitly characterized,
and a new problem having its number of variables equal to the true degree of
freedom can be determined. As a simple specific example, a constraint of the form
x1+ x2 = B can be eliminated by substituting x2 = B − x1 everywhere else that x2
appears in the problem.

Aside from representing a significant class of practical problems, the study of
unconstrained problems, of course, provides a stepping stone toward the more
general case of constrained problems. Many aspects of both theory and algorithms
are most naturally motivated and verified for the unconstrained case before pro-
gressing to the constrained case.

1.2 Types of Problems 5

Constrained Problems

In spite of the arguments given above, many problems met in practice are formulated
as constrained problems. This is because in most instances a complex problem such
as, for example, the detailed production policy of a giant corporation, the planning
of a large government agency, or even the design of a complex device cannot be
directly treated in its entirety accounting for all possible choices, but instead must be
decomposed into separate subproblems—each subproblem having constraints that
are imposed to restrict its scope. Thus, in a planning problem, budget constraints are
commonly imposed in order to decouple that one problem from a more global one.
Therefore, one frequently encounters general nonlinear constrained mathematical
programming problems.

The general mathematical programming problem can be stated as

minimize f (x)

subject to hi(x) = 0, i = 1, 2, . . . , m

gj (x) ≥ 0, j = 1, 2, . . . , p

x ∈ S.

In this formulation, x is an n-dimensional vector of unknowns, x = (x1, x2, . . . ,

xn), and f, hi, i = 1, 2, . . . , m, and gj , j = 1, 2, . . . , p, are real-valued
functions of the variables x1, x2, . . . , xn. The set S is a subset of n-dimensional
space. The function f is the objective function of the problem and the equations,
inequalities, and set restrictions are constraints.

Generally, in this book, additional assumptions are introduced in order to make
the problem smooth in some suitable sense. For example, the functions in the
problem are usually required to be continuous, or perhaps to have continuous
derivatives. This ensures that small changes in x lead to small changes in other
values associated with the problem. Also, the set S is not allowed to be arbitrary but
usually is required to be a connected region of n-dimensional space, rather than, for
example, a set of distinct isolated points. This ensures that small changes in x can
be made. Indeed, in a majority of problems treated, the set S is taken to be the entire
space; there is no set restriction.

In view of these smoothness assumptions, one might characterize the problems
treated in this book as continuous variable programming, since we generally discuss
problems where all variables and function values can be varied continuously. In fact,
this assumption forms the basis of many of the algorithms discussed, which operate
essentially by making a series of small movements in the unknown x vector.

6 1 Introduction

1.3 Complexity of Problems

One obvious measure of the complexity of a class of optimization problems is its
size, measured in terms of the number of unknown variables and/or the number of
constraints. Another measure is called the bit-size, that is, the number of bits to
store the input data of a problem instance. As might be expected, the computation
cost or time, measured by the total needed number of arithmetic or bit operations,
to solve a given problem instance or to find an optimal solution increases as the size
of the problem increases. Complexity theory studies how fast the increases would
be: if there is an algorithm or method to solve every instance of a type of problem
with the computational cost increasing as a polynomial function of the size, then
this type of problems is said to be polynomial-time solvable and the algorithm is
termed a polynomial-time algorithm. For example, we would show later that linear
programming is polynomial-time solvable. On the other hand, there are many types
of problems where polynomial-time algorithms are yet to be found.

Even for problems with a same size, some of them may be more difficult to solve
than others. Another complexity measure is the condition number, which represents
the difficulty level of a type of problem. Typical examples include the Lipschitz
constant of a function and the condition number of a square matrix.

Much of the basic theory associated with optimization, particularly in nonlinear
programming, is directed at obtaining verifiable necessary and sufficient optimality
conditions, represented by a set of equations or inequalities, satisfied by a solution
point, rather than at questions of computation. This theory involves mainly the
study of Lagrange multipliers, including the Karush–Kuhn–Tucker Theorem and
its extensions. It tremendously enhances insight into the philosophy and qualitative
structure of constrained optimization and provides satisfactory basic foundations
for other important disciplines, such as the theory of the firm, consumer economics,
game theory, and optimal control principles. The interpretation of Lagrange multi-
pliers that accompany this theory is valuable in virtually every optimization setting.
This theory also serves a basis for computing numerical solutions and optimality
accuracy analyses of algorithms. In some cases this may lead to the abandonment
of the idea of directly solving the set of optimality conditions in favor of an
iterative procedure of searching through the space (in an intelligent manner) for
ever-improving solution points.

Today, iterative search techniques can be effectively applied to more or less
general optimization problems, especially to problems that possess special structural
characteristics such as sparsity, which can be exploited by solution methods. Today
linear programming software packages are capable of automatically identifying
sparse structure within the input data and taking advantage of this sparsity in
numerical computation. It is now not uncommon to solve linear programs of up
to a million variables and constraints, as long as the input data is sparse. Problem-
dependent methods, where the structure is not automatically identified, are largely
directed to transportation and network flow problems as discussed in the book.

1.4 Iterative Algorithms and Convergence 7

This book focuses on the aspects of general theory that are most fruitful
for computation in the widest class of problems. While necessary and sufficient
conditions are examined and their application to small-scale problems is illustrated,
our primary interest in such conditions is in their role as the core of a broader theory
applicable to the solution of larger-scale problems. At the other extreme, although
some instances of structure exploitation are discussed, we focus primarily on the
general continuous variable programming problem rather than on special techniques
for special structures.

1.4 Iterative Algorithms and Convergence

The most important characteristic of a high-speed computer is its ability to perform
repetitive operations efficiently, and in order to exploit this basic characteristic,
most algorithms designed to solve large optimization problems are iterative in
nature. Typically, in seeking a vector that solves the programming problem, an
initial vector x0 is selected and the algorithm generates an improved vector x1.
The process is repeated and a still better solution x2 is found. Continuing in this
fashion, a sequence of ever-improving points x0, x1, . . . , xk, . . ., is found that
approaches a solution point x∗. For linear programming problems solved by the
simplex method, the generated sequence is of finite length, reaching the solution
point exactly after a finite (although initially unspecified) number of steps. For
nonlinear programming problems or interior-point methods, the sequence generally
does not ever exactly reach the solution point, but converges toward it. In operation,
the process is terminated when a point sufficiently close to the solution point, say
with at most a positive number ε(<1) error for practical purposes, is obtained (a
solution with error ε = 0 is an exact solution).

The theory of iterative algorithms can be divided into two aspects. The first
is concerned with the creation of the algorithms themselves. Algorithms are not
conceived arbitrarily, but are based on a creative examination of the programming
problem, its inherent structure, and the efficiencies of digital computers. The second
aspect is the verification that a given algorithm will in fact generate a sequence that
converges to a solution point. This aspect is referred to as global convergence, since
it addresses the important question of whether the point sequence generated by an
algorithm, when initiated far from the solution point, will eventually converge to
it, and at what speed the sequence converges to the solution. One cannot regard a
problem as solved simply because an algorithm is known which will converge to the
solution, since it may require an exorbitant amount of time to reduce the error to an
acceptable tolerance. It is essential when prescribing algorithms that some estimate
of the time required is available. It is the convergence-rate aspect of the theory that
allows some quantitative evaluation and comparison of different algorithms, and at
least crudely, assigns a measure of tractability to a problem, as discussed in Sect. 1.1.
This convergence rate can be represented as an iteration-count function depending

8 1 Introduction

on the desired solution accuracy ε. For example, a log(1
ε
)-algorithm converges faster

than a 1
ε

-algorithm, since, as ε decreases, the total number of iterations to compute
an ε-accurate solution grows logarithmically in 1

ε
for the former while it grows

linearly for the latter.
A modern-day technical version of Confucius’ most famous saying, and one

which represents an underlying philosophy of this book, might be, “One good
theory is worth a thousand computer runs.” Thus, the convergence properties of an
iterative algorithm can be estimated with confidence either by performing numerous
computer experiments on different problems or by a simple well-directed theoretical
analysis. A simple theory, of course, provides invaluable insight as well as the
desired estimate.

For linear programming using the simplex method, solid theoretical statements
on the speed of convergence were elusive, because the method actually converges to
an exact solution in a finite number of steps. The question is how many steps might
be required. This question was resolved when it was shown by a worst-case example
that the number of iterative steps to be exponential in the size of the program.
The situation is different for interior point algorithms, which essentially treat the
problem by introducing nonlinear terms, and which therefore do not generally obtain
a solution in a finite number of steps but instead converge toward a solution.

For nonlinear programs, including interior point methods applied to linear
programs, it is meaningful to consider the speed of convergence. There are
many different classes of nonlinear programming algorithms, each with its own
convergence characteristics. However, in many cases the convergence properties can
be deduced analytically by fairly simple means, and this analysis is substantiated by
computational experience. Presentation of convergence analysis, which seems to be
the natural focal point of a theory directed at obtaining specific answers, is a unique
feature of this book.

There are in fact two (somewhat overlapping) aspects of convergence-rate theory.
The first is generally known as complexity analysis and focuses on how fast the
method converges overall, distinguishing between polynomial-time algorithms and
non-polynomial-time algorithms. The second aspect provides more detailed analysis
of how fast the method converges in the final stages or when initiated sufficiently
close to the solution point and can also provide comparisons between different
algorithms. Both of these are treated in this book.

The convergence-rate theory presented has two somewhat surprising but
definitely pleasing aspects. First, the theory is, for the most part, extremely simple in
nature. Although initially one might fear that a theory aimed at predicting the speed
of convergence of a complex algorithm might itself be doubly complex, in fact
the associated convergence analysis often turns out to be exceedingly elementary,
requiring only a line or two of calculation. Second, a large class of seemingly
distinct algorithms turns out to have a common convergence rate. Indeed, as
emphasized in the later chapters of the book, there are several canonical rates
associated with a given programming problem that seem to govern the speed of
convergence of various algorithms when applied to that problem. It is this fact

1.4 Iterative Algorithms and Convergence 9

that underlies the potency of the theory, allowing definitive comparisons among
algorithms to be made even without detailed knowledge of the problems to which
they will be applied. Together these two properties, simplicity and potency, assure
convergence analysis a permanent position of major importance in mathematical
programming theory.

Part I
Linear Programming

Chapter 2
Basic Properties of Linear Programs

2.1 Introduction

A linear program (LP) is an optimization problem in which the objective function is
linear in the unknowns and the constraints consist of linear equalities and linear
inequalities. The exact form of these constraints may differ from one problem
to another, but as shown below, any linear program can be transformed into the
following standard form:

minimize c1x1 + c2x2 + . . .+ cnxn

subject to a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
...

...

am1x1 + am2x2 + · · · + amnxn = bm

and x1 � 0, x2 � 0, . . . , xn � 0,

(2.1)

where the bi’s, ci’s and aij ’s are fixed real constants, and the xi’s are real numbers to
be determined. We always assume that each equation has been multiplied by minus
unity, if necessary, so that each bi � 0.

In more compact vector notation,1 this standard problem becomes

minimize cT x

subject to Ax = b and x � 0. (2.2)

1 See Appendix A for a description of the vector notation used throughout this book.

© Springer Nature Switzerland AG 2021
D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
https://doi.org/10.1007/978-3-030-85450-8_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85450-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-85450-8_2

14 2 Basic Properties of Linear Programs

Here decision vector x is an n-dimensional column vector, objective coefficient data
vector cT is an n-dimensional row vector, constraint data matrix A is an m × n

matrix, and right-hand side data vector b is an m-dimensional column vector. The
vector inequality x � 0 means that each component of x is nonnegative.

Before giving some examples of areas in which linear programming problems
arise naturally, we indicate how various other forms of linear programs can be
converted to the standard form.

Example 1 (Slack Variables) Consider a problem

maximize c1x1 + c2x2 + · · · + cnxn

subject to a11x1 + a12x2 + · · · + a1nxn � b1

a21x1 + a22x2 + · · · + a2nxn � b2
...

...

am1x1 + am2x2 + · · · + amnxn � bm

and x1 � 0, x2 � 0, . . . , xn � 0.

In this case the constraint set is determined entirely by linear inequalities.
The problem may be alternatively expressed as

minimize −c1x1 − c2x2 − · · · − cnxn

subject to a11x1 + a12x2 + · · · + a1nxn + xn+1 = b1

a21x1 + a22x2 + · · · + a2nxn + xn+2 = b2
...

...

am1x1 + am2x2 + · · · + amnxn + xn+m = bm

and x1 � 0, x2 � 0, . . . , xn+1 � 0, . . . , xn+m � 0.

The new nonnegative variables xn+i , i = 1, . . . ,m, introduced to convert the
inequalities to equalities are called slack variables (or more loosely, slacks). By
considering the problem as one negating the original objective and having n + m

unknowns, the problem takes the standard form. The m× (n+m) matrix that now
describes the linear equality constraints is of the special form [A, I] (that is, its
columns can be partitioned into two sets; the first n columns make up the original A
matrix and the last m columns make up an m×m identity matrix).

Example 2 (Surplus Variables) If the linear inequalities of Example 1 are reversed
so that a typical inequality is

ai1x1 + ai2x2 + · · · + ainxn � bi,

it is clear that this is equivalent to

ai1x1 + ai2x2 + · · · + ainxn − yi = bi

2.1 Introduction 15

with yi � 0. Variables, such as yi , adjoined in this fashion to convert a “greater than
or equal to” inequality to equality are called surplus variables.

It should be clear that by suitably multiplying by minus unity, and adjoining slack
and surplus variables, any set of linear inequalities can be converted to standard form
if the unknown variables are restricted to be nonnegative.

Example 3 (Free Variables—First Method) If a linear program is given in standard
form except that one or more of the unknown variables is not required to be
nonnegative, the problem can be transformed to standard form by either of two
simple techniques.

To describe the first technique, suppose in (2.1), for example, that the restriction
x1 � 0 is not present and hence x1 is free to take on either positive or negative
values. We then write

x1 = u1 − v1, (2.3)

where we require u1 � 0 and v1 � 0. If we substitute u1 − v1 for x1 everywhere in
(2.1), the linearity of the constraints is preserved and all variables are now required
to be nonnegative. The problem is then expressed in terms of the n + 1 variables
u1, v1, x2, x3, . . . , xn.

There is obviously a certain degree of redundancy introduced by this technique,
however, since a constant added to u1 and v1 does not change x1 (that is, the
representation of a given value x1 is not unique). Nevertheless, this does not hinder
the simplex method of solution.

Example 4 (Free Variables—Second Method) A second approach for converting to
standard form when x1 is unconstrained in sign is to eliminate x1 together with one
of the constraint equations. Take any one of the m equations in (2.1) which has a
nonzero coefficient for x1. Say, for example,

ai1x1 + ai2x2 + · · · + ainxn = bi, (2.4)

where ai1 �= 0. Then x1 can be expressed as a linear combination of the other
variables plus a constant. If this expression is substituted for x1 everywhere in (2.1),
we are led to a new problem of exactly the same form but expressed in terms of the
variables x2, x3, . . . , xn only. Furthermore, the ith equation, used to determine x1,
is now identically zero and it too can be eliminated. This substitution scheme is valid
since any combination of nonnegative variables x2, x3, . . . , xn leads to a feasible
x1 from (2.4), and the sign of x1 is unrestricted. As a result of this simplification,
we obtain a standard linear program having n − 1 variables and m − 1 constraint
equations. The value of the variable x1 can be determined after solution through
(2.4).

16 2 Basic Properties of Linear Programs

Example 5 (Specific Case) As a specific instance of the above technique consider
the problem

minimize x1 + 3x2 + 4x3

subject to x1 + 2x2 + x3 = 5

2x1 + 3x2 + x3 = 6

x2 � 0, x3 � 0.

Since x1 is free, we solve for it from the first constraint, obtaining

x1 = 5− 2x2 − x3. (2.5)

Substituting this into the objective and the second constraint, we obtain the
equivalent problem (subtracting five from the objective)

minimize x2 + 3x3

subject to x2 + x3 = 4

x2 � 0, x3 � 0,

which is a problem in standard form. After the smaller problem is solved (the answer
is x2 = 4, x3 = 0) the value for x1(x1 = −3) can be found from (2.5).

2.2 Examples of Linear Programming Problems

Linear programming has long proved its merit as a significant model of numerous
allocation problems and economic phenomena. The continuously expanding litera-
ture of applications repeatedly demonstrates the importance of linear programming
as a general framework for problem formulation. In this section we present some
classic examples of situations that have natural formulations.

Example 1 (The Diet Problem) How can we determine the most economical diet
that satisfies the basic minimum nutritional requirements for good health? Such a
problem might, for example, be faced by the dietitian of a large army. We assume
that there are available at the market n different foods and that the j th food sells at a
price cj per unit. In addition there are m basic nutritional ingredients and, to achieve
a balanced diet, each individual must receive at least bi units of the ith nutrient per
day. Finally, we assume that each unit of food j contains aij units of the ith nutrient.

2.2 Examples of Linear Programming Problems 17

If we denote by xj the number of units of food j in the diet, the problem then is
to select the xj ’s to minimize the total cost

c1x1 + c2x2 + · · · + cnxn

subject to the nutritional constraints

ai1x1 + ai2x2 + · · · + ainxn � bi, i = 1, . . . ,m,

and the nonnegativity constraints

x1 � 0, x2 � 0, . . . , xn � 0

on the food quantities.
This problem can be converted to standard form by subtracting a nonnegative

surplus variable from the left side of each of the m linear inequalities. The diet
problem is discussed further in Chap. 3.

Example 2 (The Resource-Allocation Problem) Suppose we own a facility that is
capable of manufacturing n different products, each of which may require various
amounts of m different resources. Each product can be produced at any level xj � 0,
j = 1, 2, . . . , n, and each unit of the j th product can sell for πj dollars and needs
aij units of the ith resource, i = 1, 2, . . . ,m. Assuming linearity of the production
facility, if we are given a set of m numbers b1, b2, . . . , bm describing the available
quantities of the m resources, and we wish to manufacture products at maximum
revenue, our decision problem is a linear program to maximize

π1x1 + π2x2 + · · · + πnxn

subject to the resource constraints

ai1x1 + ai2x2 + · · · + ainxn � bi, i = 1, . . . ,m

and the nonnegativity constraints on all production variables. The problem can also
be interpreted as funding n different activities, where πj is the full reward from the
j th activity and xj is restricted to 0 ≤ xj ≤ 1, representing the funding level from
0% to 100%.

Example 3 (The Transportation Problem) Quantities a1, a2, . . . , am, respectively,
of a certain product are to be shipped from each of m locations and received in
amounts b1, b2, . . . , bn, respectively, at each of n destinations (with the same
total quantity). Associated with the shipping of a unit of product from origin i to
destination j is a shipping cost cij . It is desired to determine the amounts xij to be
shipped between each origin–destination pair i = 1, 2, . . . , m; j = 1, 2, . . . , n; so
as to satisfy the shipping requirements and minimize the total cost of transportation.

18 2 Basic Properties of Linear Programs

To formulate this problem as a linear programming problem, we set up the array
shown below:

The ith row in this array defines the variables associated with the ith origin,
while the j th column in this array defines the variables associated with the j th
destination. The problem is to place nonnegative variables xij in this array so that the
sum across the ith row is aj , the sum down the j th column is bj , and the weighted
sum

∑n
j=1

∑m
i=1 cij xij , representing the transportation cost, is minimized.

Thus, we have the linear programming problem:

minimize
∑
ij

cij xij

subject to
n∑

j=1

xij = ai for i = 1, 2, . . . , m (2.6)

m∑
i=1

xij = bj for j = 1, 2, . . . , n (2.7)

xij � 0 for i = 1, 2, . . . , m; j = 1, 2, . . . , n.

In order that the constraints (2.6) and (2.7) be consistent, we must, of course,
assume that

∑m
i=1 ai = ∑n

j=1 bj , which corresponds to assuming that the total
amount shipped is equal to the total amount received.

The transportation problem is now clearly seen to be a linear programming
problem in mn variables. Equations (2.6) and (2.7) can be combined and expressed
in matrix form in the usual manner and this results in an (m+ n)× (mn) coefficient
matrix consisting of zeros and ones only. In Statistics, the minimal value of the
problem is called the Wasserstein Distance between two distributions (a1, . . . , an)

and (b1, . . . , bn), where m = n of a same support set for given distances cij

between the supports.

Example 4 (The Maximal Flow Problem) Consider a capacitated network (see
Fig. 2.1, and Appendix D) in which two special nodes, called the source and the
sink, are distinguished. Say they are nodes 1 and m, respectively. All other nodes

2.2 Examples of Linear Programming Problems 19

Fig. 2.1 A network with capacities: A is the source node and B is the sink node

must satisfy the strict conservation requirement; that is, the net flow into these nodes
must be zero. However, the source may have a net outflow and the sink a net inflow.
The outflow f of the source will equal the inflow of the sink as a consequence of
the conservation at all other nodes. A set of arc flows satisfying these conditions
is said to be a flow in the network of value f . The maximal flow problem is that
of determining the maximal flow that can be established in such a network. When
written out, it takes the form

maximize f

subject to
n∑

j=1

x1j −
n∑

j=1

xj1 − f = 0

n∑
j=1

xij −
n∑

j=1

xji = 0, i �= 1, m (2.8)

n∑
j=1

xmj −
n∑

j=1

xjm + f = 0

0 ≤ xij ≤ kij , for all i, j,

where kij = 0 for those no-arc pairs (i, j).

Example 5 (A Supply-Chain Problem) Consider the problem of operating a ware-
house, by buying and selling the stock of a certain commodity, in order to maximize
profit over a certain length of time. The warehouse has a fixed capacity C, and there
is a cost r per unit for holding stock for one period. The price, pi , of the commodity
is known to fluctuate over a number of time periods—say months, indexed by i.
In any period the same price holds for both purchase or sale. The warehouse is
originally empty and is required to be empty at the end of the last period.

20 2 Basic Properties of Linear Programs

To formulate this problem, variables are introduced for each time period. In
particular, let xi denote the level of stock in the warehouse at the beginning of period
i. Let ui denote the amount bought during period i, and let si denote the amount sold
during period i. If there are n periods, the problem is

maximize
n∑

i=1
(pi(si − ui)− rxi)

subject to xi+1 = xi + ui − si i = 1, 2, . . . , n− 1
0 = xn + un − sn

xi + zi = C i = 2, . . . , n

x1 = 0, xi � 0, ui � 0, si � 0, zi � 0,

where zi is a slack variable. If the constraints are written out explicitly for the case
n = 3, they take the form

−u1 + s1 +x2 = 0
−x2 − u2 + s2 +x3 = 0
x2 + z2 = C

−x3 − u3 + s3 = 0
x3 + z3 = C

Note that the coefficient matrix can be partitioned into blocks corresponding to
the variables of the different time periods. The only blocks that have nonzero entries
are the diagonal ones and the ones immediately above the diagonal. This structure
is typical of problems involving time.

Example 6 (Linear Classifier and Support Vector Machine) Suppose several d-
dimensional data points are classified into two distinct classes. For example,
two-dimensional data points may be grade averages in science and humanities for
different students. We also know the academic major of each student, as being in
science or humanities, which serves as the classification. In general we have vectors
ai ∈ Ed for i = 1, 2, . . . , n1 and vectors bj ∈ Ed for j = 1, 2, . . . , n2. We wish
to find a hyperplane that separates the ai’s from the bj ’s. Mathematically we wish
to find a slope-vector y ∈ Ed and an intercept scalar β such that

aT
i y+ β � 1 for all i

bT
j y+ β � −1 for all j,

where {x : xT y+ β = 0} is the desired hyperplane, and the separation is defined by
the fixed margins +1 and −1, which could be made soft or variable later. This is a
linear program. See Fig. 2.2.

2.2 Examples of Linear Programming Problems 21

Fig. 2.2 Support vector for data classification

Example 7 (Combinatorial Auction and Prediction Market) The prediction market
is to use a market mechanism to predict the outcome of an event. Suppose there are
m mutually exclusive potential states and only one of them will be true at maturity.
For example, the states may correspond to the winning horse in a race of m horses,
or the value of a stock index, falling within m intervals. An auction organizer or
market maker who establishes a parimutuel auction is prepared to issue contracts
specifying subsets of the m possibilities that pay $1 if the final state is one of those
designated by the contract, and zero otherwise. There are n participants who may
place orders with the organizer for the purchase of such contracts. An order by the
j th participant consists of an m-vector aj = (a1j , a2j , . . . , amj)

T where each
component is either 0 or 1, a one indicating a desire to be paid if the corresponding
state occurs.

Accompanying the order is a number rj which is the price limit the participant is
willing to pay for one unit of the order. Finally, the participant also declares the
maximum number qj of units he or she is willing to accept under these terms.
Consider an upcoming World Cup Game where 5 teams have potential to win the
game and each of them represents a country or state, and 5 orders have been placed

22 2 Basic Properties of Linear Programs

to bid a combination of teams:

Order: #1 #2 #3 #4 #5
Argentina 1 0 1 1 0

Brazil 1 0 0 1 1
Italy 1 0 1 1 0

Germany 0 1 0 1 1
France 0 0 1 0 0

Bidding Prize: rj 0.75 0.35 0.4 0.95 0.75
Quantity limit: qj 10 5 10 10 5

Order-fill decision: x1 x2 x3 x4 x5

(2.9)

The auction organizer, after receiving these various orders, must decide how many
contracts to fill. Let xj be the (real) number of units awarded to the j th order. Then
the j th participant will pay rj xj . The total amount paid by all participants is rT x,
where x is the vector of xj ’s and r is the vector of order-prices.

If the outcome is the ith state, the auction organizer must pay out a total of∑n
j=1 aij xj = (Ax)i . The organizer would like to maximize profit in the worst

possible case, and does this by solving the problem

maximize rT x−maxi (Ax)i

subject to 0 � x � q.

This problem can be expressed alternatively as selecting x and scalar s to

maximize rT x− s

subject to Ax− 1s � 0

0 � x � q

where 1 is the vector of all 1’s. Notice that the (worst-case) profit will always be
nonnegative, since x = 0 is feasible.

Example 8 (Markov Decision Process (MDP)) An MDP problem is defined by a
finite number of states, indexed by i = 1, . . . ,m, where each state has a set of a
finite number of actions, Ai , to take. Each action, say j ∈ Ai , is associated with an
immediate cost cj of taking, and a probability distribution pj ∈ Em to transfer to
all possible states at the next time period. A stationary policy for the decision maker
is a function π = {π1, π2, · · · , πm} that specifies a single action in every state,
πi ∈ Ai , that the decision maker will take at any time period. The MDP problem is
to find a stationary policy to minimize or maximize the discounted sum of expected

2.2 Examples of Linear Programming Problems 23

!1 ! ! ! ! !2 6543
+1

A1

A3
A4

A2

1/4 1/4 1/4 1/4

1/3 1/3 1/3

4/51/5
1/2 1/2

Fig. 2.3 A Maze Runner example

costs or rewards over the infinite time horizon with a discount factor 0 ≤ γ < 1,
when the process starts from state i0:

∞∑
t=0

γ tE[cπit
].

For simplicity, consider a Maze Runner Game example depicted in Fig. 2.3. Each
square represents a state, where each of states {1, 2, 3, 4} has two possible actions
to take: red action is to move to the next state at the next time period, while the blue
action is a shortcut moving, with a probability distribution, to a state at the next time
period. Each state of {5, 6} has only one action moving to state 6 (the “Exit” state
of the game) and 1 (the “Start” state of the game), respectively, and all actions have
zero cost except state 5’s (the “Trap” state) action, which has 1-unit cost to get out.
Suppose that the game is played infinitely, what is the optimal policy; that is, which
action is best to take for every state at any time, to minimize the present-expected
total cost.

Let y∗i , i = 1, . . . ,m, represent the optimal present-expected cost when the process
starts at state i and time 0, also called cost-to-go value of state i. Then y∗i s must
follow Bellman’s principle of optimality such that for every i:

y∗i = min
j∈Ai

(cj + γ pT
j y∗),

where cj is the immediate cost of taking action j ∈ Ai at the current time period,
and pT

j y∗ is the optimal expected cost from the next time period, and then on (so
that we add discount factor γ to convert it to the current value). When y∗i is known
for every state, the optimal action in each state would be

π∗i = arg min
j∈Ai

(cj + γ pT
j y∗), ∀i.

24 2 Basic Properties of Linear Programs

One can see that y∗ ∈ Em is a fixed point of Bellman’s operator, and it can be
computed by the following linear program:

maximize
m∑

i=1

yi

subject to y1 − γ pT
j y ≤ cj , ∀j ∈ A1

. . .

yi − γ pT
j y ≤ cj , ∀j ∈ Ai

. . .

ym − γ pT
j y ≤ cj , ∀j ∈ Am.

Basically, we relax the “min” operator to “≤” from Bellman’s principle and make
them into the constraints and then maximize the sum of yis as the objective. When
the objective is maximized, at least one inequality constraint in Ai must become
equal for every state i so that y is a fixed point solution of Bellman’s operator.

In the Maze Runner problem of Fig. 2.3, for example, we would have two
constraints for the two actions of State 1 as:

y1 − γy2 ≤ 0, y1 − γ (0.25y3 + 0.25y4 + 0.25y5 + 0.25y6) ≤ 0

and the constraint for the single action of State 5 would be: y5 − γy6 ≤ 1.

2.3 Basic Feasible Solutions

Consider the system of equalities

Ax = b, (2.10)

where x is an n-vector, b is an m-vector, and A is an m × n matrix. Suppose that
from the n columns of A we select a set of m linearly independent columns (such a
set exists if the rank of A is m). For notational simplicity assume that we select the
first m columns of A and denote the m×m matrix determined by these columns by
B. The matrix B is then nonsingular and we may uniquely solve the equation.

BxB = b or xB = B−1b (2.11)

for the m-vector xB whose components are associated with the columns of submatrix
B according to the same index order. By putting x = (xB, 0) (that is, setting the first

2.3 Basic Feasible Solutions 25

m components of x equal to those of xB and the remaining components equal to
zero), we obtain a solution to Ax = b. This leads to the following definition.

Definition Given the set of m simultaneous linear equations in n unknowns (2.10), let B be
any nonsingular m×m submatrix made up of columns of A. Then, if all n−m components
of x not associated with columns of B are set equal to zero, the solution to the resulting set of
equations is said to be a basic solution to (2.10) with respect to basis B. The components of
x associated with the columns of B, denoted by subvector xB according to the same column
index order in B throughout this book, are called basic variables.

In the above definition we refer to B as a basis, since B consists of m linearly
independent columns that can be regarded as a basis for the space Em. The basic
solution corresponds to an expression for the vector b as a linear combination of
these basis vectors. This interpretation is discussed further in the next section.

In general, of course, Eq. (2.10) may have no basic solutions. However, we
may avoid trivialities and difficulties of a nonessential nature by making certain
elementary assumptions regarding the structure of the matrix A. First, we usually
assume that n > m, that is, the number of variables xj exceeds the number of
equality constraints. Second, we usually assume that the rows of A are linearly
independent, corresponding to linear independence of the m equations. A linear
dependency among the rows of A would lead either to contradictory constraints
and hence no solutions to (2.10), or to a redundancy that could be eliminated.
Formally, we explicitly make the following assumption in our development, unless
noted otherwise.

Full Rank Assumption The m× n matrix A has m < n, and the m rows of A are linearly
independent.

Under the above assumption, the system (2.10) will always have a solution and,
in fact, it will always have at least one basic solution.

The basic variables in a basic solution are not necessarily all nonzero. This is
noted by the following definition.

Definition If one or more of the basic variables in a basic solution has value zero, that
solution is said to be a degenerate basic solution.

We note that in a nondegenerate basic solution the basic variables, and hence the
basis B, can be immediately identified from the positive components of the solution.
There is ambiguity associated with a degenerate basic solution, however, since the
zero-valued basic and some of nonbasic variables can be interchanged.

So far in the discussion of basic solutions we have treated only the equality
constraint (2.10) and have made no reference to positivity constraints on the
variables. Similar definitions apply when these constraints are also considered.
Thus, consider now the system of constraints

Ax = b, x � 0, (2.12)

which represent the constraints of a linear program in standard form.

26 2 Basic Properties of Linear Programs

Definition A vector x satisfying (2.12) is said to be feasible for these constraints. A feasible
solution to the constraints (2.12) that is also basic is said to be a basic feasible solution; if
this solution is also a degenerate basic solution, it is called a degenerate basic feasible
solution.

2.4 The Fundamental Theorem of Linear Programming

In this section, through the fundamental theorem of linear programming, we
establish the primary importance of basic feasible solutions in solving linear
programs. The method of proof of the theorem is in many respects as important as
the result itself, since it represents the beginning of the development of the simplex
method. The theorem (due to Carathéodory) itself shows that it is necessary only
to consider basic feasible solutions when seeking an optimal solution to a linear
program because the optimal value is always achieved at such a solution.

Corresponding to a linear program in standard form

minimize cT x

subject to Ax = b, x � 0 (2.13)

a feasible solution to the constraints that achieves the minimum value of the
objective function subject to those constraints is said to be an optimal feasible
solution. If this solution is basic, it is an optimal basic feasible solution.

Fundamental Theorem of Linear Programming Given a linear program in standard
form (2.13) where A is an m× n matrix of rank m,

i) if there is a feasible solution, there is a basic feasible solution;
ii) if there is an optimal feasible solution, there is an optimal basic feasible solution.

Proof of (i) Denote the columns of A by a1, a2, . . . , an. Suppose x =
(x1, x2, . . . , xn) is a feasible solution. Then, in terms of the columns of A,
this solution satisfies:

x1a1 + x2a2 + · · · + xnan = b.

Assume that exactly p of the variables xi are greater than zero, and for convenience,
that they are the first p variables. Thus

x1a1 + x2a2 + · · · + xpap = b. (2.14)

There are now two cases, corresponding as to whether the set a1, a2, . . . , ap is
linearly independent or linearly dependent.

CASE 1: Assume a1, a2, . . . , ap are linearly independent. Then clearly, p � m.
If p = m, the solution is basic and the proof is complete. If p < m, then, since A

2.4 The Fundamental Theorem of Linear Programming 27

has rank m, m− p vectors can be found from the remaining n − p vectors so that
the resulting set of m vectors is linearly independent. (See Exercise 12.) Assigning
the value zero to the corresponding m − p variables yields a (degenerate) basic
feasible solution.

CASE 2: Assume a1, a2, . . . , ap are linearly dependent. Then there is a
nontrivial linear combination of these vectors that is zero. Thus there are constants
y1, y2, . . . , yp, at least one of which can be assumed to be positive, such that

y1a1 + y2a2 + · · · + ypap = 0. (2.15)

Multiplying this equation by a scalar ε and subtracting it from (2.14), we obtain

(x1 − εy1)a1 + (x2 − εy2)a2 + · · · + (xp − εyp)ap = b. (2.16)

This equation holds for every ε, and for each ε the components xj − εyj correspond
to a solution of the linear equalities—although they may violate xi − εyi � 0.
Denoting y = (y1, y2, . . . , yp, 0, 0, . . . , 0), we see that for any ε

x− εy (2.17)

is a solution to the equalities. For ε = 0, this reduces to the original feasible solution.
As ε is increased from zero, the various components increase, decrease, or remain
constant, depending upon whether the correspondingyi is negative, positive, or zero.
Since we assume at least one yi is positive, at least one component will decrease as ε

is increased. We increase ε to the first point where one or more components become
zero. Specifically, we set

ε = min{xi/yi : yi > 0}.

For this value of ε the solution given by (2.17) is feasible and has at most p − 1
positive variables. Repeating this process if necessary, we can eliminate positive
variables until we have a feasible solution with corresponding columns that are
linearly independent. At that point Case 1 applies.

Proof of (ii) Let x = (x1, x2, . . . , xn) be an optimal feasible solution and, as in the
proof of (i) above, suppose there are exactly p positive variables x1, x2, . . . , xp.
Again there are two cases; and Case 1, corresponding to linear independence, is
exactly the same as before.

Case 2 also goes exactly the same as before, but it must be shown that for any
ε the solution (2.17) is optimal. To show this, note that the value of the solution
x− εy is

cT x− εcT y. (2.18)

28 2 Basic Properties of Linear Programs

For ε sufficiently small in magnitude, x − εy is a feasible solution for positive or
negative values of ε. Thus we conclude that cT y = 0. For, if cT y �= 0, an ε of small
magnitude and proper sign could be determined so as to render (2.18) smaller than
cT x while maintaining feasibility. This would violate the assumption of optimality
of x and hence we must have cT y = 0.

Having established that the new feasible solution with fewer positive components
is also optimal, the remainder of the proof may be completed exactly as in part (i).

Part (i) of the theorem is commonly referred to as Carathéodory’s theorem.
Part (ii) of the theorem reduces the task of solving a linear program to that of
searching over basic feasible solutions. Since for a problem having n variables and
m constraints there are at most

(
n

m

)
= n!

m!(n−m)!

basic solutions (corresponding to the number of ways of selecting m of n columns),
there are only a finite number of possibilities. Thus the fundamental theorem yields
an obvious, but terribly inefficient, finite search technique. By expanding upon the
technique of proof as well as the statement of the fundamental theorem, the efficient
simplex procedure is derived.

It should be noted that the proof of the fundamental theorem given above is
of a simple algebraic character. In the next section the geometric interpretation of
this theorem is explored in terms of the general theory of convex sets. Although
the geometric interpretation is esthetically pleasing and theoretically important, the
reader should bear in mind, lest one be diverted by the somewhat more advanced
arguments employed, the underlying elementary level of the fundamental theorem.

2.5 Relations to Convex Geometry

Our development to this point, including the above proof of the fundamental
theorem, has been based only on elementary properties of systems of linear
equations. These results, however, have interesting interpretations in terms of the
theory of convex sets that can lead not only to an alternative derivation of the
fundamental theorem, but also to a clearer geometric understanding of the result.
The main link between the algebraic and geometric theories is the formal relation
between basic feasible solutions of linear inequalities in standard form and extreme
points of polytopes. We establish this correspondence as follows. The reader is
referred to Appendix B for a more complete summary of concepts related to
convexity, but the definition of an extreme point is stated here.

Definition A point x in a convex set C is said to be an extreme point of C if there are no
two distinct points x1 and x2 in C such that x = αx1 + (1− α)x2 for some α, 0 < α < 1.

2.5 Relations to Convex Geometry 29

An extreme point is thus a point that does not lie strictly within a line segment
connecting two other points of the set. The extreme points of a triangle, for example,
are its three vertices.

Theorem (Equivalence of Extreme Points and Basic Solutions) Let A be an m×n matrix
of rank m and b an m-vector. Let K be the convex polytope consisting of all n-vectors x
satisfying

Ax = b, x � 0. (2.19)

A vector x is an extreme point of K if and only if x is a basic feasible solution to (2.19).

Proof Suppose first that x = (x1, x2, . . . , xm, 0, 0, . . . , 0) is a basic feasible
solution to (2.19). Then

x1a1 + x2a2 + · · · + xmam = b,

where a1, a2, . . . , am, the first m columns of A, are linearly independent. Suppose
that x could be expressed as a convex combination of two other points in K; say,
x = αy + (1 − α)z, 0 < α < 1, y �= z. Since all components of x, y, z are
nonnegative and since 0 < α < 1, it follows immediately that the last n − m

components of y and z are zero. Thus, in particular, we have

y1a1 + y2a2 + · · · + ymam = b

and

z1a1 + z2a2 + · · · + zmam = b.

Since the vectors a1, a2, . . . , am are linearly independent, however, it follows that
x = y = z and hence x is an extreme point of K .

Conversely, assume that x is an extreme point of K . Let us assume that the
nonzero components of x are the first k components. Then

x1a1 + x2a2 + · · · + xkak = b,

with xi > 0, i = 1, 2, . . . , k. To show that x is a basic feasible solution it must
be shown that the vectors a1, a2, . . . , ak are linearly independent. We do this
by contradiction. Suppose a1, a2, . . . , ak are linearly dependent. Then there is a
nontrivial linear combination that is zero:

y1a1 + y2a2 + · · · + ykak = 0.

Define the n-vector y = (y1, y2, . . . , yk, 0, 0, . . . , 0). Since xi > 0, 1 � i � k,
it is possible to select ε such that

x+ εy � 0, x− εy � 0.

30 2 Basic Properties of Linear Programs

We then have x = 1
2 (x+εy)+ 1

2 (x−εy) which expresses x as a convex combination
of two distinct vectors in K . This cannot occur, since x is an extreme point of K .
Thus a1, a2, . . . , ak are linearly independent and x is a basic feasible solution.
(Although if k < m, it is a degenerate basic feasible solution.)

This correspondence between extreme points and basic feasible solutions enables
us to prove certain geometric properties of the convex polytope K defining the
constraint set of a linear programming problem.

Corollary 1 If the convex set K corresponding to (2.19) is nonempty, it has at least one
extreme point.

Proof This follows from the first part of the Fundamental Theorem and the
Equivalence Theorem above.

Corollary 2 If there is a finite optimal solution to a linear programming problem, there is
a finite optimal solution which is an extreme point of the constraint set.

Corollary 3 The constraint set K corresponding to (2.19) possesses at most a finite
number of extreme points and each of them is finite.

Proof There are obviously only a finite number of basic solutions obtained by
selecting m basis vectors from the n columns of A. The extreme points of K are
a subset of these basic solutions and must be finite.

Finally, we come to the special case which occurs most frequently in practice and
which in some sense is characteristic of well-formulated linear programs—the case
where the constraint set K is nonempty and bounded. In this case we combine the
results of the Equivalence Theorem and Corollary 3 above to obtain the following
corollary.

Corollary 4 If the convex polytope K corresponding to (2.19) is bounded, then K is a
convex polyhedron, that is, K consists of points that are convex combinations of a finite
number of points.

Some of these results are illustrated by the following examples:

Example 1 Consider the constraint set in E3 defined by

x1 + x2 + x3 = 1

x1 � 0, x2 � 0, x3 � 0.

This set is illustrated in Fig. 2.4. It has three extreme points, corresponding to the
three basic solutions to x1 + x2 + x3 = 1.

Example 2 Consider the constraint set in E3 defined by

x1 + x2 + x3 = 1

2x1 + 3x2 = 1

x1 � 0, x2 � 0, x3 � 0.

2.5 Relations to Convex Geometry 31

Fig. 2.4 Feasible set for
Example 1

Fig. 2.5 Feasible set for
Example 2

This set is illustrated in Fig. 2.5. It has two extreme points, corresponding to the
two basic feasible solutions. Note that the system of equations itself has three basic
solutions, (2, −1, 0), (1/2, 0, 1/2), (0, 1/3, 2/3), the first of which is not feasible.

Example 3 Consider the constraint set in E2 defined in terms of the inequalities

x1 + 8

3
x2 � 4

x1 + x2 � 2

2x1 � 3

x1 � 0, x2 � 0.

32 2 Basic Properties of Linear Programs

Fig. 2.6 Feasible set and objective values at extreme point solutions for Example 3

This set is illustrated in Fig. 2.6. We see by inspection that this set has five extreme
points. In order to compare this example with our general results we must introduce
slack variables to yield the equivalent set in E5:

x1 + 8
3x2 +x3 = 4

x1 +x2 +x4 = 2
2x1 +x5 = 3

x1 � 0, x2 � 0, x3 � 0, x4 � 0, x5 � 0.

A basic solution for this system is obtained by setting any two variables to zero and
solving for the remaining three. As indicated in Fig. 2.6, each edge of the figure
corresponds to one variable being zero, and the extreme points are the points where
two variables are zero.

This example also illustrates that even when not expressed in standard form the
extreme points of the set defined by the constraints of a linear program correspond to
the possible solution points. This can be illustrated more directly by including the
objective function in the figure as well. Suppose, for example, that in Example 3
the objective function to be minimized is −2x1 − x2. The set of points satisfying
−2x1 − x2 = z for fixed z is a line. As z varies, different parallel lines are obtained
as shown in the right graph of Fig. 2.6. The optimal value of the linear program is
the smallest value of z for which the corresponding line has a point in common with
the feasible set. It should be reasonably clear, at least in two dimensions, that the
points of solution will always include an extreme point. In the figure this occurs at
the point (3/2, 1/2) with z = −7/2.

2.6 Farkas’ Lemma and Alternative Systems 33

2.6 Farkas’ Lemma and Alternative Systems

We now present a theorem to check whether or not a feasible solution exists for
constraint system (2.19). If one can find a single solution to meet all the constraints,
then it is a “positive” certificate to prove the system feasible. The question is: how
could we construct a “negative” certificate to prove the system infeasible?

Theorem (Farkas’ Lemma) Let A be an m × n matrix and b an m-vector. The system of
constraints

Ax = b, x � 0 (2.20)

has a feasible solution x if and only if the system of constraints

−yT A � 0, yT b = 1(or > 0) (2.21)

has no feasible solution y. Therefore a single feasible solution y for system (2.21)
establishes a certificate to prove system (2.20) infeasible.

The two systems, (2.20) and (2.21), are called alternative systems: one of them
is feasible and the other is infeasible.

Example 1 Let 1 × 2 matrix A = (1 1) and scalar b = −1. Then, y = −1 is
feasible for system (2.21), which proves that system (2.20) is infeasible.

Before we prove the theorem, we first present a lemma.

Lemma 1 Let C be the cone generated by the columns of matrix A, that is,

C = {Ax ∈ Em : x � 0}.

Then C is a closed and convex set.

The definition of cone and conic combination can be found in Sect. A.3. We
leave the proof of the lemma as an exercise, where the closeness proof needs to use
Carathéodory’s theorem given in Sect. 2.4.

Proof of Farkas’ Lemma Let system (2.20) have a feasible solution, say x̄. Then,
system (2.21) must be infeasible, since, otherwise, we have a contradiction

0 < yT b = yT (Ax̄) = (yT A)x̄ ≤ 0

from x̄ ≥ 0 and yT A ≤ 0.
Now let system (2.20) have no feasible solution, that is, b �∈ C := {Ax : x ≥ 0}.

We now prove that its alternative system (2.21) must have a feasible solution.
Since point b is not in C and C is a closed and convex set, by the separating

hyperplane theorem of Appendix B, there is y such that

yT b > sup
c∈C

yT c.

34 2 Basic Properties of Linear Programs

But c = Ax for some x ≥ 0, we have

yT b > sup
x≥0

yT (Ax) = sup
x≥0

(yT A)x. (2.22)

Setting x = 0, we have yT b > 0 from inequality (2.22).
Furthermore, inequality (2.22) also implies yT A ≤ 0. Since otherwise say the

first entry of yT A, (yT A)1, is positive, we can then choose a vector x̄ ≥ 0 such that

x̄1 = α > 0, x̄2 = . . . = x̄n = 0.

Then, from this choice we have

sup
x≥0

(yT A)x ≥ (yT A)x̄ = (yT A)1 · α

and it tends to ∞ as α → ∞. This is a contradiction because (yT A)x̄ should be
bounded from above by inequality (2.22). Therefore, y identified in the separating
hyperplane theorem is a feasible solution to system (2.21). Finally, one can always
scale y such that yT b = 1.

The geometric interpretation of the lemma is quite clear: if b is not in the closed
and convex cone generated by the columns of matrix A, then there must be a
hyperplane separating b and the cone, and feasible solution y to the alternative
system is the slope-vector of the hyperplane. There are also a number of variants
of Farkas’ lemma. We present one below and will see more in Exercises.

Corollary 5 Let A be an m× n matrix and c an n-vector. The system of constraints

AT y ≤ c (2.23)

has a feasible solution y if and only if the system of constraints

Ax = 0, x � 0, cT x = −1(or < 0) (2.24)

has no feasible solution x. Therefore a single feasible solution x for system (2.24)
establishes a certificate to prove system (2.23) infeasible.

The proof of the corollary is to equivalently convert one of the two systems,
in terms of feasibility, to one of (2.20) and (2.21) and then convert the alternative
system back from the other.

2.7 Summary

A linear program (LP) is an optimization problem in which the objective function
is linear in the unknowns and the constraints consist of linear equalities and linear
inequalities. Linear programming plays an important role in the field optimization:

2.8 Exercises 35

in one sense it is a problem with continuous decision variables but, on the other
hand, it is also a discrete problem of selecting the optimal corner of a polyhedral set.
One can see that many problems in Engineering, Economic, Data Science, Machine
Learning, etc. could be formulated as linear programs.

The most important concept discussed in this chapter is the basic feasible
solution, which corresponds to the extreme or corner point of a polyhedron. Two
fundamental theorems are presented here: the fundamental or Caratheodory theorem
of linear programming and Farkas’ lemma, which is proved based on the separating
hyperplane theorem of Appendix B.3. These lead to many optimization theories and
algorithmic developments in the rest of the book, especially the linear programming
duality theory in the next chapter.

2.8 Exercises

1. Convert the following problems to standard form:

(a) minimize x + 2y + 3z

subject to 2 � x + y � 3

4 � x + z � 5

x � 0, y � 0, z � 0.

(b) minimize x + y + z

subject to x + 2y + 3z = 10

x � 1, y � 2, z � 1.

2. A manufacturer wishes to produce an alloy that is, by weight, 30 % metal A and
70 % metal B. Five alloys are available at various prices as indicated below:

Alloy 1 2 3 4 5

%A 10 25 50 75 95

% B 90 75 50 25 5

Price/lb $ 5 $ 4 $ 3 $ 2 $ 1.50

The desired alloy will be produced by combining some of the other alloys.
The manufacturer wishes to find the amounts of the various alloys needed and to
determine the least expensive combination. Formulate this problem as a linear
program.

36 2 Basic Properties of Linear Programs

3. An oil refinery has two sources of crude oil: a light crude that costs $35/barrel
and a heavy crude that costs $30/barrel. The refinery produces gasoline, heating
oil, and jet fuel from crude in the amounts per barrel indicated in the following
table:

Gasoline Heating oil Jet fuel

Light crude 0.3 0.2 0.3

Heavy crude 0.3 0.4 0.2

The refinery has contracted to supply 900,000 barrels of gasoline, 800,000
barrels of heating oil, and 500,000 barrels of jet fuel. The refinery wishes to
find the amounts of light and heavy crude to purchase so as to be able to meet
its obligations at minimum cost. Formulate this problem as a linear program.

4. A small firm specializes in making five types of spare automobile parts. Each
part is first cast from iron in the casting shop and then sent to the finishing shop
where holes are drilled, surfaces are turned, and edges are ground. The required
worker-hours (per 100 units) for each of the parts of the two shops are shown
below:

Part 1 2 3 4 5

Casting 2 1 3 3 1

Finishing 3 2 2 1 1

The profits from the parts are $30, $20, $40, $25, and $10 (per 100 units),
respectively. The capacities of the casting and finishing shops over the next
month are 700 and 1,000 worker-hours, respectively. Formulate the problem of
determining the quantities of each spare part to be made during the month so as
to maximize profit.

5. Convert the following problem to standard form and solve:

maximize x1 + 4x2 + x3

subject to 2x1 − 2x2 + x3 = 4

x1 − x3 = 1

x2 � 0, x3 � 0.

2.8 Exercises 37

6. A large textile firm has two manufacturing plants, two sources of raw material,
and three market centers. The transportation costs between the sources and the
plants and between the plants and the markets are as follows:

Ten tons are available from source 1 and 15 tons from source 2. The three
market centers require 8 tons, 14 tons, and 3 tons. The plants have unlimited
processing capacity.

(a) Formulate the problem of finding the shipping patterns from sources to
plants to markets that minimizes the total transportation cost.

(b) Reduce the problem to a single standard transportation problem with two
sources and three destinations. (Hint: Find minimum cost paths from
sources to markets.)

(c) Suppose that plant A has a processing capacity of 8 tons, and plant B has
a processing capacity of 7 tons. Show how to reduce the problem to two
separate standard transportation problems.

7. A businessman is considering an investment project. The project has a lifetime
of 4 years, with cash flows of−$100,000,+$50,000,+$70,000, and+$30,000
in each of the 4 years, respectively. At any time he may borrow funds at the
rates of 12 %, 22 %, and 34 % (total) for 1, 2, or 3 periods, respectively. He may
loan funds at 10 % per period. He calculates the present value of a project as
the maximum amount of money he would pay now, to another party, for the
project, assuming that he has no cash on hand and must borrow and lend to pay
the other party and operate the project while maintaining a nonnegative cash
balance after all debts are paid. Formulate the project valuation problem in a
linear programming framework.

8. Convert the following problem to a linear program in standard form:

minimize |x| + |y| + |z|
subject to x + y � 1

2x + z = 3.

38 2 Basic Properties of Linear Programs

9. A class of piecewise linear functions can be represented as f (x) = Maximum
(cT

1 x + d1, cT
2 x + d2, . . . , cT

p x + dp). For such a function f , consider the
problem

minimize f (x)

subject to Ax = b, x � 0.

Show how to convert this problem to a linear programming problem.
10. A small computer manufacturing company forecasts the demand over the next

n months to be di, i = 1, 2, . . . , n. In any month it can produce r units, using
regular production, at a cost of b dollars per unit. By using overtime, it can
produce additional units at c dollars per unit, where c > b. The firm can store
units from month to month at a cost of s dollars per unit per month. Formulate
the problem of determining the production schedule that minimizes cost. (Hint:
See Exercise 9.)

11. Discuss the situation of a linear program that has one or more columns of the A
matrix equal to zero. Consider both the case where the corresponding variables
are required to be nonnegative and the case where some are free.

12. Suppose that the matrix A = (a1, a2, . . . , an) has rank m, and that for some
p < m, a1, a2, . . . , ap are linearly independent. Show that m − p vectors
from the remaining n − p vectors can be adjoined to form a set of m linearly
independent vectors.

13. Suppose that x is a feasible solution to the linear program (2.13), with A an
m × n matrix of rank m. Show that there is a feasible solution y having the
same value (that is, cT y = cT x) and having at most m+1 positive components.

14. What are the basic solutions of Example 3, Sect. 2.5?
15. Let S be a convex set in En and S∗ a convex set in Em. Suppose T is an m× n

matrix that establishes a one-to-one correspondence between S and S∗, i.e., for
every s ∈ S there is s∗ ∈ S∗ such that Ts = s∗, and for every s∗ ∈ S∗ there is a
single s ∈ S such that Ts = s∗. Show that there is a one-to-one correspondence
between extreme points of S and S∗.

16. Consider the two linear programming problems in Example 1, Sect. 2.1, one
in En and the other in En+m. Show that there is a one-to-one correspondence
between extreme points of these two problems.

17. Write out the linear program for the World Cup example in (2.9) and use any
LP solver to solve it for the optimal order-fill quantities.

18. Write out the linear program for the state values of the Maze Runner example
of Fig. 2.5, and use any LP solver to solve it (assuming discount factor γ = 0.9)
and identify the optimal policy.

19. Prove Lemma 1 using Carathéodory’s theorem.

References 39

20. Farkas’ lemma can be used to derive many other (named) theorems of the
alternative. This exercise concerns a few of these pairs of systems. Prove each
of the following results:

(a) Gale’s Theorem as presented in Corollary 5.
(b) Gordan’s Theorem. Exactly one of the following systems has a solution:

(i) Ax > 0,
(ii) yT A = 0, y ≥ 0, y �= 0.

(c) Stiemke’s Theorem. Exactly one of the following systems has a solution:

(i) Ax ≥ 0, Ax �= 0,
(ii) yT A = 0, y > 0.

References

2.1–2.4 The approach taken in this chapter, which is continued in the next, is the
more or less standard approach to linear programming as presented in, for
example, Dantzig [D6], Hadley [H1], Gass [G4], Simonnard [S6], Murty
[M11], and Gale [G2]. Also see Bazaraa, Jarvis, and H. F. Sherali [B6],
Bertsimas and Tsitsiklis [B13], Cottle [C6], Dantzig and Thapa [D9, D10],
Nash and Sofer [N1], Orden [O3], Saigal [S1], and Vanderbei [V3]. The
Information-Market problem can be found in Agrawal et al. [AGR] and
references therein. The MDP problem can be seen, e.g., from de Ghellinck
[deG] and Manne [Manne], and also from Kallenberg [Kallen] and Veinott
[V08].

2.5 An excellent discussion of this type can be found in Simonnard [S6].
2.6 Most of the contents here can be found in Goldman and Tucker [GT].

Chapter 3
Duality and Complementarity

Associated with every linear program, and intimately related to it, is a corresponding
dual linear program. Both programs are constructed from the same underlying cost
and constraint coefficients but in such a way that if one of these problems is one
of minimization the other is one of maximization, and the optimal values of the
corresponding objective functions, if finite, are equal. The variables of the dual
problem can be interpreted as prices associated with the constraints of the original
(primal) problem, and through this association it is possible to give an economically
meaningful characterization to the dual whenever there is such a characterization
for the primal.

The variables of the dual problem are also intimately related to the calculation of
the relative cost coefficients in the simplex method. Thus, a study of duality sharpens
our understanding of the simplex procedure and motivates certain alternative
solution methods. Indeed, the simultaneous consideration of a problem from both
the primal and dual viewpoints often provides significant computational advantage
as well as economic insight.

3.1 Dual Linear Programs and Interpretations

In this section we define the dual program that is associated with a given linear
program. Initially, we depart from our usual strategy of considering programs
in standard form, since the duality relationship is most symmetric for programs

© Springer Nature Switzerland AG 2021
D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
https://doi.org/10.1007/978-3-030-85450-8_3

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85450-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-85450-8_3

42 3 Duality and Complementarity

expressed solely in terms of inequalities. Specifically then, we define duality
through the pair of programs displayed below.

Primal Dual
minimize cT x maximize yT b
subject to Ax � b subject to yT A � cT

x � 0 y � 0

(3.1)

If A is an m × n matrix, then x is an m-dimensional column vector, b is an
m-dimensional column vector, c is an n-dimensional column vector, and y is an
m-dimensional column vector. The vector x is the variable of the primal program,
and y is the variable of the dual program.

The pair of programs (3.1) is called the symmetric form of duality and, as
explained below, can be used to define the dual of any linear program. It is important
to note that the role of primal and dual can be reversed. Thus, studying in detail
the process by which the dual is obtained from the primal: interchange of cost
and constraint vectors, transposition of coefficient matrix, reversal of constraint
inequalities, and change of minimization to maximization; we see that this same
process applied to the dual yields the primal. Put another way, if the dual is
transformed, by multiplying the objective and the constraints by minus unity, so
that it has the structure of the primal (but is still expressed in terms of y), its
corresponding dual will be equivalent to the original primal.

The dual of any linear program can be found by converting the program to the
form of the primal shown above. For example, given a linear program in standard
form

minimize cT x
subject to Ax = b, x � 0,

we write it in the equivalent form

minimize cT x
subject to Ax � b

−Ax � −b
x � 0,

which is in the form of the primal of (3.1) but with coefficient matrix

[
A
−A

]
. Using

a dual vector partitioned as (u, v), the corresponding dual is

maximize uT b− vT b
subject to uT A− vT A � cT

u � 0, v � 0.

3.1 Dual Linear Programs and Interpretations 43

Letting y = u − v we may simplify the representation of the dual program so that
we obtain the pair of problems displayed below:

Primal Dual
minimize cT x maximize yT b
subject to Ax = b, x � 0 subject to yT A � cT .

(3.2)

This is the asymmetric form of the duality relation. In this form the dual vector y
(which is really a composite of u and v) is not restricted to be nonnegative.

Similar transformations can be worked out for any linear program to first get the
primal in the form (3.1), calculate the dual, and then simplify the dual to account
for special structure. One important fact by definition: the dual of the dual is the
primal!

In general, (i) the objective coefficient vector of the primal becomes the right-
hand-side vector of the dual constraints, (ii) the right-hand-side vector of the primal
constraints becomes the objective coefficient vector of the dual, (iii) the transpose
of the constraint matrix of the primal becomes the constraint matrix of the dual, (iv)
every primal variable corresponds to a constraint in the dual, and its sign decides the
sense of the dual constraint, (v) every primal constraint corresponds to a variable in
the dual, and its sense decides the sign of the dual variable. These rules are direct
consequences of the original definition and the equivalence of various forms of
linear programs; see Table 3.1 where you may view either side as the primal and
the other side as the dual.

Example 1 The primal–dual pair of the specific instance of a small production
problem 3, Sect. 2.5 (illustrated in Fig. 2.6), according to the construction rule,
would be

max 2x1 + x2 (dual var.)
s.t. x1 + 8

3x2 � 4 (y1)

x1 + x2 � 2 (y2)

2x1 � 3 (y3)

(x1, x2) � 0.

min 4y1 + 2y2 + 3y3 (primal var.)
s.t. y1 + y2 + 2y3 � 2 (x1)

8
3y1 + y2 � 1 (x2)

(y1, y2, y3) � 0.

Table 3.1 Relations of the primal and dual and vice versa; either side can be primal or dual

Obj. coef. vector Right-hand-side

Right-hand-side Obj. coef. vector

A AT

Max model Min model

xj ≥ 0 j th constraint sense: ≥
xj ≤ 0 j th constraint sense: ≤
xj free j th constraint sense: =
ith constraint sense: ≤ yi ≥ 0

ith constraint sense: ≥ yi ≤ 0

ith constraint sense: = yi free

44 3 Duality and Complementarity

The dual on the right can be viewed as the acquisition pricing problem: a buyer
sets the prices for the three resources of the producer: (1) each of the constraints
indicates that the prices are competitive or even better than producing each product
by the producer itself, (2) the objective is to minimize the total acquisition cost.

There is a strong connection between the primal and dual construction and the
alternative system construction discussed in Chap. 2, Sect. 2.6. Let the objective
coefficient vector of the right-side system be 0 so that the problem is a pure
constraint system. Then its alternative system is the left-side system including its
all (homogeneous) constraints plus the objective being equal to 1 (or strictly greater
than 0).

Example 2 (Dual of the Diet Problem) The diet problem, Example 1, Sect. 2.2, was
the problem faced by a dietitian trying to select a combination of foods to meet
certain nutritional requirements at minimum cost. This problem has the form

minimize cT x
subject to Ax � b, x � 0

and hence can be regarded as the primal program of the symmetric pair above. We
describe an interpretation of the dual problem.

Imagine a pharmaceutical company that produces in pill form each of the
nutrients considered important by the dietitian. The pharmaceutical company tries
to convince the dietitian to buy pills, and thereby supply the nutrients directly rather
than through purchase of various foods. The problem faced by the drug company
is that of determining positive unit prices y1, y2, . . . , ym for the nutrients so as to
maximize revenue while at the same time being competitive with real food. To be
competitive with real food, the cost of a unit of food i made synthetically from
pure nutrients bought from the druggist must be no greater than ci , the market price
of the food. Thus, denoting by ai the ith food, the company must satisfy yT ai � ci

for each i. In matrix form this is equivalent to yT A � cT . Since bj units of the j th
nutrient will be purchased, the problem of the druggist is

maximize yT b
subject to yT A � cT , y � 0,

which is the dual problem.

Example 3 (Dual of the Transportation Problem) The transportation problem,
Example 3, Sect. 2.2, is the problem, faced by a manufacturer, of selecting the
pattern of product shipments between several fixed origins and destinations so as to
minimize transportation cost while satisfying demand. Referring to (3.8) and (3.9)
of Chap. 2, the problem is in standard form, and hence the asymmetric version of
the duality relation applies. There is a dual variable for each constraint. In this case
we denote the variables ui, i = 1, 2, . . . , m for (3.8) and vj , j = 1, 2, . . . , n for

3.1 Dual Linear Programs and Interpretations 45

(3.9). Accordingly, the dual is

maximize
m∑

i=1
aiui +

n∑
j=1

bjvj

subject to ui + vj � cij, i = 1, 2, . . . , m,

j = 1, 2, . . . , n.

To interpret the dual problem, we imagine that the company, responsible for
shipping the product quantities from the origins to the destinations, plans to launch
a new and simplified “pricing” scheme to the manufacturer: charging ui dollar for
every unit shipped out from origin site i (regardless where it goes to) and vj dollar
for every unit shipped to the destination site j (regardless where it come from). The
shipping company, would select unit prices/costs u1, u2, . . . , um for the m origins
and v1, v2, . . . , vn for the n destinations such that ui + vj � cij for all i, j , in
order to convince the manufacture customer to accept the new scheme, since ui+vj

represents the net amount the manufacturer must pay to ship a unit of product from
origin i to destination j . Subject to this constraint, the shipping company will select
prices to maximize his revenue. Thus, its problem is as given above. Note that the
company needs to set mn unit costs/prices cij ’s in the old scheme but only m + n

unit costs/prices ui and vj in the new scheme: The m × n matrix (cij) is reduced
to two vectors u ∈ Em and v ∈ En. This type of dimension reduction can also find
many applications in Data Science.

Example 4 (Dual of the Prediction Market Problem) The Prediction Market
problem, Example 7, Sect. 2.2, faced by the market maker is to decide the auction-
order-fill decision xj for all j given below

maximize πT x− s (dual var.)

subject to Ax− 1s � 0 (p)

x � q (y)

x � 0

where 1 is the vector of all 1’s. Let p be the dual variable vector corresponding the
first block of constraints Ax−1s � 0 and y be the dual variable vector corresponding
the second block of constraints x � q. Then, using the construction rule, the dual
problem is

minimize qT y (primal var.)
subject to AT p+ y ≥ π (x)

−1T p = −1 (s)

(p, y) ≥ 0,

or
minimize qT max{0, π − AT p}
subject to 1T p = 1

p ≥ 0.

46 3 Duality and Complementarity

Here max-operator of two vector is to return a new vector where each entry is the
larger one of the corresponding entries of the two vectors. The removal of variable
vector y in the simplified dual is because y ≥ π − AT p and y ≥ 0, and its positive
weight sum is minimized in the original dual.

The dual problem can be interpreted as follows: An information scientist
constructs a price (probability to occur) pi for each state i subject to be nonnegative
and the total sum equal to 1. Then to minimize a weighted “regression error”

n∑
j=1

qj max{0, aT
j p}.

Recall qj is the maximum order quantity of bid-order j , thus the greater is qj the
more weight of the order in the dual objective. On the other hand, πj is the bidding
price and aj (j th column of A) is the bidding state vector so that aT

j p represents

the cost of the order when all states are priced by p. Therefore, if πj < aT
j p (an

under bid or outlier order), then this order is not included in the regression error
objective. Thus, the dual is, by select p, to minimize the total weighted discrepancy
among the competitive bidders such that all winners’ betting beliefs (πj ’s) are fully
utilized, while under-bidders or outliers would be automatically removed from the
prediction.

Example 5 (Dual of the MDP Problem) The MDP problem, Example 8, Sect. 2.2,
is to find the optimal cost-to-go value yi for state i = 1, 2, . . . ,m such that

maximize
m∑

i=1

yi

subject to yi − γ pT
j y ≤ cj , ∀j ∈ Ai , ∀i = 1, . . . ,m.

The dual problem would be

minimize
m∑

i=1

∑
j∈Ai

cj xj

subject to
m∑

i=1

∑
j∈Ai

(ei − γ pj)xj = 1

xj ≥ 0, ∀j ∈ Ai , ∀i = 1, . . . ,m,

where ei is the unit vector with 1 for the ith entry and 0 everywhere else.
Variable xj , j ∈ Ai in the dual represents the expected total discounted present

frequency, or the total expected present number of times taking action j in a state
i, during the process. For example, if action j would be taken at the second time
period with probability 0.2, then its expected present number would be 0.2γ . Thus,

3.2 The Duality Theorem 47

since cj is the immediate cost of taking action j once, cjxj represents the total
expected present cost of taking action j during the process so that the objective of
the dual represents the overall expected present cost of the entire process. Variable
xj is also called “flux,” and solving the dual problem entails choosing action
frequencies/fluxes to minimize the total expected present costs over the infinite
horizon, as the initial goal of the MDP problem. When the objective of the dual
is minimized, only one flux in each state would be positive, which establishes an
optimal policy.

Consider the Maze Runner problem depicted in Fig. 2.3. Since all action costs
are zero except the action at State 5, we focus on the frequency of the action of State
5 being taken at each period when following the policy of each state taking the red
action except State 4 taking the blue action. Initially, there is one runner at each
state, so the action would be taken once in the first period. Since the runner from
State 4 has 0.2 probability to be in State 5 at the beginning of the second period, the
expected frequency of taking the action is 0.2 in the second period, and its present
frequency is 0.2γ . Continuing in this way, we could find the total expected present
frequency of taking the action over an infinite horizon.

3.2 The Duality Theorem

To this point the relation between the primal and dual programs has been simply a
formal one based on what might appear as an arbitrary definition. In this section,
however, the deeper connection between a program and its dual, as expressed by the
Duality Theorem, is derived.

The proof of the Duality Theorem given in this section relies on Farkas’
Lemma (Chap. 2, Sect. 2.6) and is therefore somewhat more advanced than previous
arguments. It is given here so that the most general form of the Duality Theorem
is established directly. An alternative approach is to use the theory of the simplex
method to derive the duality result. A simplified version of this alternative approach
is given in the next section.

Throughout this section we consider the primal program in standard form

minimize cT x
subject to Ax = b, x � 0

(3.3)

and its corresponding dual

maximize yT b
subject to yT A � cT .

(3.4)

48 3 Duality and Complementarity

In this section it is not assumed that A is necessarily of full rank. The following
lemma is easily established and gives us an important relation between the two
problems.

Lemma 1 (Weak Duality Lemma) If x and y are feasible for (3.3) and (3.4),respectively,
then cT x � yT b.

Proof We have

yT b = yT Ax � cT x,

the last inequality being valid since x � 0 and yT A � cT .

This lemma shows that a feasible vector to either problem yields a bound on the
value of the other problem. The values associated with the primal are all larger than
the values associated with the dual as illustrated in Fig. 3.1. Since the primal seeks
a minimum and the dual seeks a maximum, each seeks to reach the other. From this
we have an important corollary.

Corollary If x0 and y0 are feasible for (3.3) and (3.4), respectively, and if cT x0 = yT
0 b,

then x0 and y0 are optimal for their respective problems.

The above corollary shows that if a pair of feasible vectors can be found to the
primal and dual programs with equal objective values, then these are both optimal.
The Duality Theorem of linear programming states that the converse is also true,
and that, in fact, the two regions in Fig. 3.1 actually have a common point; there is
no “gap.”

Duality Theorem of Linear Programming If either of the problems (3.3) or (3.4) has a
finite optimal solution, so does the other, and the corresponding values of the objective
functions are equal. If either problem has an unbounded objective, the other problem has
no feasible solution.

Proof We note first that the second statement is an immediate consequence of the
Weak Duality Lemma 1. For if the primal is unbounded and y is feasible for the
dual, we must have yT b � −M for arbitrarily large M , which is clearly impossible.

Second we note that although the primal and dual are not stated in symmetric
form it is sufficient, in proving the first statement, to assume that the primal has
a finite optimal solution and then show that the dual has a solution with the same
value. This follows because either problem can be converted to standard form and
because the roles of primal and dual are reversible. Essentially, we prove that if the

Fig. 3.1 Relation of primal
and dual values

3.2 The Duality Theorem 49

primal problem (3.3) is feasible and its minimal value is bounded from below, then
the system

Ax = b, x � 0
AT y ≤ c

cT x− bT y ≤ 0
(3.5)

has a feasible solution pair x and y. The first system in (3.5) is the primal constraint
system, the second is the dual constraint system, and the third is the reversed duality
gap, which, together with the Weak Duality lemma, implies zero-duality gap cT x−
bT y = 0.

We first show the dual (3.4) must be feasible, since otherwise, from Farkas’
lemma the alternative system to the second system in (3.5) must be feasible, that
is, there is x′ ≥ 0 such that (Ax′ = 0, cT x′ = −1). Let x be any given feasible
solution for the primal (3.3), then solution x + αx′ must be also feasible for the
primal for any scalar α > 0. But the primal objective value at this solution is

cT (x+ αx′) = cT x+ α · cT x′ = cT x− α

which is unbounded from below as α →∞ leading to a contradiction.
Now both primal and dual are feasible but suppose their optimal values are not

equal, that is, the whole system (3.5) remains infeasible. Then its alternative system
(we leave it as an exercise to derive the alternative system (3.6)) must be feasible.
That is, there are (y′, x′, τ) to satisfy constraints

Ax′ − bτ = 0, AT y′ − cτ ≤ 0, bT y′ − cT x′ = 1, x′ ≥ 0, τ ≥ 0. (3.6)

CASE 1: τ > 0 in (3.6), then we have

0 ≥ (−y′)T (Ax′ − bτ)+ (x′)T (AT y′ − cτ)

= τ (bT y′ − cT x′) = τ

which is a contradiction. Here, the first inequality holds because the first product
on the right is 0 from Ax′ − bτ = 0 and the second product is nonpositive from
AT y′ − cτ ≤ 0 and x′ ≥ 0. The last equality holds because bT y′ − cT x′ = 1.

CASE 2: τ = 0 in (3.6), then we let x be any given feasible solution for the primal
(3.3) and y be any given feasible solution for the dual (3.4). Again x+αx′ must also
be feasible for the primal and y + αy′ must also be feasible for the dual, and the
objective gap at this pair is

cT (x+ αx′)− bT (y+ αy′) = cT x− bT y+ α(cT x′ − bT y′) = cT x− bT y− α

which is not bounded below by 0 as α →∞ and creates a contradiction to the Weak
Duality lemma.

50 3 Duality and Complementarity

3.3 Geometric and Economic Interpretations

Suppose that for the linear program in the standard primal form

minimize cT x
subject to Ax = b, x � 0,

(3.7)

we have the optimal basic feasible solution x = (xB, 0) with corresponding basis
B. We shall determine a solution of the dual program

maximize yT b
subject to yT A � cT (3.8)

in terms of B.
We partition A as A = [B, D], where the primal basic feasible solution xB =

B−1b is optimal. Now define yT = cT
BB−1, which is a dual basic solution (the

intersection point of m constraints) for the dual of inequality constraints. (Again the
components subvector cB are those of c associated with the columns of submatrix B
according to the same index order.)

If, in addition, yT A � cT , then y is feasible and a basic feasible solution for the
dual—an extreme point of the dual feasible region. On the other hand,

yT b = cT
BB−1b = cT

BxB,

and thus the value of the dual objective function for this y is equal to the value of
the primal problem. This, in view of Lemma 1, Sect. 3.2, establishes the optimality
of y for the dual.

Theorem Let the linear program (3.7) have an optimal basic feasible solution correspond-
ing to the basis B. Then the vector y satisfying yT = cT

BB−1 is an optimal solution to the
dual program (3.8) if it is dual feasible. The optimal values of both problems are equal.

Example 1 (Primal–Dual Illustration) For sake of concreteness we consider the
primal problem

minimize 18x1 + 12x2 + 2x3 + 6x4

subject to 3x1 + x2 − 2x3 + x4 = 2
x1 + 3x2 − x4 = 2

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

The columns of A and b are represented in requirements space in the left graph
of Fig. 3.2. A basic solution represents construction of b with positive weights,
xj ’s, on two of the aj ’s. Thus, the primal problem is to find weights of the conic
combination of b by these columns such that the weighted sum (by cj ’s) of the

3.3 Geometric and Economic Interpretations 51

Obj contour

a
3

b

a1

a2

a4

a
3

b

a1

a2

a4

λ1

λ2

Fig. 3.2 Left: the primal requirements space; Right: the dual in activity space

weights is minimized. The dual problem is

maximize 2λ1 + 2λ2

subject to 3λ1 + λ2 � 18
λ1 + 3λ2 � 12
−2λ1 � 2
λ1 − λ2 � 6.

The dual problem is shown geometrically on the right graph in Fig. 3.2. Each column
aj of the primal defines a constraint of the dual as a half-space whose boundary is
orthogonal to that column vector and is located at a point determined by cj . The dual
objective is maximized at an extreme point of the dual feasible region. At this point
exactly two dual constraints are active. These active constraints also correspond to
an optimal basis of the primal. In fact, the vector defining the dual objective is a
positive linear or conic combination of the vectors. In the specific example, b is a
conic combination of a1 and a2. The weights in this combination are the xi’s in the
optimal solution of the primal. Note that there are other conic combinations which
are not optimal.

Dual Multipliers—Shadow Prices

We conclude this section by giving an economic interpretation of the relation
between the optimal basis and the vector yT = cT

BB−1. This vector is not a feasible
solution to the dual unless B is an optimal basis for the primal, but nevertheless, it
has an economic interpretation. Furthermore, as we have seen in the development
of the simplex method in the next chapter, this y vector can be used at every
step to calculate the relative cost coefficients or reduced gradients. For this reason
yT = cT

BB−1, corresponding to any basis, is often called the vector of simplex
multipliers or shadow prices.

52 3 Duality and Complementarity

Let us pursue the economic interpretation of these simplex multipliers. As usual,
denote the columns of A by a1, a2, . . . , an and denote by e1, e2, . . . , em the m unit
vectors in Em. The components of the aj ’s and b tell how to construct these vectors
from the ei’s.

Given any basis B, however, consisting of m columns of A, any other vector
can be constructed (synthetically) as a linear combination of these basis vectors.
If there is a unit cost cj associated with each basis vector aj , then the cost of a
(synthetic) vector constructed from the basis can be calculated as the corresponding
linear combination of the cj ’s associated with the basis. In particular, the cost of the
ith unit vector, ei , when constructed from the basis B, is yi , the ith component of
yT = cT

BB−1. Thus the yi’s can be interpreted as synthetic prices of the unit vectors.
Now, any vector can be expressed in terms of the basis B in two steps: (1)

express the unit vectors in terms of the basis, and then (2) express the desired
vector as a linear combination of unit vectors. The corresponding synthetic cost
of a vector constructed from the basis B can correspondingly be computed directly
by: (1) finding the synthetic price of the unit vectors, and then (2) using these prices
to evaluate the cost of the linear combination of unit vectors. Thus, the simplex
multipliers can be used to quickly evaluate the synthetic cost of any vector that
is expressed in terms of the unit vectors. The difference between the true cost of
this vector and the synthetic cost is the relative cost. The process of calculating
the synthetic cost of a vector, with respect to a given basis, by using the simplex
multipliers is sometimes referred to as pricing out the vector.

Optimality of the primal corresponds to the situation where every vector a1, a2,

. . . , an is cheaper when constructed from the basis than when purchased directly
at its own price. Thus we have yT aj � cj for j = 1, 2, . . . , n or equivalently
yT A � cT .

3.4 Sensitivity and Complementary Slackness

The optimal values of the dual variables in a linear program can, as we have seen, be
interpreted as prices. In this section this interpretation is explored in further detail.

Sensitivity

Suppose we denote the minimal value function of the right-hand-side data vector b
in the linear program

z(b) := minimize cT x
subject to Ax = b, x � 0,

(3.9)

3.4 Sensitivity and Complementary Slackness 53

the optimal basis is B with corresponding solution (xB, 0), where xB = B−1b. A
solution to the corresponding dual is yT = cT

BB−1.
Now, assuming nondegeneracy, small changes in the vector b will not cause the

optimal basis to change. Thus for b+�b the optimal solution is

x = (xB +�xB, 0),

where �xB = B−1�b. Thus the corresponding increment in the cost function is

z(b+�b)− z(b) = cT
B�xB = yT �b. (3.10)

This equation shows that y gives the sensitivity of the optimal cost with respect to
small changes in the vector b. In other words, if a new program were solved with b
changed to b+�b, the change in the optimal value of the objective function would
be yT �b.

This interpretation of the dual vector y is intimately related to its interpretation
as a vector of simplex multipliers. Since yi is the price of the unit vector ei when
constructed from the basis B, it directly measures the change in cost due to a change
in the ith component of the right-hand-side vector b. Thus, yi may equivalently
be considered as the marginal price of the component bi , since if bi is changed to
bi +
bi the value of the optimal solution changes by yi
bi .

If the linear program is interpreted as a diet problem, for instance, then yi is
the maximum price per unit that the dietitian would be willing to pay for a small
amount of the ith nutrient, because decreasing the amount of nutrient that must
be supplied by food will reduce the food bill by λi dollars per unit. If, as another
example, the linear program is interpreted as the problem faced by a manufacturer
who must select levels x1, x2, . . . , xn of n production activities in order to meet
certain required levels of output b1, b2, . . . , bm while minimizing production costs,
the yi’s are the marginal prices of the outputs. They show directly how much the
production cost varies if a small change is made in the output levels. We present a
theorem to summarize the observations.

Theorem The minimal value function z(b) of linear program (3.9) is a convex function,
and the optimal dual solution y∗ is a sub-gradient vector of the function at b, written as
∇z(b) = y∗.

Proof Let x1 and x2 be the two optimal solutions of (3.9) corresponding to two
right-hand-side vectors b1 and b2, respectively. Then for any scalar 0 ≤ α ≤ 1,
(αx1 + (1− α)x2) is a feasible solution of (3.9) with b = αb1 + (1 − α)b2 so that
the minimal value

z(αb1 + (1− α)b2) ≤ cT (αx1 + (1− α)x2)

= α · cT x1 + (1− α) · cT x2

= αz(b1)+ (1− α)z(b2)

which implies the first claim.

54 3 Duality and Complementarity

Furthermore, let y1 be the optimal dual solution with b = b1. Note that y1

remains feasible for the dual of the primal with b = b2 because the dual feasible
region is independent of change in b. Thus

z(b2)− z(b1) = cT x2 − (y1)T b1 (the zero-duality gap theorem)

≥ (y1)T b2 − (y1)T b1 (the weak duality lemma)

= (y1)T (b2 − b1),

which proves the second claim.

Complementary Slackness

The optimal solutions to primal and dual programs satisfy an additional relation
that has an economic interpretation. This relation can be stated for any pair of dual
linear programs, but we state it here only for the asymmetric and the symmetric
pairs defined in Sect. 3.1.

Theorem (Complementary slackness—asymmetric form) Let x and y be feasible
solutions for the primal and dual programs, respectively, in the pair (3.2). A necessary
and sufficient condition that they both be optimal solutions is that† for all j

i) xj > 0 ⇒ yT aj = cj

ii) xj = 0 ⇐ yT aj < cj .

Proof If the stated conditions hold, then clearly (yT A − cT)x = 0. Thus yT b =
cT x, and by the corollary to Lemma 1, Sect. 3.2, the two solutions are optimal.
Conversely, if the two solutions are optimal, it must hold, by the Duality Theorem,
that yT b = cT x and hence that (yT A − cT)x = 0. Since each component of x is
nonnegative and each component of yT A− cT is nonpositive, the conditions (i) and
(ii) must hold.

We present a stronger version of complementary slackness theorem—strict comple-
mentary slackness condition and leave its proof as an exercise.

Theorem (Strict complementary slackness—asymmetric form) Let both the primal and
dual problems of (3.2) be feasible. Then there is an optimal solution pair x and y such that
for all j

i) xj > 0 ⇔ yT aj = cj

ii) xj = 0 ⇔ yT aj < cj .

Note that at a strict complementary solution pair, for all j , xj = 0 also implies
yT aj < cj and yT aj = cj also implies xj > 0 (not just “is implied by”).

† The symbol ⇒ means “implies” and⇐ means “is implied by.”

3.4 Sensitivity and Complementary Slackness 55

The following corollary can be proved by transforming the previous theorem.

Corollary 1 (Complementary slackness—symmetric form) Let x and y be feasible
solutions for the primal and dual programs, respectively, in the pair (3.1). A necessary
and sufficient condition that they both be optimal solutions is that for all i and j

i) xj > 0 ⇒ yT aj = cj

ii) xj = 0 ⇐ yT aj < cj

iii) yi > 0 ⇒ aix = bi

iv) yi = 0 ⇐ aix > bi ,

(where ai is the ith row of A).

The complementary slackness conditions have a rather obvious economic inter-
pretation. Thinking in terms of the diet problem, for example, which is the primal
part of a symmetric pair of dual problems, suppose that the optimal diet supplies
more than bj units of the j th nutrient. This means that the dietitian would be
unwilling to pay anything for small quantities of that nutrient, since availability
of it would not reduce the cost of the optimal diet. This, in view of our previous
interpretation of λj as a marginal price, implies λj = 0 which is (iv) of Theorem 1.
The other conditions have similar interpretations which the reader can work out.

More economic interpretations can be seen in the Prediction Market problem,
Example 7, Sect. 2.2 and its dual Example 4 of Sect. 3.1. Table 3.2 illustrates how
the qualitative status of any primal optimal solution would imply the qualitative
status of dual constraints from the complementarity slackness. Note that the auction
principle is preserved here: If a lower bid wins some order-fill, so does the higher
bid on the same type of bid.

For the specific World Cup example (2.9), an optimal primal and dual solution
pair x and p (see Example 4) for the 5 orders and 5 teams are given in the last row
and last column, respectively.

Table 3.2 Strict Complementarity slackness illustration for the Prediction Market problem

Order-fill status Dual implications Bid quality

xj > 0 ⇒ aT
j p+ yj = πj and yj ≥ 0 so that aT

j p ≤ πj Competitive bid

0 < xj < qj ⇒ yj = 0 so that aT
j p = πj Smart bid

xj = qj ⇒ yj > 0 so that aT
j p < πj Over bid

xj = 0 ⇒ aT
j p+ yj > πj and yj = 0 so that aT

j p > πj Under bid

56 3 Duality and Complementarity

Order #1 #2 #3 #4 #5 $p∗
Argentina 1 0 1 1 0 0.2

Brazil 1 0 0 1 1 0.35
Italy 1 0 1 1 0 0.2

Germany 0 1 0 1 1 0.25
France 0 0 1 0 0 0

Bidding price$πj 0.75 0.35 0.4 0.95 0.75
Quantity limitqj 10 5 10 10 5

Order-fill decision 5 5 5 0 5

Bid #1 is a “smart bid”: its bid price is 0.75 and the three teams it is bidding for
are worth a total of 0.2+ 0.35+ 0.2 = 0.75 and the order-fill 5 is strictly between
0 and the upper limit of 10; Bid #4 is a “under bid” and the order-fill is 0: its bid
price is 0.95 but the four teams it is bidding for are worth a total of 1; Bid #5 is an
“over bid” and the order-fill is at the upper limit of 5: its bid price is 0.75 and the
two teams it is bidding for are worth a total of 0.35+ 0.25 = 0.6.

3.5 Selected Applications of the Duality

There are many applications of the duality theorem ranging from economic and
algorithmic game theory to optimization model design. We list several of them in
this section while putting some others as exercises.

Example 1 (Core of Production Game) In cooperative game theory, the core is the
set of feasible allocations from a grand coalition/alliance that cannot be improved
upon by a subset of the economy’s agents in the coalition. A subset of agents is
said to improve upon if the members of that subset are better off when they form
their own smaller allocation. An allocation from the grand coalition is said to have
the core property if there is no sub-coalition that can improve upon it so that the
grand coalition is stable. The core is the set of all feasible allocations with the
core property. From an algorithmic point of view, computing a core element can
be difficult in a cooperative game, even just checking whether or not the core is
empty is challenging.

Consider a finite set F of firms each of whom has operations that have represen-
tations as production linear programs. Suppose the linear program representing the
operations of firm i ∈ F entails choosing an n-column vector x of production levels
that

maximize cT x
subject to Ax � bi ,

x � 0,

3.5 Selected Applications of the Duality 57

where cT x represents the ith firm’s profit function and bi is ith firm’s resource
vector.

An alliance is a subset of the firms, say S ⊂ F , that pools their resources
together. Thus, the production linear program that S faces is

Primal :
V S := maximize cT x

subject to Ax � bS :=∑i∈S bi

x � 0

Dual :
minimize (bS)T y
subject to yT A � c

y � 0.

(3.11)

Let V S be the resulting maximum profit. The Grand Alliance includes all firms in
set F , that is, bF := ∑

i∈F bi in its linear program. Note that the dual feasible
region remains the same for all possible subset S’s.

The core of the Grand Alliance is the set of back-payment vector,
z = (z1; z2; . . . ; z|F |), where zi is the payment to firm i, for all firms in F

such that

∑
i∈F

zi = V F and
∑
i∈S

zi ≥ V S, ∀S ⊂ F. (3.12)

The first constraint indicates that the total profit of the Grand Alliance is completely
shared by all firms in F , and the second constraint indicates that no sub-alliance
would be better off if they formed their own production linear program. Note that
there are exponentially many constraints in (3.12). But the duality would help here.

Theorem Let yF be an optimal dual price vector of the Grand-Alliance linear program and
assign zi = (yF)T bi for all i ∈ F , that is, price ith firm’s resource vector at yF . Then z is
a core element satisfying all constraints of (3.12).

Proof From the strong duality theorem,

∑
i∈F

zi =
∑
i∈F

(yF)T bi = (yF)T (
∑
i∈F

bi) = (yF)T bF = V F .

For any subset S ⊂ F

∑
i∈S

zi =
∑
i∈S

(yF)T bi = (yF)T bS ≥ V S,

where the last inequality is from the weak duality lemma because yF is feasible for
the dual of (3.11).

58 3 Duality and Complementarity

Robust and Distributionally Robust Optimization

In real applications of linear programming, the data coefficients may vary and be
unpredictable. To prepare for the worst, we may have to consider decision making
in a robust way. To be more specific, consider the following linear program:

minimize (c+ Cu)T x
subject to Ax = b,

x ≥ 0,

where C is a known n×d matrix and uncertain factors are captured in vector u ∈ Ed

that is unknown and uncontrollable to the decision maker. However, u ∈ Ed is
known to be between 0 and 1.

A Robust Model approach to this problem is to reformulate the problem as

minimize cT x+max0≤u≤1 [xT Cu]
subject to Ax = b,

x ≥ 0.

(3.13)

The decision variables are in u of the inner problem, and they are selected by an
adversary to maximize the objective of given x:

maxu xT Cu s.t. 0 ≤ u ≤ 1,

which is a linear program.
However, the overall robust model is no longer a linear program and cannot be

solved by an optimization solver. Now let us consider the dual of the adversary
problem which is

miny 1T y s.t. y ≥ CT x, y ≥ 0.

From the weak duality lemma and strong duality theorem, the dual objective
provides a upper bound on the primal and equals the maximal value of the adversary
problem, we can substitute the inner problem in (3.13) by it dual and rewrite it as

minimize cT x+miny≥0,y≥CT x [1T y]
subject to Ax = b,

x ≥ 0.

3.5 Selected Applications of the Duality 59

Since both x and y minimize the overall objective and there is no conflict, we can
minimize the objective simultaneously

minimize cT x+ 1T y
subject to y− CT x ≥ 0,

Ax = b,

(x, y) ≥ 0,

(3.14)

which, replacing (3.13), is a linear program and can be solved by an LP solver.
Another way to deal with uncertainty in c is to replace it with an expected

objective Eξ [c̃T x]. In practice, we may never know the true distribution but rely
on a sample distribution ξ0. Then a distributionally robust model would solve

minimize maxξ∈N(ξ0) Eξ [c̃T x]
subject to Ax = b,

x ≥ 0,

(3.15)

where N(ξ0) represents a convex neighborhood of the sample distribution ξ0.
Therefore, the inner maximization problem is to choose a worst distribution in
maximizing the expected objective function. Note that the inner expected objective
is a linear function in distribution so that it can be replaced by its dual as we did
earlier. The distributionally robust approach is especially well-suited for solving
problems driven by data.

Online Linear Programming

Recall the resource-allocation problem described in Example 2, Sect. 2.2. We
consider the following version:

Primal

max
∑n

t=1 πt xt

s.t.
∑n

t=1 ait xt ≤ bi , ∀i = 1, . . . , m

0 ≤ xt ≤ 1, ∀t = 1, . . . , n

and
Dual

min
∑m

i=1 biyi +∑n
t=1 max

{
0, πt −∑m

i=1 ait yi

}

s.t. yi ≥ 0 ∀i
(3.16)

which can be interpreted as the problem of funding n different activities, where πt

is the full reward and at = (a1t , , . . . , amt) is the bundle of m needed resources if
the t th activity is funded fully, and decision variable xt represents the funding level
from 0% to 100%. This is a typical revenue maximization problem.

In real applications, data/information is revealed sequentially, and one has to
make online decisions sequentially based on what is known so far—he or she cannot
wait to solve the offline problem presented in (3.16). In addition, xt may have to take

60 3 Duality and Complementarity

Table 3.3 Online linear programming illustration

Order 1 (t = 1) Order 2 (t = 2) Inventory (b)

Offers (πt) $100 $30 . . .

Decision x1 x2 . . .

Pants 1 0 . . . 100

Shoes 1 0 . . . 50

T-shirt 0 1 . . . 500

Jacket 0 0 . . . 200

Socks 1 1 . . . 1000

the value either 0 or 1. In other words, assuming the data points (πt ; at) come in the
order of 1, 2, . . . , n, the decision maker needs to decide xt as soon as that data
point arrives, without knowing data points for t + 1, . . . , n. Moreover, the decision
is irrevocable, and the decision maker only knows the initial available resource
quantities b and the total number of activities n.

Consider a specific illustration example of selling 5 types of goods to customers,
where each customer orders a bundle of goods and offers a total dollar amount in
Table 3.3. For example, the first customer offers a total of $100 to buy three items:
(Pants, Shoes, Socks), one piece/pair of each. Now, the online decision maker has
to accept or reject as soon as the order arrives.

One way to make online decision easier is to construct an “ideal” itemized price
vector. For example, if there is a price vector, say p∗ = ($45; $45; $10; $55; $15)

for the five goods top down, respectively, and p∗ is known to the decision maker,
then an online decision rule would simply compare the offer dollars πt against the
total good costs aT

t p∗:

xt =
{

0 if πt ≤ aT
t p∗

1 if πt > aT
t p∗

which per-order decision can be made independently from each other. Does such
an ideal price vector exist such that the above decision rule gives a near optimal
solution to the offline problem (3.16)?

The answer is “YES”—it is the shadow price vector or the optimal dual solution
of problem (3.16) from the complementary slackness condition. Then the next
question is: Could one know it exactly before seeing all order data points? The
answer is “NO” but one can learn it gradually. More precisely, suppose εn orders
have arrived for some 0 < ε < 1, one could solve a proxy problem to (3.16) and
compute the optimal shadow price vector, p̂, of the proxy problem

maximize
∑εn

t=1 πtxt

subject to
∑εn

t=1 aitxt ≤ ε · bi, ∀i = 1, . . . ,m

0 ≤ xt ≤ 1, ∀t = 1, . . . , εn

(3.17)

3.6 Max Flow–Min Cut Theorem 61

that is, we assign ε proportion of resources for the ε portion of orders. Then we
use p̂ to replace p∗ in the online decision rule for the subsequent orders. One can
dynamically resolve a proxy problem to update p̂ when more order information is
revealed, where each order data point serves as a sample point. As the sample size
increases, p̂ converges to p∗.

One dynamic learning algorithm is to update the price vector at times εn, 2εn,
4εn, . . . , until 2kε ≥ 1. Before seeing the first εn orders, decision xt is set to 0,
that is, the decision maker does nothing but waits for the data points to arrive. Two
results have been developed

Theorem Let R∗ be the maximal revenue of offline problem (3.16) and the n activities
arrive in a random permutation order. Denote by R̂ = ∑n

t=1 πtxt the expected revenue,
over all possible permutations, generated by the dynamic learning algorithm.

i If min{bi} ≥ m log(n/ε)/ε2, then, under mild technical assumptions on data points,
R̂
R∗ ≥ 1− ε for any 0 < ε < 1.

ii If min{bi} ≤ log(m)/ε2, there is NO online algorithm to achieve R̂
R∗ ≥ 1 − ε under the

same technical assumptions on data points.

Note that online revenue is always worse than R∗ for any arriving order so that
R̂ ≤ R∗. Therefore result [i] is a positive result and result [ii] is a negative result,
depending on min{bi}, the lowest inventory level of resources. If the inventory level
of every resource is sufficiently high, then the online revenue can be close to the
optimal offline revenue via a dynamic learning algorithm. This performance analysis
is all based on the LP duality and some results from probability theory.

An adaptive online algorithm, after � samples have been revealed, is to solve the
following proxy problem:

maximize
∑�

t=1 πtxt

subject to
∑�

t=1 aitxt ≤ �
n−�

· b�
i , ∀i = 1, . . . ,m

0 ≤ xt ≤ 1, ∀t = 1, . . . , �,

where b�
i represents the remaining quantity of resource i after decisions have been

made on the first � activities. Then again use its optimal shadow price vector for
decisions on the following activities. In this adaptive model, the resource inventory
level for the future is adjusted to what has been realized, rather than the fixed
proportion in problem (3.17). The readers may compare their performance in
practical applications.

3.6 Max Flow–Min Cut Theorem

One of the most exemplary pairs of linear primal and dual problems is the max flow
and min cut theorem, which we describe in this section. The maximal flow problem
described in Chap. 2 can be expressed more compactly in terms of the node–arc

62 3 Duality and Complementarity

incidence matrix (see Appendix D). Let x be the vector of arc flows xij (ordered in
any way). Let A be the corresponding node-arc incidence matrix. Finally, let e be a
vector with dimension equal to the number of nodes and having a+1 component on
node 1, a−1 on node m, and all other components zero. The maximal flow problem
is then

maximize f

subject to Ax− f e = 0 (3.18)

x � k.

The coefficient matrix of this problem is equal to the node–arc incidence matrix
with an additional column for the flow variable f . Instead of using general linear
programming method, a simple and intuitive algorithm based on the tree algorithm
(also see Appendix D) can be used.

Max Flow Augmenting Algorithm

The basic strategy of the algorithm is quite simple. First we recognize that it is
possible to send nonzero flow from node 1 to node m only if node m is reachable
from node 1. The tree procedure can be used to determine if m is in fact reachable;
and if it is reachable, the algorithm will produce a path from 1 to m. By examining
the arcs along this path, we can determine the one with minimum capacity. We may
then construct a flow equal to this capacity from 1 to m by using this path. This
gives us a strictly positive (and integer-valued) initial flow.

Next consider the nature of the network at this point in terms of additional
flows that might be assigned. If there is already flow xij in the arc (i, j), then the
effective capacity of that arc is reduced by xij (to kij−xij), since that is the maximal
amount of additional flow that can be assigned to that arc. On the other hand, the
effective reverse capacity, on the arc (j, i), is increased by xij (to kji + xij), since a
small incremental backward flow is actually realized as a reduction in the forward
flow through that arc. Once these changes in capacities have been made, the tree
procedure can again be used to find a path from node 1 to node m on which to
assign additional flow. (Such a path is termed an augmenting path.) Finally, if m

is not reachable from 1, no additional flow can be assigned, and the procedure is
complete.

It is seen that the method outlined above is based on repeated application of
the tree procedure, which is implemented by labeling and scanning. By including
slightly more information in the labels than in the basic tree algorithm, the minimum
arc capacity of the augmenting path can be determined during the initial scanning,
instead of by reexamining the arcs after the path is found. A typical label at a node
i has the form (k, ci), where k denotes a precursor node and ci is the maximal flow

3.6 Max Flow–Min Cut Theorem 63

that can be sent from the source to node i through the path created by the previous
labeling and scanning. The complete procedure is this:

Step 0. Set all xij = 0 and f = 0.
Step 1. Label node 1 (−, ∞). All other nodes are unlabeled.
Step 2. Select any labeled node i for scanning. Say it has label (k, ci). For all

unlabeled nodes j such that (i, j) is an arc with xij < kij , assign the
label (i, cj), where cj = min {ci, kij − xij }. For all unlabeled nodes
j such that (j, i) is an arc with xji > 0, assign the label (i, cj), where
cj = min {ci, xji}.

Step 3. Repeat Step 2 until either node m is labeled or until no more labels can be
assigned. In this latter case, the current solution is optimal.

Step 4. (Augmentation.) If the node m is labeled (i, cm), then increase f and
the flow on arc (i,m) by cm. Continue to work backward along the
augmenting path determined by the nodes, increasing the flow on each
arc of the path by cm. Return to Step 1.

The validity of the algorithm should be fairly apparent, that is, the finite termination
of the algorithm. However, a complete proof is deferred until we consider the max
flow–min cut theorem below.

Example An example of the above procedure is shown in Fig. 3.3. Node 1 is the
source, and node 6 is the sink. The original network with capacities indicated on the
arcs is shown in Fig. 3.3a. Also shown in that figure are the initial labels obtained by
the procedure. In this case the sink node is labeled, indicating that a flow of 1 unit
can be achieved. The augmenting path of this flow is shown in Fig. 3.3b. Numbers
in square boxes indicate the total flow in an arc. The new labels are then found and
added to that figure. Note that node 2 cannot be labeled from node 1 because there
is no unused capacity in that direction. Node 2 can, however, be labeled from node
4, since the existing flow provides a reverse capacity of 1 unit. Again the sink is
labeled, and 1 unit more flow can be constructed. The augmenting path is shown in
Fig. 3.3c. A new labeling is appended to that figure. Again the sink is labeled, and
an additional 1 unit of flow can be sent from source to sink. The path of this 1 unit is
shown in Fig. 3.3d. Note that it includes a flow from node 4 to node 2, even though
flow was not allowed in this direction in the original network. This flow is allowable
now, however, because there is already flow in the opposite direction. The total flow
at this point is shown in Fig. 3.3e. The flow levels are again in square boxes. This
flow is maximal, since only the source node can be labeled.

Max Flow–Min Cut Theorem

A great deal of insight and some further results can be obtained through the
introduction of the notion of cuts in a network. Given a network with source node
1 and sink node m, divide the nodes arbitrarily into two sets S and S̄ such that

64 3 Duality and Complementarity

Fig. 3.3 Illustration of algorithmic steps of the maximal flow example

3.6 Max Flow–Min Cut Theorem 65

Fig. 3.4 A cut

the source node is in S and the sink is in S̄. The set of arcs from S to S̄ is a cut and
is denoted (S, S̄). The capacity of the cut is the sum of the capacities of the arcs in
the cut.

An example of a cut is shown in Fig. 3.4. The set S consists of nodes 1 and 2,
while S̄ consists of 3, 4, 5, 6. The capacity of this cut is 4.

It should be clear that a path from node 1 to node m must include at least one arc
in any cut, for the path must have an arc from the set S to the set S̄. Furthermore, it
is clear that the maximal amount of flow that can be sent through a cut is equal to
its capacity. Thus each cut gives an upper bound on the value of the maximal flow
problem. The max flow–min cut theorem states that equality is actually achieved for
some cut. That is, the maximal flow is equal to the minimal cut capacity. It should
be noted that the proof of the theorem also establishes the maximality of the flow
obtained by the maximal flow algorithm.

Max Flow–Min Cut Theorem In a network the maximal flow between a source and a sink
is equal to the minimal cut capacity of all cuts separating the source and sink.

Proof Since any cut capacity must be greater than or equal to the maximal flow, it is
only necessary to exhibit a flow and a cut for which equality is achieved. Begin with
a flow in the network that cannot be augmented by the maximal flow algorithm. For
this flow find the effective arc capacities of all arcs for incremental flow changes as
described earlier and apply the labeling procedure of the maximal flow algorithm.
Since no augmenting path exists, the algorithm must terminate before the sink is
labeled.

Let S and S̄ consist of all labeled and unlabeled nodes, respectively. This defines
a cut separating the source from the sink. All arcs originating in S and terminating
in S̄ have zero incremental capacity, or else a node in S̄ could have been labeled.
This means that each arc in the cut is saturated by the original flow; that is, the
flow is equal to the capacity. Any arc originating in S̄ and terminating in S, on the
other hand, must have zero flow; otherwise, this would imply a positive incremental
capacity in the reverse direction, and the originating node in S̄ would be labeled.
Thus, there is a total flow from S to S̄ equal to the cut capacity, and zero flow from
S̄ to S. This means that the flow from source to sink is equal to the cut capacity.
Thus the cut capacity must be minimal, and the flow must be maximal.

66 3 Duality and Complementarity

In the network of Fig. 3.3, the minimal cut corresponds to the S consisting only
of the source. That cut capacity is 3. Note that in accordance with the max flow–
min cut theorem, this is equal to the value of the maximal flow, and theminimal
cut is determined by the final labeling in Fig. 3.3e. In Fig. 3.4 the cut shown is also
minimal, and the reader should easily be able to determine the pattern of maximal
flow.

Relation to Duality

The character of the max flow–min cut theorem suggests a connection with the
Duality Theorem. We conclude this section by exploring this connection.

The maximal flow problem is a linear program, which is expressed formally
by (3.18). The dual problem is found to be

minimize wT k

subject to uT A = wT (3.19)

uT e = 1

w ≥ 0.

When written out in detail, the dual is

minimize
∑
ij

wij kij

subject to ui − uj = wij

u1 − um = 1 (3.20)

wij ≥ 0.

A pair i, j is included in the above only if (i, j) is an arc of the network.
A feasible solution to this dual problem can be found in terms of any cut

set (S, S̄). In particular, it is easily seen that

ui =
{

1 if i ∈ S

0 if i ∈ S̄
(3.21)

wij =
{

1 if (i, j) ∈ (S, S̄)

0 otherwise

3.8 Exercises 67

is a feasible solution. The value of the dual problem corresponding to this solution
is the cut capacity. If we take the cut set to be the one determined by the labeling
procedure of the maximal flow algorithm as described in the proof of the theorem
above, it can be seen to be optimal by verifying the complementary slackness
conditions (a task we leave to the reader). The minimum value of the dual is
therefore equal to the minimum cut capacity.

3.7 Summary

There is a corresponding dual linear program associated with every (primal) linear
program. Both programs share the same underlying cost and constraint coefficients.
We have demonstrated rich theorems to relate the pair. The variables of the dual
problem can be interpreted as prices associated with the constraints of the original
(primal) problem, and through this association it is possible to give an economically
meaningful characterization to the dual whenever there is such a characterization
for the primal. There are many applications of the duality theory across numerous
scientific and engineering fields.

Mathematically, the pair also establishes an optimality certificate to each other:
one cannot claim an optimal objective value unless you find a solution for the
dual to achieve the same value of the dual objective. This also leads to the set of
optimality conditions, including the complementarity conditions, that we would see
many times in the rest of the book.

3.8 Exercises

1. Consider the problem

minimize 2x1 + x2 + 4x3

subject to x1 + x2 + 2x3 = 3
2x1 + x2 + 3x3 = 5

x1 � 0, x2 � 0, x3 � 0.

(a) What is the dual problem?
(b) Note that y = (1, 0) is feasible for the dual. Is the dual objective value at

this solution a lower bound for the primal?

2. Verify in detail that the dual of a dual linear program is the original problem.
3. Show that if a linear inequality in a linear program is changed to equality, the

corresponding dual variable becomes free.

68 3 Duality and Complementarity

4. Find the dual of

minimize cT x
subject to Ax = b, x � a
for some a � 0.

5. Show that in the transportation problem the linear equality constraints are not
linearly independent, and that in an optimal solution to the dual problem the
dual variables are not unique. Generalize this observation to any linear program
having redundant equality constraints.

6. Construct an example of a primal problem that has no feasible solutions and
whose corresponding dual also has no feasible solutions.

7. Let A be an m×n matrix and c be an n-vector. Prove that Ax � 0 implies cT x �
0 if and only if cT = yT A for some y � 0. Give a geometric interpretation of
the result.

8. There is in general a strong connection between the theories of optimization and
free competition, which is illustrated by an idealized model of activity location.
Suppose there are n economic activities (various factories, homes, stores, etc.)
that are to be individually located on n distinct parcels of land. If activity i is
located on parcel j that activity can yield sij units (dollars) of value.
If the assignment of activities to land parcels is made by a central authority, it
might be made in such a way as to maximize the total value generated. In other
words, the assignment would be made so as to maximize

∑
i

∑
j sijxij where

xij =
{

1 if activity i is assigned to parcel j

0 otherwise.

More explicitly this approach leads to the optimization problem

maximize
∑
i

∑
j

sijxij

subject to
∑
j

xij = 1, i = 1, 2, . . . , n

∑
i

xij = 1, j = 1, 2, . . . , n

xij � 0, xij = 0 or 1.

Actually, it can be shown that the final requirement (xij = 0 or 1) is
automatically satisfied at any extreme point of the set defined by the other
constraints, so that in fact the optimal assignment can be found by using the
simplex method of linear programming.

If one considers the problem from the viewpoint of free competition, it is
assumed that, rather than a central authority determining the assignment, the
individual activities bid for the land and thereby establish prices.

3.8 Exercises 69

(a) Show that there exists a set of activity prices pi, i = 1, 2, . . . , n and land
prices qj , j = 1, 2, . . . , n such that

pi + qj � sij, i = 1, 2, . . . , n, j = 1, 2, . . . , n

with equality holding if in an optimal assignment activity i is assigned to
parcel j .

(b) Show that Part (a) implies that if activity i is optimally assigned to parcel j

and if j ′ is any other parcel

sij − qj � sij′ − qj ′ .

Give an economic interpretation of this result and explain the relation
between free competition and optimality in this context.

(c) Assuming that each sij is positive, show that the prices can all be assumed
to be nonnegative.

9. Game theory is in part related to linear programming theory. Consider the
game in which player X may select any one of m moves, and player Y may
select any one of n moves. If X selects i and Y selects j , then X wins an
amount aij from Y . The game is repeated many times. Player X develops a
mixed strategy where the various moves are played according to probabilities
represented by the components of the vector x = (x1, x2, . . . , xm), where

xi � 0, i = 1, 2, . . . , m and
m∑

i=1
xi = 1. Likewise Y develops a mixed strategy

y = (y1, y2, . . . , yn), where yi � 0, i = 1, 2, . . . , n and
n∑

i=1
yi = 1. The

average payoff to X is then P(x, y) = xT Ay.

(a) Suppose X selects x as the solution to the linear program

maximize A

subject to
m∑

i=1
xi = 1

m∑
i=1

xiaij � A, j = 1, 2, . . . , n

xi � 0, i = 1, 2, . . . , m.

Show that X is guaranteed a payoff of at least A no matter what y is chosen
by Y .

70 3 Duality and Complementarity

(b) Show that the dual of the problem above is

minimize B

subject to
n∑

j=1
yj = 1

n∑
j=1

aijyj � B, i = 1, 2, . . . , m

yj � 0, j = 1, 2, . . . , n.

(c) Prove that max A = min B. (The common value is called the value of the
game.)

(d) Consider the “matching” game. Each player selects heads or tails. If the
choices match, X wins $1 from Y ; if they do not match, Y wins $1 from X.
Find the value of this game and the optimal mixed strategies.

(e) Repeat Part (d) for the game where each player selects either 1, 2, or 3.
The player with the highest number wins $1 unless that number is exactly
1 higher than the other player’s number, in which case he loses $3. When
the numbers are equal there is no payoff.

10. Consider the primal linear program in the standard form. Suppose that this
program and its dual are feasible. Let y be a known optimal solution to the
dual.

(a) If the kth equation of the primal is multiplied by μ �= 0, determine an
optimal solution w to the dual of this new problem.

(b) Suppose that, in the original primal, we add μ times the kth equation to
the rth equation. What is an optimal solution w to the corresponding dual
problem?

(c) Suppose, in the original primal, we add μ times the kth row of A to c. What
is an optimal solution to the corresponding dual problem?

11. Consider the linear program (P) of the form

minimize qT z
subject to Mz ≥ −q, z ≥ 0

in which the matrix M is skew symmetric; that is, M = −MT .

(a) Show that problem (P) and its dual are the same.
(b) A problem of the kind in part (a) is said to be self-dual. An example of a

self-dual problem has

M =
[

0 −AT

A 0

]
, q =

[
c

−b

]
, z =

[
x
y

]
.

Give an interpretation of the problem with this data.

3.8 Exercises 71

(c) Show that a self-dual linear program has an optimal solution if and only if
it is feasible.

12. A company may manufacture n different products, each of which uses various
amounts of m limited resources. Each unit of product i yields a profit of ci

dollars and uses aji units of the j th resource. The available amount of the j th
resource is bj . To maximize profit the company selects the quantities xi to be
manufactured of each product by solving

maximize cT x
subject to Ax = b, x � 0.

The unit profits ci already take into account the variable cost associated with
manufacturing each unit. In addition to that cost, the company incurs a fixed
overhead H , and for accounting purposes it wants to allocate this overhead to
each of its products. In other words, it wants to adjust the unit profits so as
to account for the overhead. Such an overhead allocation scheme must satisfy
two conditions: (i) Since H is fixed regardless of the product mix, the overhead
allocation scheme must not alter the optimal solution, (ii) All the overhead must
be allocated; that is, the optimal value of the objective with the modified cost
coefficients must be H dollars lower than z0—the original optimal value of the
objective.

(a) Consider the allocation scheme in which the unit profits are modified
according to ĉT = cT − ryT

0 A, where y0 is the optimal solution to the
original dual and r = H/z0 (assume H � z0).

(i) Show that the optimal x for the modified problem is the same as that
for the original problem, and the new dual solution is ŷ0 = (1− r)y0.

(ii) Show that this approach fully allocates H .

(b) Suppose that the overhead can be traced to each of the resource constraints.
Let Hi � 0 be the amount of overhead associated with the ith resource,

where
m∑

i=1
Hi � z0 and ri = Hi/bi � λ0

i for i = 1, . . . , m. Based on this

information, an allocation scheme has been proposed where the unit profits
are modified such that ĉT = cT − rT A.

(i) Show that the optimal x for this modified problem is the same as that
for the original problem, and the corresponding dual solution is ŷ0 =
y0 − r.

(ii) Show that this scheme fully allocates H .

72 3 Duality and Complementarity

13. Given the linear programming problem in standard form (3.3) suppose a basis B
and the corresponding (not necessarily feasible) primal and dual basic solutions
x and y are known. Assume that at least one relative cost coefficient ci − yT ai

is negative. Consider the auxiliary problem

minimize cT x
subject to Ax = b∑

i∈T

xi + y = M

x � 0, y � 0,

where T = {i : ci − yT ai < 0}, y is a slack variable, and M is a large positive
constant. Show that if k is the index corresponding to the most negative relative
cost coefficient in the original solution, then (y, ck − yT ak) is dual feasible for
the auxiliary problem.

14. A textile firm is capable of producing three products—x1, x2, x3. Its produc-
tion plan for next month must satisfy the constraints

x1 + 2x2 + 2x3 � 12

2x1 + 4x2 + x3 � f

x1 � 0, x2 � 0, x3 � 0.

The first constraint is determined by equipment availability and is fixed. The
second constraint is determined by the availability of cotton. The net profits of
the products are 2, 3, and 3, respectively, exclusive of the cost of cotton and
fixed costs.

(a) Find the shadow price λ2 of the cotton input as a function of f . (Hint: Use
the dual simplex method.) Plot λ2(f) and the net profit z(f) exclusive of
the cost for cotton.

(b) The firm may purchase cotton on the open market at a price of 1/6.
However, it may acquire a limited amount at a price of 1/12 from a major
supplier that it purchases from frequently. Determine the net profit of the
firm π(f) as a function of f .

3.8 Exercises 73

15. A certain telephone company would like to determine the maximum number
of long-distance calls from Westburgh to Eastville that it can handle at any one
time. The company has cables linking these cities via several intermediary cities
as follows:

Each cable can handle a maximum number of calls simultaneously as
indicated in the figure. For example, the number of calls routed from Westburgh
to Northgate cannot exceed five at any one time. A call from Westburgh
to Eastville can be routed through any other city, as long as there is a
cable available that is not currently being used to its capacity. In addition to
determining the maximum number of calls from Westburgh to Eastville, the
company would, of course, like to know the optimal routing of these calls.
Assume calls can be routed only in the directions indicated by the arrows.

(a) Formulate the above problem as a linear programming problem with upper
bounds.
(Hint: Denote by xij the number of calls routed from city i to city j .)

(b) Find the solution by inspection of the graph.

16. Apply the maximal flow algorithm to the network below. All arcs have capacity
1 unless otherwise indicated.

74 3 Duality and Complementarity

17. Consider the primal feasible region in standard form Ax = b, x � 0, where
A is an m × n matrix, b is a constant nonzero m-vector, and x is a variable
n-vector.

(a) A variable xi is said to be a null variable if xi = 0 in every feasible solution.
Prove that, if the feasible region is nonempty, xi is a null variable if and only
if there is a nonzero vector y ∈ Em such that yT A ≥ 0, yT b = 0 and the
ith component of yT A is strictly positive.

(b) [Strict complementarity] Let the feasible region be nonempty. Then there is
a feasible x and vector y ∈ Em such that

yT A ≥ 0, yT b = 0, yT b+ x > 0.

(c) A variable xi is a nonextremal variable if xi > 0 in every feasible solution.
Prove that, if the feasible region is nonempty, xi is a nonextremal variable
if and only if there is y ∈ Em and d ∈ En such that yT A = dT , where
di = −1, dj � 0 for j �= i; and such that yT b < 0.

18. Verify that the system of constraints (3.6) is alternative to the system of
constraints (3.5).

19. Using a linear programming solver find an optimal solution pair to the World
Cup example and verify the complementary slackness conditions described in
Sect. 3.4.

20. Consider three manufacturing firms whose production linear programs are
given below, respectively

Firm 1
max x1 + 2x2

s.t. x1 ≤ 1,

x2 ≤ 0,

x1 + x2 ≤ 0.5
(x1, x2) ≥ 0,

Firm 2
max x1 + 2x2

s.t. x1 ≤ 0,

x2 ≤ 1,

x1 + x2 ≤ 0.5
(x1, x2) ≥ 0,

Firm 3
max x1 + 2x2

s.t. x1 ≤ 0,

x2 ≤ 0,

x1 + x2 ≤ 0.5
(x1, x2) ≥ 0,

References 75

(a) What is the Grand-Alliance production linear program?
(b) Compute the optimal dual solution of the Grand-Alliance production linear

program.
(c) Verify that the payment vector constructed in the theorem of Example 1

satisfies the core property.

21. Generate some random samples and try different online linear programming
algorithms described in Sect. 3.5.

References

3.1–3.4 Again most of the material in this chapter is now quite standard. See the
references of Chap. 2. A particularly careful discussion of duality can be
found in Simonnard [S6].

3.5 The concept of core was developed in, e.g., Shapley [SL], and the
application of linear programming to the core theory was given in Bon-
dareva [BO]. The robust optimization can be found, e.g., in Ben-Tal and
Nemirovskii [BN] and references therein; while the distributionally robust
optimization was first named in Delage and Ye [DY] and it can be traced
back from the references therein. Online linear programming model and
theories discussed here are from Agrawal et al. [AWY] and Wang’s Ph.D.
thesis [WAZ]. The adaptive online algorithm and more in-depth analyses
can be found in Li’s Ph.D. thesis [LIX].

3.6 Koopmans [K8] was the first to discover the relationship between bases
and tree structures in a network. The classic reference for network flow
theory is Ford and Fulkerson [F13]. For discussion of even more efficient
versions of the maximal flow algorithm, see Lawler [L2] and Papadimitriou
and Steiglitz [P2]. The Hungarian method for the assignment problem
was designed by Kuhn [K10]. It is called the Hungarian method because
it was based on work by the Hungarian mathematicians Egerváry and
König. Ultimately, this led to the general primal–dual algorithm for linear
programming.

Chapter 4
The Simplex Method

The idea of the simplex method is to proceed from one basic feasible solution
(that is, one extreme point) of the constraint set of a problem in standard form to
another, in such a way as to continually improve the value of the objective function
until an optimum is reached. The results of Chap. 2 assure us that it is sufficient
to consider only basic feasible solutions in our search for an optimal feasible
solution. The results of Chap. 3 establish a termination criterion and provide a dual
certificate for a basic feasible solution to be optimal. This chapter demonstrates that
an efficient method for moving among basic feasible solutions to the optimum can
be constructed. Moreover, we obtain both optimal primal and optimal dual solutions
upon the termination, or show that either the primal or the dual is infeasible.

We first introduce the concept of adjacency of two extreme points and how to
represent the concept in basic feasible solutions algebraically. Then we present the
simplex method, in both primal and dual versions, from a matrix theoretic approach,
which focuses on all variables together. This more sophisticated viewpoint leads to
a compact notational representation, increased insight into the simplex process, and
to alternative methods for implementation. This is what is actually implemented in
modern optimization solvers and software.

We also present the simplex machinery in a tableau form that is developed from
a careful examination of the system of linear equations that defines the constraints
and the basic feasible solutions of the system. This approach, which focuses on
individual variables and their relation to the system, is probably the simplest and
intuitive. The simplex tableau method was used prior to the computer age, just by
pen and paper.

We customize the simplex method for solving the transportation problem with a
special network structure. Through the customization, we gain more insight into the
method and understand why the method works.

Finally, we provide a worst-case efficiency analysis of the simplex method under
the nondegeneracy assumption, due to a recent theoretical advance. The result gives
an upper bound on how many extreme points need to be visited in order to reach

© Springer Nature Switzerland AG 2021
D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
https://doi.org/10.1007/978-3-030-85450-8_4

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85450-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-85450-8_4

78 4 The Simplex Method

the optimum by the simplex method, starting from any initial extreme point of the
feasible polyhedral region.

4.1 Adjacent Basic Feasible Solutions (Extreme Points)

In Chap. 2 it was discovered that it is only necessary to consider basic feasible
solutions to the system

Ax = b, x � 0 (4.1)

when solving a linear program. Based on this fact, the idea of the simplex method
is to move from a basic feasible solution (extreme point) to an adjacent one with an
improved objective value.

Definition Two basic feasible solutions are said to be adjacent if and only if they differ by
one basic variable.

Thus, a new basic solution can be generated from an old one by replacing one
current basic variable by a current nonbasic variable. Although it is not possible
to arbitrarily specify the pair of variables whose roles are to be interchanged and
expect to maintain the nonnegativity condition, it is possible to arbitrarily specify
which current nonbasic (entering or incoming) variable is to become basic and
then determine which current basic (leaving or outgoing) variable should become
nonbasic. Once a nonbasic variable is selected as the incoming variable, it remains to
select the outgoing basic variable in order to maintain feasibility. We now show how
it is possible to select the outgoing variable so that we may transfer from one basic
feasible solution to the adjacent one. As is conventional, we base our derivation
on the vector interpretation of the linear equations although the dual interpretation
could alternatively be used.

Nondegeneracy Assumption

Many arguments in linear programming are substantially simplified upon the
introduction of the following:

Nondegeneracy Assumption: Every basic feasible solution of (4.1) is a nondegenerate
basic feasible solution.

This assumption is invoked throughout our development of the simplex method,
since when it does not hold the simplex method can break down if it is not suitably
amended. The assumption, however, should be regarded as one made primarily for
convenience, since all arguments can be extended to include degeneracy, and the
simplex method itself can be easily modified to account for it.

4.1 Adjacent Basic Feasible Solutions (Extreme Points) 79

Determination of Vector to Leave Basis

For simplicity, let the basic feasible solution be partitioned as xB =
(x1; x2; . . . ; xm) and xD = (xm+1; xm+2; . . . ; xn). Then, b is the linear
combination of columns of B = (a1, a2, . . . , am) with the positive multipliers
(x1, x2, . . . , xm)

b = BxB = x1a1 + x2a2 + · · · + xmam where xB = ā0 := B−1b > 0. (4.2)

Suppose also that we have decided to bring into the representation the eth (entering)
column vector of A, ae (e > m), while keeping all others nonbasic. We have
available a new representation of b as a linear combination of m + 1 vectors, ae

in addition to the current basis B, for any nonnegative multiplier xe and xB:

b = BxB + aexe or ā0 = B−1b = xB + (B−1ae)xe. (4.3)

Since xe is the incoming variable, its value needs to be increased from the current 0
to a positive value, say ε � 0. On the other hand, as xe value increases, the current
basic variable xB needs to be adjusted accordingly to keep the feasibility, that is,

xB = ā0 − ε · (B−1ae) = ā0 − ε · āe ≥ 0, where āe = B−1ae. (4.4)

For ε = 0 we have the old basic feasible solution xB = ā0(> 0). It is also clear
that for small enough ε, (4.3) gives a feasible but nonbasic solution. The values of xB
will either increase or unchanged if āie ≤ 0; or decrease linearly as ε is increased
if āie > 0, where āie is the ith entry of vector āe. If any decrease, we may set ε

equal to the value corresponding to the first place where one (or more) of the value
vanishes. That is

ε = min
i
{āi0/āie : āie > 0}. (4.5)

In this case we have a new basic feasible solution, with the vector ae replacing the
(outgoing) column ao, where index o(≤ m) corresponds to the minimizing-ratio in
(4.5) or

o = arg min
i
{āi0/āie : āie > 0}.

If the minimum in (4.5) is achieved by more than a single index o, the new solution
is degenerate and any of them can be chosen as o.

If none of the āie’s are positive, then all coefficients in the representation (4.3)
increase (or remain constant) as ε is increased, and no new basic feasible solution is
obtained. We observe, however, that in this case, where none of the āie’s are positive,
there are feasible solutions to (4.1) having arbitrarily large coefficients. This means

80 4 The Simplex Method

Fig. 4.1 Constraint
representation in
requirements space

a
3

b

a1

a2

a4

that the set K of feasible solutions to (4.1) is unbounded, and this special case, as
we shall see, is of special significance in the simplex procedure.

Conic Combination Interpretations

This basis transformation, as illustrated in Sect. 3.3, can be interpreted as in
requirements space, the space where the columns of A and b are represented. The
fundamental relation is

a1x1 + a2x2 + · · · + anxn = b.

An example for m = 2, n = 4 is shown in Fig. 4.1.
A feasible solution defines a representation of b as a conic combination of the

ai’s. A basic feasible solution will use only m positive weights. In the figure a basic
feasible solution can be constructed with positive weights on a1 and a2 because b
lies between them. A basic feasible solution cannot be constructed with positive
weights on a1 and a4. Suppose we start with a1 and a2 as the initial basis. Then an
adjacent basis is found by bringing in some other vector. If a3 is brought in, then
clearly a2 must go out. On the other hand, if a4 is brought in, a1 must go out. In
summary, we have deduced that, given a basic feasible solution and an arbitrary
vector ae, there is either a new basic feasible solution having ae in its basis and one
of the original vectors removed, or the set of feasible solutions is unbounded.

Of course, another interpretation is in activity space, the space where x is
represented. This is perhaps the most natural space to consider, especially with only
inequality constraints. Here the feasible region is shown directly as a convex set,
and basic feasible solutions are extreme points. Adjacent extreme points are points
that lie on a common edge.

Example 1 (Basis Change Illustration) Consider the equality constraints of Exam-
ple 1 of Sect. 3.3:

3x1 + x2 − 2x3 + x4 = 2

x1 + 3x2 − x4 = 2.

4.2 The Primal Simplex Method 81

Suppose we start with a1 and a2 as the initial basis and select a3 as the incoming
column. Then

B =
(

3 1

1 3

)
, B−1 =

(
3/8 1/8

−1/8 3/8

)
, ā0 = B−1b =

(
1/2

1/2

)
, ā3 = B−1a3 =

(
−3/4

1/4

)
.

From (4.5), ε = 2 and a2 is the outgoing column so that the new basis is formed by
a1 and a3.

Now suppose we start with a1 and a3 as the initial basis and select a4 as the
incoming column. Then

B =
(

3 1

−2 0

)
, B−1 =

(
0 1

−1/2 3/2

)
, ā0 = B−1b =

(
2

2

)
, ā4 = B−1a4 =

(
−1

−2

)
.

Since the entries of the incoming column ā4 are all negative, ε in (4.5) can go to∞,
indicating that the feasible region is unbounded.

4.2 The Primal Simplex Method

In the last section we showed how it is possible to transform from one basic feasible
solution to another (or determine that the solution set is unbounded) by arbitrarily
selecting an incoming column. The idea of the simplex method is to select the
column so that the resulting new basic feasible solution will yield a lower value
to the objective function than the previous one. This then provides the final link
in the simplex procedure. By an elementary calculation, which is derived below, it
is possible to determine which nonbasic column should enter the basis so that the
objective value is reduced, and by another simple calculation, derived in the previous
section, it is possible to then determine which current basic column should leave in
order to maintain feasibility.

Determining an Optimal Feasible Solution

As usual, let us assume that B consists of the first m columns of A. Then by
partitioning A, x, and cT as

A = [B, D]
x = (xB; xD), cT =

[
cT

B, cT
D

]
.

82 4 The Simplex Method

Suppose we have a basic feasible solution

xB = ā0 := B−1b ≥ 0 and xD = 0.

The value of the objective function corresponding to any solution x is

z = c1x1 + c2x2 + · · · + cnxn = cT
BxB + cT

DxD, (4.6)

and hence for the current basic solution, the corresponding value is

z0 = cT
BB−1b, (4.7)

where cT
B = (c1, c2, . . . , cm) and cT

D = (cm+1, cm+2, . . . , cn).
However, for any value of xD the necessary value of xB is determined from m

equality constraints of the linear program, that is, from Ax = b

BxB + DxD = b or xB = B−1b− B−1DxD, (4.8)

and this general expression when substituted in the cost function (4.6) yields

z = cT
B(B−1b− B−1DxD)+ cT

DxD

= cT
BB−1b+ (cT

D − cT
BB−1D)xD, (4.9)

= z0 + (cT
D − yT D)xD

which expresses the cost of any feasible solution to (4.1) in terms of independent
variable in xD. Here, yT = cT

BB−1 is the simplex multipliers or shadow prices
corresponding to basis B introduced in Sect. 3.3.

Let

rT
D = cT

D − yT D. (4.10)

Then from formula (4.9)

z = cT x = z0 +
n∑

j=m+1

rj xj (4.11)

Vector rD represents the relative cost vector, also called reduced cost or reduced
gradient vector for nonbasic variables in xD (all three terms occur in common
usage).

From formula (4.11) we can now determine if there is any advantage in changing
the basic solution by introducing one of the nonbasic variables. For example, if rj is
negative for some j, m+ 1 � j � n, then increasing xj from zero to some positive
value would decrease the total cost, and therefore would yield a better solution. The

4.2 The Primal Simplex Method 83

formula (4.11) automatically takes into account the changes that would be required
in the values of the basic variables x1, x2, . . . , xm to accommodate the change in
xj .

We now state the condition for improvement, which follows easily from the
above observation, as a theorem.

Theorem (Improvement of Basic Feasible Solution) Given a nondegenerate basic
feasible solution with corresponding objective value z0, suppose that for some j there holds
rj < 0. Then there is a feasible solution with objective value z < z0. If the column aj can be
substituted for some vector in the original basis to yield a new basic feasible solution, this
new solution will have z < z0. If aj cannot be substituted to yield a basic feasible solution,
then the solution set K is unbounded and the objective function can be made arbitrarily
small (toward minus infinity).

Proof The result is an immediate consequence of the previous discussion. Let x be
the current basic feasible solution with objective value z0 and suppose rj < 0 for a
nonbasic variable xj . Then, in any case, new feasible solutions can be constructed
of the form x′ with x ′j > 0. Substituting this solution in (4.11) we have

z− z0 = rj x
′
j < 0,

and hence z < z0 for any such solution. It is clear that we desire to make x ′j as large
as possible. As x ′j is increased, the other components increase, remain constant, or
decrease. Thus x ′j can be increased until one of current basic variable x ′i = 0, in
which case we obtain a new basic feasible solution, or if none of the basic variables
x ′i’s decrease, x ′j can be increased without bound indicating an unbounded solution
set and an objective value without lower bound.

We see that if at any stage rj < 0 for some j , it is possible to make xj positive and
decrease the objective function. The final question remaining is whether rj � 0 for
all j implies optimality. The “yes” answer is given directly from the strong duality
theorem of Sect. 3.3 and the fact that

rT
B = cT

B − yT B = cT
B − cT

B = 0,

where we extend the definition of reduced cost coefficients to basic variables and
the reduced cost coefficient of every basic variable is always zero.

Optimality Condition Theorem If for some basic feasible solution rj � 0 for all j , then
that solution is optimal.

The reduced cost coefficients rj ’s, together with the simplex multiplier or shadow
price vector y, play a central role in the development of the simplex method.
Therefore, we conclude this section by giving an economic interpretation of the
reduced cost coefficients. Let us agree to interpret the linear program

minimize cT x
subject to Ax = b, x � 0

84 4 The Simplex Method

as a diet problem (see Sect. 2.2) where the nutritional requirements must be
met exactly. A column, aj , of A gives the nutritional equivalent of a unit of a
particular food. With a given basis consisting of, say, the first m columns of A,
the corresponding B−1aj shows how any food j (or more precisely, the nutritional
content of any food) can be constructed as a combination of foods in the basis. For
instance, if carrots are not in the basis we can, using the description given by the
tableau, construct a synthetic carrot which is nutritionally equivalent to a carrot, by
an appropriate combination of the foods in the basis.

In considering whether or not the solution represented by the current basis is
optimal, we consider a certain food not in the basis—say carrots—and determine if
it would be advantageous to bring it into the basis. This is very easily determined
by examining the cost of carrots as compared with the cost of synthetic carrots. If
carrots are food j , then the unit cost of carrots is cj . The cost of a unit of synthetic
carrots is, on the other hand,

m∑
i=1

ci

(
B−1aj

)
i
= yT aj .

If reduced coefficient rj = cj − yT aj < 0, it is advantageous to use real carrots in
place of synthetic carrots, and carrots should be brought into the basis.

In general each yT aj can be thought of as the price of a unit of the column aj

when constructed from the current basis. The difference between this synthetic price
and the direct price of that column determines whether that column should enter the
basis.

We now formally describe the simplex method procedure. A key observation in
the development of the procedure is that a basis transformation can be determined
solely by a knowledge of which variables are currently basic. As before we denote
by B the submatrix consisting of the m original columns of A corresponding to the
basic variables. These columns are linearly independent and hence the columns of
B form a basis for Em. We refer to B as the basis matrix. Again, we denote by D the
nonbasic column submatrix of A.

The Simplex Procedure

Now we formally present the simplex computation procedure in matrix form, and it
is commonly referred as the revised simplex method in history.

Step 0. Given the current basis B−1 of a current basis, and the current solution
xB = ā0 = B−1b.

Step 1. Calculate the current simplex multiplier vector yT = cT
BB−1 and then

calculate relative cost coefficients rT
D = cT

D − yT D. If rD � 0 stop; the
current solution is optimal.

4.2 The Primal Simplex Method 85

Step 2. Determine vector ae is to enter the basis by selecting its most negative cost
coefficient, the e(> m)th coefficient (break tie arbitrarily); and calculate
āe = B−1ae.

Step 3. If āe ≤ 0, stop; the problem is unbounded. Otherwise, calculate the ratios
āi0/āie for āie > 0 to determine the current basic column, ao where o(≤
m+ 1) corresponds to the index of the minimum ratio, to leave basis.

Step 4. Update B−1 (or its factorization) and the new basic feasible solution ā0 =
B−1b. Return to Step 1.

We remark that the basic columns in basis B and nonbasic columns in D can be ordered
arbitrarily, and components in xB, xD, cB, and cD follow the same index orders, respectively.
More precisely, let columns be permuted as B = (aσ (1), aσ (2), . . . , aσ (m)) and D =
(aσ (m+1), aσ (m+2), . . . , aσ (n)). Then when re is identified as the most negative coefficient
in rD in Step 2, aσ (e) is the entering column. Similarly, when o is identified as the minimum
ratio index in Step 3, aσ (o) is the outgoing column.

Example 1 (Primal Simplex Procedure Illustration) Again consider Example 1 of
Sect. 3.3:

minimize 18x1 +12x2 +2x3 +6x4

subject to 3x1 +x2 −2x3 +x4 = 2
x1 +3x2 −x4 = 2
(x1 x2 x3 x4) ≥ 0.

Suppose we start with initial basis B = (a1 a3) and D = (a2 a4), the First Iteration
of the simplex procedure would be

Step 0. Initialization

B =
(

3 −2
1 0

)
, B−1 =

(
0 1

−1/2 3/2

)
, ā0 = B−1b =

(
2
2

)
.

Step 1. Calculate

yT = cT
BB−1 = (18 2)

(
0 1

−1/2 3/2

)
= (−1 21)

and

rT
D = cT

D−yT D = (12 6) − (−1 21)

(
1 1
3 −1

)
= (12 6) − (62 −22) = (−50 28).

Step 2. Then see e = 2, that is, a2 is the incoming column, and calculate

ā2 = B−1a2 =
(

0 1
−1/2 3/2

)(
1
3

)
=
(

3
4

)
.

86 4 The Simplex Method

Step 3. Since ā2 > 0 the ratios are, via the component-wise divide operation,

ā0./ā2 =
(

2
2

)
./

(
3
4

)
=
(

2/3
1/2

)
.

The minimum ratio corresponds to column a3 (o = 3) that would be outgoing.
That is, a2 replaces a3 in the basis which is now B = (a1 a2) and D = (a3 a4).

Step 4. Update

B =
(

3 1
1 3

)
, B−1 =

(
3/8 −1/8
−1/8 3/8

)
, ā0 = B−1b =

(
1/2
1/2

)
.

Return to Step 1.

When continuing the procedure, the Second Iteration of the simplex procedure
would be

Step 1. Calculate

yT = cT
BB−1 = (18 12)

(
3/8 −1/8
−1/8 3/8

)
= (21/4 9/4)

and

rT
D = cT

D− yT D = (2 6) − (21/4 9/4)

(
−2 1

0 −1

)
= (2 6) − (−21/2 3) = (25/2 3).

Stop, all of the reduced costs are positive so the current basic feasible solution is
optimal.

One may go one step further in the simplex method and note that execution of
a single simplex cycle is not explicitly dependent on having B−1 but rather on the
ability to solve linear systems with B as the coefficient matrix. A decomposition of
B = LU can be updated where L is a lower triangular matrix and U is an upper
triangular matrix; see Sect. C.1. Then each of the linear systems can be solved by
solving two triangular systems.

Another popular technique to solve linear programs, when n >> m in the
standard form, is called Column Generation. The idea goes as follows, we randomly
or intelligently select only a subset of columns into an initial linear program and
solve it as a proxy problem. Then we use its optimal simplex multipliers to price the
columns that were not selected in the proxy problem. If the reduced cost coefficients
of them are all nonnegative, then we are done—they are all nonbasic variables.
Otherwise, we add a subset of columns with negative coefficients into the proxy
problem, and continue the process. This saves computation time as well as memory
spaces.

4.2 The Primal Simplex Method 87

Degeneracy
It is possible that in the course of the simplex procedure, degenerate basic feasible
solutions may occur corresponding to a basic variable having the value zero. Then,
it is possible that after a new column ae is selected to enter the basis, the minimum
of the ratios āi0/āie may be zero, implying that the zero-valued basic variable is
the one to go out. This means that the new basic variable xe will come in at zero
value, the objective will not decrease, and the new basic feasible solution will also
be degenerate. Conceivably, this process could continue for a series of steps until,
finally, the original degenerate solution is again obtained. The result is a cycle that
could be repeated indefinitely.

Methods have been developed to avoid such cycles (see Exercises 15–17 for a
full discussion of one of them, which is based on perturbing the problem slightly
so that zero-valued variables are actually small positive values. In this method
a zero-valued basic variable is assigned the value ε and is then treated in the
usual way. If it later leaves the basis, then the ε can be dropped. There are also
other sophisticated methods such as Bland’s rule (see Exercise 32). In practice,
however, such procedures are found to be unnecessary. When degenerate solutions
are encountered, the simplex procedure generally does not enter a cycle. However,
anticycling procedures are simple, and many codes incorporate such a procedure for
the sake of safety.

Finding an Initial Basic Feasible Solution

The simplex procedure needs to start from a basic feasible solution. A basic feasible
solution is sometimes immediately available for linear programs. For example, in
resource-allocation/production problems with constraints of the form

Ax � b, x � 0 (4.12)

with b � 0, a basic feasible solution to the corresponding standard form of the
problem is provided by the slack variables. This provides a means for initiating the
simplex procedure. The example in the last section was of this type. An initial basic
feasible solution is not always apparent for other types of linear programs, however,
and it is necessary to develop a means for determining one so that the simplex
method can be initiated. Interestingly (and fortunately), an auxiliary linear program
and corresponding application of the simplex method can be used to determine the
required initial solution.

By elementary straightforward operations the constraints of a linear program-
ming problem can always be expressed in the so-called Phase I form

Ax = b, x � 0 (4.13)

88 4 The Simplex Method

with b � 0. Generally, in order to find a solution to (4.13) consider the artificial
minimization problem (commonly called the Phase One linear program).

minimize
m∑

i=1

uj

subject to Ax+ u = b (4.14)

x � 0, u � 0,

where u = (u1, u2, . . . , um) is a vector of artificial variables. If there is a feasible
solution to (4.13), then it is clear that (4.14) has a minimum value of zero with
u = 0. If (4.13) has no feasible solution, then the minimum value of (4.14) is greater
than zero.

Now (4.14) is itself a linear program in the variables x, u, and the system is
already in canonical form with basic feasible solution u = b. If (4.14) is solved
using the simplex technique, a basic feasible solution is obtained at each step. If the
minimum value of (4.14) is zero, then the final basic solution will have all uj = 0,
and hence barring degeneracy, the final solution will have no uj variables basic. If in
the final solution some uj are both zero and basic, indicating a degenerate solution,
these basic variables can be exchanged for nonbasic xj variables (again at zero level)
to yield a basic feasible solution involving x variables only. Then one can proceed
to minimize the original objective called Phase II.

4.3 The Dual Simplex Method

Often there is a basis to a linear program that is not feasible for the primal problem,
but its multiplier vector is feasible for the dual. That is, yT = cT

BB−1 and rT
D =

cT
D − yT D ≥ 0. If the dual basic feasible solution is nondegenerate, the inequality

holds strictly component-wise. Then we can apply the dual simplex method moving
from the current solution to a new dual basic feasible solution with a better objective
value. The dual simplex method is actually commonly implemented in practice.

As usual, for simplicity let us assume that basis B consists of the first m columns
of A. Then, using the same block notations, the dual problem can be rewritten as

maximize yT b
subject to yT A � cT ,

⇔
maximize yT b
subject to yT B � cT

B,

yT D � cT
D.

Define a new dual variable vector y′ via an affine transformation such that

y′T = yT B− cT
B, or yT = (y′ + cB)T B−1 (4.15)

4.3 The Dual Simplex Method 89

and substitute y in the dual by y′, we derive an equivalent dual problem

maximize y′T B−1b+ cT
BB−1b

subject to y′T � 0,

y′T B−1D � cT
D − cT

BB−1D.

⇔
maximize y′T ā0 + z0

subject to y′T � 0,

y′T B−1D � rT
D,

(4.16)

where the current primal basic solution ā0, objective value z0, and reduced cost
coefficients rD are given as the same as in the last section. In the transformed dual
(4.16), y′ = 0 is a basic feasible solution. Moreover, if ā0 ≥ 0, that is, the primal
basic solution is also feasible, then y′T = 0 is optimal. This implies that yT =
cT

BB−1 is optimal to the original dual. Vector ā0 can be viewed as the scaled gradient
vector of the dual objective function at basis B.

Therefore, if one entry of ā0, say the oth entry āo0 < 0, then one can decrease
variable y′o to some −ε while keep others at 0’s. The new y′ remains feasible
under nondegeneracy assumption (rD > 0), but its objective value would increase
linearly in ε. Note that, as y′o decreases to −ε, the first block of constraints in the
transformed dual (4.16) would always be satisfied as ε increases, and the second
block of constraints in (4.16) becomes

ε · eT
o B−1D ≤ rT

D or − ε · āo ≤ rT
D, (4.17)

where eo ∈ Em is the oth unit vector with 1 for the oth component and 0 for all
others, and āo = eT

o B−1D is the oth row vector of matrix B−1D. To keep dual
feasibility, we only need to choose ε such that this vector constraint is satisfied
component-wise.

Clearly, if all entries in āo are nonnegative, then we can choose ε infinitely
large so that the dual objective is unbounded. If some of them are negative, we
can increase ε until one of the inequality constraints become equal in (4.17). The
one, say the eth that becomes equality, indicates that the current nonbasic column
ae replaces ao in the new basis B.

Again this can be done by calculating component-wise ratios (rD)j /(−āo)j for
(āo)j < 0 and j = m + 1, . . . , n to determine the incoming column ae, where
e corresponds to the index of the minimum ratio. Thus in each cycle of the dual
simplex method, we find a new feasible dual solution such that one of the equalities
becomes inequality and one of the inequalities becomes equality, while at the same
time increasing the value of the dual objective function. The m equalities in the
new solution then determine a new basis. One difference, in contrast to the primal
simplex method, is that here the outgoing column is selected first and the incoming
one is chosen later.

The dual simplex procedure can be formally described below

Step 0. Given a dual feasible basis B−1, primal solution ā0 = B−1b, dual feasible
solution yT = cT

BB−1, and reduced cost vector rD = cT
D − yT D (≥ 0).

90 4 The Simplex Method

Step 1. If ā0 ≥ 0, stop; the current solution pair is optimal. Otherwise, determine
which column ao is to leave the basis by selecting the most negative entry,
the oth entry (break a tie arbitrarily), in ā0. Now calculate ȳT = eT

o B−1

and then calculate āo = ȳT D.
Step 2. If āo ≥ 0, stop; the problem is unbounded. Otherwise, calculate the ratios

(rD)j /(−āo)j for (āo)j < 0 to determine the current nonbasic column,
ae, e corresponding to the minimum ratio index, to become basic.

Step 3. Update basis B−1 (or its factorization), and update primal solution ā0,
dual feasible solution y, and reduced cost vector rD accordingly. Return
to Step 1.

Again the basic columns in basis B and nonbasic columns in D can be ordered
arbitrarily, and then components in xB, xD, cB, and cD follow the same index orders,
respectively.

Example 1 (Dual Simplex Procedure Illustration) Again consider Example 1 of the
last section while we start with initial basis B = (a2 a3) and D = (a1 a4), the First
Iteration of the simplex procedure would be

Step 0. Initialization

B =
(

1 −2

3 0

)
, B−1 =

(
0 1/3

−1/2 1/6

)
, ā0 =

(
0 1/3

−1/2 1/6

)(
2

2

)
=
(

2/3

−2/3

)
,

and yT = (12 2)

(
0 1/3

−1/2 1/6

)
= (−1 13/3),

rT
D = (18 6)− (−1 13/3)

(
3 1
1 −1

)
= (50/3 34/3).

Step 1. We see only the second component in ā0 is negative so that o = 2 (which
corresponds to column a3). Now we compute

ȳT = eT
2 B−1 = (0 1)

(
0 1/3

−1/2 1/6

)
= (−1/2 1/6)

and

ā2 = ȳT D = (−1/2 1/6)

(
3 1
1 −1

)
= (−4/3 − 2/3).

Step 2. Since all components in āo are negative, the component-wise ratios are

rD./(−ā2) = (50/3 34/3)./(4/3 2/3) = (25/2 17).

Here we see the minimum ratio is the first component so that e = 1 (which
corresponds to column a1), that is, a1 replaces a3 in the current basis.

4.3 The Dual Simplex Method 91

Step 3. The new basis is B = (a2, a1)

B =
(

1 3

3 1

)
, B−1 =

(
−1/8 3/8

3/8 −1/8

)
, ā0 =

(
−1/8 3/8

3/8 −1/8

)(
2

2

)
=
(

1/2

1/2

)
,

and yT = (12 18)

(−1/8 3/8
3/8 −1/8

)
= (21/4 9/4),

rD = (2 6)− (21/4 9/4)

(−2 1
0 −1

)
= (25/2 3).

Stop, the solution pair is optimal.

The Primal–Dual Algorithm

In this subsection a procedure is described for solving linear programming problems
by working simultaneously on the primal and the dual problems. The procedure
begins with a feasible solution to the dual that is improved at each step by
optimizing an associated restricted primal problem. As the method progresses it
can be regarded as striving to achieve the complementary slackness conditions for
optimality. Originally, the primal–dual method was developed for solving a special
kind of linear program arising in network flow problems, and it continues to be the
most efficient procedure for these problems. (For general linear programs the dual
simplex method is most frequently used). In this section we describe the generalized
version of the algorithm and point out an interesting economic interpretation of it.
We consider the program pair

minimize cT x
subject to Ax = b, x � 0

and
maximize yT b
subject to yT A � cT .

(4.18)

Given a feasible solution y, not necessarily basic, to the dual, define the subset
P of indexes {1, 2, . . . , n} by j ∈ P if yT aj = cj where aj is the j th column of
A. Thus, since y is dual feasible, it follows that for all j �∈ P implies yT aj < cj .
Now corresponding to y and index set P , we define the associated restricted primal
problem

minimize 1T u
subject to Ax+ u = b

x � 0, xj = 0 for j �∈ P

u � 0,

(4.19)

where 1 denotes the m-vector (1, 1, . . . , 1).

92 4 The Simplex Method

The dual of this associated restricted primal is called the associated restricted
dual with dual variable vector y′. It is

maximize (y′)T b
subject to (y′)T aj � 0, j ∈ P

(y′) � 1.

(4.20)

The condition for optimality of the primal–dual method is expressed in the following
theorem.

Primal-Dual Optimality Theorem Suppose that y is feasible for the original dual and
that x and u = 0 is feasible (and of course optimal) for the associated restricted primal.
Then x and y are optimal for the original primal and dual programs, respectively.

Proof Clearly x is feasible for the primal. Also we have cT x = yT Ax, because
yT A is identical to cT on the components corresponding to nonzero elements of x.
Thus cT x = yT Ax = yT b and optimality follows from Lemma 1 or complementary
slackness condition, Sect. 3.2.

The primal–dual method starts with a feasible solution y0 to the original dual
and then optimizes the associated restricted primal. If the minimal objective value
to this associated restricted primal is not 0, the feasible solution y′ to the associated
restricted dual is an improving direction. Upon a new dual feasible solution for the
original dual being updated, a new associated restricted primal is determined and
the procedure repeats. Here are the details:

Step 1. Given a feasible solution y0 to the dual program (4.18), determine the
associated restricted primal according to (4.19).

Step 2. Optimize the associated restricted primal. If the minimal value of this
problem is zero, the corresponding solution and y0 is an optimal pair
for the original linear program (4.18) by the Primal–Dual Optimality
Theorem.

Step 3. If the minimal value of the associated restricted primal is strictly positive,
the maximal objective value of the associated restricted dual (4.20) is
also positive from the strong duality theorem, that is, its optimal solution
y′T b > 0. If there is no j for which y′T aj > 0 for all j �∈ P , conclude the
primal has no feasible solutions from Farkas’ lemma.

Step 4. If, on the other hand, for at least one j �∈ P , y′T aj > 0, define the new
dual feasible vector

y(ε) = y0 + εy′,

where ε, commonly referred as stepsize, is chosen as large as possible till
one of the constraint, j �∈ P , becomes equal

y(ε)T aj = cj , j �∈ P.

4.4 The Simplex Tableau Method 93

If ε can be increases to ∞, then original dual is unbounded. Otherwise,
ε > 0 we go back to Step 1 using this new dual feasible solution y(ε) that
remains dual feasible and its dual objective is strictly increased

y(ε)T b = (y0)T b+ ε · y′T b > (y0)T b.

We remark that the strict increase of the dual objective value is achieved even in the
presence of degenerate dual feasible solutions.

4.4 The Simplex Tableau Method

In previous sections, the theory, computation procedure, and indeed much of the
technique, necessary for the detailed implementation of the simplex method have
been established. In this section, we show how this procedure could be presented
in a more intuitive and visible way, which is called the simplex method in tableau
form.

As usual, let us assume that B consists of the first m columns of A. Then, the
initial simplex tableau takes the form

⎡
⎣

A � b
−− | −−
cT � 0

⎤
⎦ =

⎡
⎣

B � D � b
−− | −− | −−
cT

B � cT
D � 0

⎤
⎦ , (4.21)

If the matrix B is used as a basis, then the corresponding tableau can be equivalently
rewritten as

T =
⎡
⎣

I � B−1D � B−1b
−− | − −− −− −− | − − −− −

0 � cT
D − cT

BB−1D � −cT
BB−1b

⎤
⎦ , (4.22)

which is called the simplex canonical form corresponding to basis matrix B. This
transformation can be viewed as: (1) left-multiplying B−1 to the top blocks of
the right original tableau, (2) then left-multiplying cT

B to the resulting top blocks
and subtracting them from the bottom row. In this canonical form, the constraint
matrix corresponding to the current basis becomes the m×m identity matrix, where
the column corresponding to current nonbasic variable j becomes āj = B−1aj

(defined in (4.4)), and the far-right column becomes ā0 = B−1b (defined in (4.3)).
Furthermore, the row at the bottom consists of the relative cost coefficients and the
negative of the current objective cost.

In this section we assume that we begin with a basic feasible solution and that
the tableau corresponding to Ax = b is in the canonical form for this solution.
Methods for obtaining this first basic feasible solution, when one is not obvious,

94 4 The Simplex Method

Fig. 4.2 Canonical simplex tableau

are described in the next section. Thus, if we assume the basic variables are
(in order) x1, x2, . . . , xm, the simplex tableau takes the initial form shown in
Fig. 4.2. The simplex tableau method is to perform the Pivot operation (presented
in Sect. C.2) on this tableau, corresponding to a basic feasible solution, and create
a new tableau corresponding to an adjacent basic feasible solution, with a strictly
improved objective function value (under nondegeneracy assumption).

The basic solution corresponding to this tableau is

xj =
{

āi0 1 � i � m

0 m+ 1 � i � n

which we have assumed is feasible, that is, āi0 � 0, i = 1, 2, . . . , m. The
corresponding value of the objective function is z0.

The reduced cost coefficients rj indicate whether the value of the objective
will increase or decrease if xj is coming into the basis. If these coefficients
are all nonnegative, then the indicated solution is optimal. If some of them are
negative, an improvement can be made (assuming nondegeneracy) by bringing
the corresponding component into the basis. When more than one of the reduced
cost coefficients is negative, any one of them may be selected to determine in
which column to pivot. Common practice is to select the most negative value. (See
Exercise 13 for further discussion of this point.)

Some more discussion of the reduced cost coefficients and the last row of the
tableau is warranted. We may regard z as an additional variable and

c1x1 + c2x2 + · · · + cnxn − z = 0

as another equation. A basic solution to the augmented system will have m+1 basic
variables, but we can require that z be one of them. For this reason it is not necessary
to add a column corresponding to z, since it would always be (0, 0, . . . , 0, 1).
Thus, initially, a last row consisting of the cj ’s and a right-hand side of zero can be
appended to the standard array to represent this additional equation. Using standard

4.4 The Simplex Tableau Method 95

pivot operations, the elements in this row corresponding to basic variables can be
reduced to zero. This is equivalent to transforming the additional equation to the
form

rm+1xm+1 + rm+2xm+2 + · · · + rnxn − z = −z0. (4.23)

This must be equivalent to (4.10) and (4.11), and hence the rj ’s obtained are the
reduced cost coefficients. Thus, the last row can be treated operationally like any
other row: just start with cj ’s and reduce the terms corresponding to basic variables
to zero by row operations.

After a column e is selected in which to pivot, the final selection of the
pivot element is made by computing the ratio āi0/āie for the positive elements
āie, i = 1, 2, . . . , m, of the eth column and selecting the element o yielding
the minimum ratio. Pivoting on this element will maintain feasibility as well as
(assuming nondegeneracy) decrease the value of the objective function. If there are
ties, any element yielding the minimum can be used. If there are no nonnegative
elements in the column, the problem is unbounded. After updating the entire tableau
with āoe as pivot and transforming the last row in the same manner as all other rows
(except row o), we obtain a new tableau in canonical form. The new value of the
objective function again appears in the lower right-hand corner of the tableau.

The primal simplex tableau algorithm can be summarized by the following steps:

Step 0. Form a tableau as in Fig. 4.2 corresponding to a basic feasible solution.
The reduced cost coefficients can be found by row reduction.

Step 1. If each rj � 0, stop; the current basic feasible solution is optimal.
Step 2. Select e such that re < 0 to determine which nonbasic variable is to

entering basis.
Step 3. Calculate the ratios āi0/āie for āie > 0, i = 1, 2, . . . , m. If no āie > 0,

stop; the problem is unbounded. Otherwise, select index o corresponding
to the minimum ratio.

Step 4. Pivot on the oeth element, updating all rows including the last. Return to
Step 1.

Proof that the algorithm solves the problem (again assuming nondegeneracy) is
essentially established by our previous development. The process terminates only
if optimality is achieved or unboundedness is discovered. If neither condition is
discovered at a given basic solution, then the objective is strictly decreased. Since
there are only a finite number of possible basic feasible solutions, and no basis
repeats because of the strictly decreasing objective, the algorithm must reach a basis
satisfying one of the two terminating conditions.

96 4 The Simplex Method

Consider Example 1 illustrated in the previous section, where we have B =
(a1 a3) and D = (a2 a4), the initial simplex tableau would be

a1 a2 a3 a4 b
3 1 −2 1 2
1 3 0 −1 2

rT 18 12 2 6 0
⇒

a1 a2 a3 a4 b
1 3 0 −1 2

0 4 1 −2 2
rT 0 −50 0 28 −40

First tableau

From the negative reduced cost selection criterion and the minimum ratio test, the
pivot element is circled in the First tableau. Pivoting on this element, we have

a1 a2 a3 a4 b
1 0 −3/4 1/2 1/2
0 1 1/4 −1/2 1/2

rT 0 0 25/2 3 −15
Second tableau

Since the last row has no negative reduced cost elements, we conclude that the
solution corresponding to the second tableau is optimal. Thus x1 = 1/2, x2 =
1/2, x3 = 0, x4 = 0 is the optimal solution with a corresponding value of the
(negative) objective of−15. The results are identical to those by the simplex matrix
method in Example 1 of last section.

Now consider a more complex example below.

Example 1 Maximize 3x1 + x2 + 3x3 subject to

2x1 + x2 + x3 � 2

x1 + 2x2 + 3x3 � 5

2x1 + 2x2 + x3 � 6

x1 � 0, x2 � 0, x3 � 0.

To transform the problem into standard form so that the simplex procedure can be
applied, we change the maximization to minimization by multiplying the objective
function by minus one, and introduce three nonnegative slack variables x4, x5, x6.
We then have the initial tableau

a1 a2 a3 a4 a5 a6 b

2 1 1 1 0 0 2

1 2 3 0 1 0 5
2 2 1 0 0 1 6

rT −3 −1 −3 0 0 0 0
First tableau

4.4 The Simplex Tableau Method 97

The problem is already in canonical form with the three slack variables serving as
the basic variables. We have at this point rj = cj , since the costs of the slacks
are zero. Application of the criterion for selecting a column in which to pivot shows
that any of the first three columns would yield an improved solution. In each of these
columns the appropriate pivot element is determined by computing the ratios āi0/āij

and selecting the smallest positive one. The three allowable pivots are all circled on
the tableau. It is only necessary to determine one allowable pivot, and normally we
would not bother to calculate them all. For hand calculation on problems of this
size, however, we may wish to examine the allowable pivots and select one that will
minimize (at least in the short run) the amount of division required. Thus for this
example we select the second column and result in:

2 1 1 1 0 0 2

−3 0 1 −2 1 0 1
−2 0 −1 −2 0 1 2
−1 0 −2 1 0 0 2

Second tableau

We note that the objective function—we are using the negative of the original one—
has decreased from zero to minus two. We now pivot on 1 .

5 1 0 3 −1 0 1
−3 0 1 −2 1 0 1
−5 0 0 −4 1 1 3
−7 0 0 −3 2 0 4

Third tableau

The value of the objective function has now decreased to minus four and we may
pivot in either the first or fourth column. We select 5 .

1 1/5 0 3/5 −1/5 0 1/5
0 3/5 1 −1/5 2/5 0 8/5
0 1 0 −1 0 1 4
0 7/5 0 6/5 3/5 0 27/5

Fourth tableau

Since the last row has no negative reduced cost elements, we conclude that the
solution corresponding to the fourth tableau is optimal. Thus x1 = 1/5, x2 =
0, x3 = 8/5, x4 = 0, x5 = 0, x6 = 4 is the optimal solution with a corresponding
value of the (negative) objective of−(27/5).

98 4 The Simplex Method

The Dual Simplex Tableau Method
Similarly, the dual simplex tableau algorithm can be summarized by the following
steps:

Step 0. Form a tableau as in Fig. 4.2 corresponding to a dual basic feasible
solution. The reduced cost coefficients can be found by row reduction.

Step 1. If each āi0 � 0 on the far right-hand side, stop; the current basic feasible
solution is optimal.

Step 2. Select o such that āo0 < 0 to determine which basic variable is to become
nonbasic.

Step 3. Calculate the ratios r̄j /(−āoj) for all āoj < 0 of nonbasic index j . If no
āoj < 0, stop; the problem is unbounded. Otherwise, select e as the index
j corresponding to the minimum ratio.

Step 4. Pivot on the oeth element, updating all rows including the last. Return to
Step 1.

Consider again Example 1, where we have B = (a2 a3) and D = (a1 a4), the initial
simplex tableau would be

a1 a2 a3 a4 b
3 1 −2 1 2
1 3 0 −1 2

rT 18 12 2 6 0
⇒

a1 a2 a3 a4 b
1/3 1 0 −1/3 2/3

-4/3 0 1 −2/3 −2/3

rT 50/3 0 0 34/3 −20/3
First tableau

From the negative component of the far right-hand-side vector and the minimum
ratio test, the pivot element is circled in the First tableau. Pivoting on this element,
we have

a1 a2 a3 a4 b
0 1 1/4 −1/2 1/2
1 0 −3/4 1/2 1/2

rT 0 0 25/2 3 −15
Second tableau

Since the far right-hand-side vector has no negative elements, we conclude that the
solution corresponding to the second tableau is optimal. Thus x1 = 1/2, x2 =
1/2, x3 = 0, x4 = 0 is the primal optimal solution with a corresponding value of
the (negative) objective of −15. The results are identical to those computed by the
primal simplex tableau method (where the top two rows are switched because the
columns in basis B are switched in order).

Below is a more interesting example that explains why the dual simplex method
is ideal.

Example A form of problem arising frequently is that of minimizing a posi-
tive combination of positive variables subject to a series of “greater than” type

4.4 The Simplex Tableau Method 99

inequalities having positive coefficients. Such problems are natural candidates for
application of the dual simplex procedure. The classical diet problem is of this type
as is the simple example below.

minimize 3x1 + 4x2 + 5x3

subject to x1 + 2x2 + 3x3 � 5
2x1 + 2x2 + x3 � 6

x1 � 0, x2 � 0, x3 � 0.

By introducing surplus variables and by changing the sign of the inequalities we
obtain the initial tableau

−1 −2 −3 1 0 −5
−➁ −2 −1 0 1 −6

rT 3 4 5 0 0 0
Initial tableau

The basis corresponds to a dual feasible solution since all of the reduced cost
coefficients rj ’s are nonnegative. We select any āi0 < 0, say the second row
component (corresponding to x5 = −6), to remove from the set of basic variables.
To find the appropriate pivot element in the second row we compute the ratios
rj /(−ā2j) for ā2j < 0, and select the minimum positive ratio. This yields the pivot
indicated. Continuing, the remaining tableau’s are

0 −➀ −5/2 1 −1/2 −2
1 1 1/2 0 −1/2 3

rT 0 1 7/2 0 3/2 9
Second tableau

0 1 5/2 −1 1/2 2
1 0 −2 1 −1 1

rT 0 0 1 1 1 11
Final tableau

The third tableau yields a feasible solution to the primal which must be optimal.
Thus the solution is x1 = 1, x2 = 2, x3 = 0.

Decomposition

Large linear programming problems usually have some special structural form
that can (and should) be exploited to develop efficient computational procedures.
One common structure is where there are a number of separate activity areas that
are linked through common resource constraints. An example is provided by a

100 4 The Simplex Method

multidivisional firm attempting to minimize the total cost of its operations. The
divisions of the firm must each meet internal requirements that do not interact with
the constraints of other divisions; but in addition there are common resources that
must be shared among divisions and thereby represent linking constraints.

A problem of this form can be solved by the decomposition method such as
Dantzig–Wolfe decomposition. The method is an iterative process where at each
step a number of separate “slave” subproblems are solved. The subproblems are
themselves linear programs within the separate areas (or within divisions in the
example of the firm). The objective functions of these subproblems are varied from
iteration to iteration and are determined by solving a “master” problem based on
the results of the previous slave problem iterations. This action coordinates the
individual subproblems so that, ultimately, the solution to the overall problem is
solved.

We here describe a high level picture of the method, and more details will be
discussed later in the context of nonlinear optimization. To start let us consider the
linear program in standard form with the following structure:

minimize cT x
subject to Ax = b, x � 0.

(4.24)

Suppose, for purposes of this entire section, that the A matrix has the special “block-
angular” structure:

A =

⎡
⎢⎢⎢⎢⎢⎣

L1 L2 · · · LN

A1

A2
. . .

AN

⎤
⎥⎥⎥⎥⎥⎦

(4.25)

By partitioning the vectors x, cT , and b = (b0; b1; . . . ; bN) consistent with this
partition of A, and by introducing auxiliary decision vector u of the same dimension
as x the problem can be rewritten as a master problem

minimize
N∑

i=1

z(ui)

subject to
N∑

i=1

Liui = b0 (4.26)

ui � 0, i = 1, . . . , N.

4.5 The Simplex Method for Transportation Problems 101

Here, z(ui) represents the minimal value function of N independent slave problems,
i = 1, . . . , N , where the ith problem is

z(ui) := minimize cT
i xi

subject to Lixi = ui (4.27)

Aixi = bi

xi � 0.

This may be viewed as a problem of minimizing the total cost of N different linear
programs with ui given from the master. From the minimal value function theorem
in Sect. 3.4, z(ui) is a (piece-wise linear) convex function and its (sub)gradient
vector the optimal dual solution y∗i of the ith slave problem, i.e., ∇z(ui) = y∗i .

Thus, the decomposition method would work in an alternating way as follows.

Step 0. Compute a feasible solution u0
i , i = 1, . . . , N , for the master problem.

Step 1. For the given u0
i , solve each slave problem independently/parallely and

compute their optimal dual solution y0
i , i = 1, . . . , N .

Step 2. With this gradient information ∇z(u0
i) = y0

i , solve the master problem to
calculate an improved master solution u1

i , i = 1, . . . , N , and continue
the process from Step 1.

We make two remarks: (1) Since the objective function of the slave problems is
unchanged, the dual simplex method would be the most suitable method to use for
solving them, because the dual optimal solution y0

i remains feasible when u0 is
changed to u1. (2) The master problem could be solved by the simplex method or
by efficient nonlinear convex optimization methods that exist today.

4.5 The Simplex Method for Transportation Problems

The transportation problem was stated briefly in Chap. 2. We restate it here. There
are m origins that contain various amounts of a commodity that must be shipped to n

destinations to meet demand requirements. Specifically, origin i contains an amount
ai , and destination j has a requirement of amount bj . It is assumed that the system
is balanced in the sense that total supply equals total demand. That is,

m∑
i=1

ai =
n∑

j=1

bj . (4.28)

The numbers ai and bj , i = 1, 2, . . . , m; j = 1, 2, . . . , n, are assumed
to be nonnegative, and in many applications they are in fact nonnegative integers.
There is a unit cost cij associated with the shipping of the commodity from origin

102 4 The Simplex Method

i to destination j . The problem is to find the shipping pattern between origins and
destinations that satisfies all the requirements and minimizes the total shipping cost.

In mathematical terms the above problem can be expressed as finding a set of
xij ’ s, i = 1, 2, . . . , m; j = 1, 2, . . . , n, to

minimize
m∑

i=1

n∑
j=1

cij xij

subject to
n∑

j=1

xij = ai for i = 1, 2, . . . ,m (4.29)

m∑
i=1

xij = bj for j = 1, 2, . . . , n

xij � 0 for all i and j.

This mathematical problem, together with the assumption (4.28), is the general
transportation problem. In the shipping context, the variables xij represent the
amounts of the commodity shipped from origin i to destination j .

The structure of the problem can be seen more clearly by writing the constraint
equations in standard form:

x11 + x12 + · · · + x1n = a1

x21 + x22 + · · · + x2n = a2

...

xm1 + xm2 + · · · + xmn = am

x11 + x21 xm1 = b1

x12 + x22 + xm2 = b2

... (4.30)

x1n + x2n + xmn = bn

The structure is perhaps even more evident when the coefficient matrix A of the
system of equations above is expressed in vector-matrix notation as

A =

⎡
⎢⎢⎢⎢⎢⎣

1T

1T

. . .

1T

I I · · · I

⎤
⎥⎥⎥⎥⎥⎦

, (4.31)

4.5 The Simplex Method for Transportation Problems 103

where 1 = (1, 1, . . . , 1) is n-dimensional, and where each I is an n × n identity
matrix.

In practice it is usually unnecessary to write out the constraint equations of the
transportation problem in the explicit form (4.30). A specific transportation problem
is generally defined by simply presenting the data in compact form, such as:

a = (a1, a2, . . . , am)

C =
⎡
⎣

c11 c12 · · · c1n

c21 c22 · · · c2n

cm1 cm2 · · · cmn

⎤
⎦ .

b = (b1, b2, . . . , bn)

The solution can also be represented by an m × n array, and as we shall see, all
computations can be made on arrays of a similar dimension.

Example 1 As an example, which will be solved completely in a later section, a
specific transportation problem with four origins and five destinations is defined by

a = (30, 80, 10, 60)

C =

⎡
⎢⎢⎣

3 4 6 8 9
2 2 4 5 5
2 2 2 3 2
3 3 2 4 2

⎤
⎥⎥⎦ .

b = (10, 50, 20, 80, 20)

Note that the balance requirement is satisfied, since the sum of the supply and the
demand are both 180.

Finding a Basic Feasible Solution

A first step in the study of the structure of the transportation problem is to show
that there is always a feasible solution, thus establishing that the problem is well
defined. A feasible solution can be found by allocating shipments from origins to
destinations in proportion to supply and demand requirements. Specifically, let S

be equal to the total supply (which is also equal to the total demand). Then let
xij = aibj/S for i = 1, 2, . . . , m; j = 1, 2, . . . , n. The reader can easily verify
that this is a feasible solution. We also note that the solutions are bounded, since each
xij is bounded by ai (and by bj). A bounded program with a feasible solution has
an optimal solution. Thus, a transportation problem always has an optimal solution.

A second step in the study of the structure of the transportation problem is based
on a simple examination of the constraint equations. Clearly there are m equations

104 4 The Simplex Method

corresponding to origin constraints and n equations corresponding to destination
constraints—a total of n +m. However, it is easily noted that the sum of the origin
equations is

m∑
i=1

n∑
j=1

xij =
m∑

i=1

ai, (4.32)

and the sum of the destination equations is

n∑
j=1

m∑
i=1

xij =
n∑

j=1

bj . (4.33)

The left-hand sides of these equations are equal. Since they were formed by two
distinct linear combinations of the original equations, it follows that the equations
in the original system are not independent. The right-hand sides of (4.32) and (4.33)
are equal by the assumption that the system is balanced, and therefore the two
equations are, in fact, consistent. However, it is clear that the original system of
equations is redundant. This means that one of the constraints can be eliminated
without changing the set of feasible solutions. Indeed, any one of the constraints
can be chosen as the one to be eliminated, for it can be reconstructed from those
remaining. It follows that a basis for the transportation problem consists of m+n−1
vectors, and a nondegenerate basic feasible solution consists of m+n−1 variables.
The simple solution found earlier in this section is clearly not a basic solution.

There is a straightforward way to compute an initial basic feasible solution to
a transportation problem. The method is worth studying at this stage because it
introduces the computational process that is the foundation for the general solution
technique based on the simplex method. It also begins to illustrate the fundamental
property of the structure of transportation problems.

The Northwest Corner Rule

This procedure is conducted on the solution array shown below:

x11 x12 x13 · · · x1n a1

x21 x22 x23 · · · x2n a2
...

...

xm1 xm2 xm3 · · · xmn am

b1 b2 b3 · · · bn

(4.34)

The individual elements of the array appear in cells and represent a solution. An
empty cell denotes a value of zero.

4.5 The Simplex Method for Transportation Problems 105

Beginning with all empty cells, the procedure is given by the following steps:

Step 1. Start with the cell in the upper left-hand corner.
Step 2. Allocate the maximum feasible amount consistent with row and column

sum requirements involving that cell. (At least one of these requirements
will then be met.)

Step 3. Move one cell to the right if there is any remaining row requirement
(supply). Otherwise move one cell down. If all requirements are met, stop;
otherwise go to Step 2.

The procedure is called the Northwest Corner Rule because at each step it selects
the cell in the upper left-hand corner of the subarray consisting of current nonzero
row and column requirements.

Example 2 A basic feasible solution constructed by the Northwest Corner Rule is
shown below for Example 1 of the last section.

10 20 30
30 20 30 80

10 10
40 20 60

10 50 20 80 20

(4.35)

In the first step, at the upper left-hand corner, a maximum of 10 units could be
allocated, since that is all that was required by column 1. This left 30 − 10 = 20
units required in the first row. Next, moving to the second cell in the top row, the
remaining 20 units were allocated. At this point the row 1 requirement is met, and
it is necessary to move down to the second row. The reader should be able to follow
the remaining steps easily.

There is the possibility that at some point both the row and column requirements
corresponding to a cell may be met. The next entry will then be a zero, indicating a
degenerate basic solution. In such a case there is a choice as to where to place the
zero. One can either move right or move down to enter the zero. Two examples of
degenerate solutions to a problem are shown below:

30 30
20 20 40

0 20 20
20 40 60

50 20 40 40

30 30
20 20 0 40

20 20
20 40 60

50 20 40 40

It should be clear that the Northwest Corner Rule can be used to obtain different
basic feasible solutions by first permuting the rows and columns of the array before
the procedure is applied. Or equivalently, one can do this indirectly by starting the
procedure at an arbitrary cell and then considering successive rows and columns in
an arbitrary order.

106 4 The Simplex Method

Basis Triangularity

We now establish the most important structural property of the transportation
problem: the triangularity of all bases. This property simplifies the process of
solution of a system of equations whose coefficient matrix corresponds to a basis,
and thus leads to efficient implementation of the simplex method.

The concept of upper and lower triangular matrices was introduced in connection
with Gaussian elimination methods, see Appendix C. It is useful at this point to
generalize slightly the notion of upper and lower triangularity.

Definition A nonsingular square matrix M is said to be triangular if by a permutation of
its rows and columns it can be put in the form of a lower triangular matrix.

There is a simple and useful procedure for determining whether a given matrix
M is triangular:

Step 1. Find a row with exactly one nonzero entry.
Step 2. Form a submatrix of the matrix used in Step 1 by crossing out the row

found in Step 1 and the column corresponding to the nonzero entry in that
row. Return to Step 1 with this submatrix.

If this procedure can be continued until all rows have been eliminated, then the
matrix is triangular. It can be put in lower triangular form explicitly by arranging
the rows and columns in the order that was determined by the procedure.

Example 3 Shown below on the left is a matrix before the above procedure is
applied to it. Indicated along the edges of this matrix is the order in which the rows
and columns are indexed according to the procedure. Shown at the right is the same
matrix when its rows and columns are permuted according to the order found.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 2 0 1 0 2
4 1 0 5 0 0
0 0 0 4 0 0
2 1 7 2 1 3
2 3 2 0 0 3
0 2 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3
6
2
1
5
4

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0 0 0 0
1 2 0 0 0 0
5 1 4 0 0 0
1 2 1 2 0 0
0 3 2 3 2 0
2 1 2 3 7 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4 2 1 6 3 5

Triangularization

We are now prepared to derive the most important structural property of the
transportation problem.

Basis Triangularity Theorem Every basis of the transportation problem is triangular.

Proof Refer to the system of constraints (4.30). Let us change the sign of the top
half of the system; then the coefficient matrix of the system consists of entries that
are either +1, −1, or 0. Following the result of the theorem in Sect. 4.5, delete

4.5 The Simplex Method for Transportation Problems 107

any one of the equations to eliminate the redundancy. From the resulting coefficient
matrix, form a basis B by selecting a nonsingular subset of m+ n− 1 columns.

Each column of B contains at most two nonzero entries, a + 1 and a − 1. Thus
there are at most 2(m + n − 1) nonzero entries in the basis. However, if every
column contained two nonzero entries, then the sum of all rows would be zero,
contradicting the nonsingularity of B. Thus at least one column of B must contain
only one nonzero entry. This means that the total number of nonzero entries in B
is less than 2(m + n − 1). It then follows that there must be a row with only one
nonzero entry; for if every row had two or more nonzero entries, the total number
would be at least 2(m + n − 1). This means that the first step of the procedure
for verifying triangularity is satisfied. A similar argument can be applied to the
submatrix of B obtained by crossing out the row with the single nonzero entry and
the column corresponding to that entry; that submatrix must also contain a row with
a single nonzero entry. This argument can be continued, establishing that the basis
B is triangular.

Example 4 As an illustration of the Basis Triangularity Theorem, consider the basis
selected by the Northwest Corner Rule in Example 2. This basis is represented
below, except that only the basic variables are indicated, not their values.

x11 x12 30
x22 x23 x24 80

x34 10
x44 x45 60

10 50 20 80 20

A row in a basis matrix corresponds to an equation in the original system and is
associated with a constraint either on a row or column sum in the solution array. In
this example the equation corresponding to the first column sum contains only one
basis variable, x11. The value of this variable can be found immediately to be 10.
The next equation corresponds to the first row sum. The corresponding variable is
x12, which can be found to be 20, since x11 is known. Progression in this manner
through the basis variables is equivalent to back substitution.

The importance of triangularity is, of course, the associated method of back
substitution for the solution of a triangular system of equations, as discussed in
Appendix C. Moreover, since any basis matrix is triangular and all nonzero elements
are equal to one (or minus one if the signs of some equations are changed), it follows
that the process of back substitution will simply involve repeated additions and
subtractions of the given row and column sums. No multiplication is required. It
therefore follows that if the original row and column totals are integers, the values of
all basic variables will be integers. This is an important result, which we summarize
by a corollary to the Basis Triangularity Theorem.

108 4 The Simplex Method

Corollary If the row and column sums of a transportation problem are integers, then the
basic variables in any basic solution are integers.

The Transportation Simplex Method

Now that the structural properties of the transportation problem have been devel-
oped, it is a relatively straightforward task to work out the details of the simplex
method for the transportation problem. A major objective is to exploit fully the
triangularity property of bases in order to achieve both computational efficiency
and a compact representation of the method. The method used is actually a direct
adaptation of the version of the revised simplex method presented in the first part of
Sect. 4.2. The basis is never inverted; instead, its triangular form is used directly to
solve for all required variables.

Simplex Multipliers

Simplex multipliers are associated with the constraint equations. In this case we
partition the vector of multipliers as y = (u, v). Here, ui represents the multiplier
associated with the ith row sum constraint, and vj represents the multiplier
associated with the j th column sum constraint. Since one of the constraints is
redundant, an arbitrary value may be assigned to any one of the multipliers (see
Exercise 5, Chap. 3). For notational simplicity we shall at this point set vn = 0.

Given a basis B, the simplex multipliers are found to be the solution to the
equation yT B = cT

B . To determine the explicit form of these equations, we
again refer to the original system of constraints (4.30). If xij is basic, then the
corresponding column from A will be included in B. This column has exactly two
+1 entries: one in the ith position of the top portion and one in the j th position
of the bottom portion. This column thus generates the simplex multiplier equation
ui + vj = cij , since ui and vj are the corresponding components of the multiplier
vector. Overall, the simplex multiplier equations are

ui + vj = cij , (4.36)

for all i, j for which xij is basic. The coefficient matrix of this system is the
transpose of the basis matrix and hence it is triangular. Thus, this system can be
solved by back substitution. This is similar to the procedure for finding the values
of basic variables and, accordingly, as another corollary of the Triangular Basis
Theorem, an integer property holds for simplex multipliers.

Corollary If the unit costs cij of a transportation problem are all integers, then (assuming
one simplex multiplier is set arbitrarily equal to an integer) the simplex multipliers
associated with any basis are integers.

4.5 The Simplex Method for Transportation Problems 109

Once the simplex multipliers are known, the reduced cost coefficients for
nonbasic variables can be found in the usual manner as rT

D = cT
D − yT D. In this

case the reduced cost coefficients are

rij = cij − ui − vj for i = 1, 2, . . . ,m

j = 1, 2, . . . , n. (4.37)

This relation is valid for basic variables as well if we define reduced cost coefficients
for them—having value zero.

Given a basis, computation of the simplex multipliers is quite similar to the
calculation of the values of the basic variables. The calculation is easily carried
out on an array of the form shown below, where the circled elements correspond to
the positions of the basic variables in the current basis.

In this case the main part of the array, with the coefficients cij , remains fixed,
and we calculate the extra column and row corresponding to u and v.

The procedure for calculating the simplex multipliers is this:

Step 1. Assign an arbitrary value to any one of the multipliers.
Step 2. Scan the rows and columns of the array until a circled element cij is found

such that either ui or vj (but not both) has already been determined.
Step 3. Compute the undetermined ui or vj from the equation cij = ui + vj . If

all multipliers are determined, stop. Otherwise, return to Step 2.

The triangularity of the basis guarantees that this procedure can be carried through
to determine all the simplex multipliers.

Example 5 Consider the cost array of Example 1, which is shown below with the
circled elements corresponding to a basic feasible solution (found by the Northwest
Corner Rule). Only these numbers are used in the calculation of the multipliers.

⎡
⎢⎢⎣

➂ ➃ 6 8 9
2 ➁ ➃ ➄ 5
2 2 2 ➂ 2
3 3 2 ➃ ➁

⎤
⎥⎥⎦ .

We first arbitrarily set v5 = 0. We then scan the cells, searching for a circled element
for which only one multiplier must be determined. This is the bottom right-corner

110 4 The Simplex Method

element, and it gives u4 = 2. Then, from the equation 4 = 2 + v4, v4 is found to
be 2. Next, u3 and u2 are determined, then v3 and v2, and finally u1 and v1. The
result is shown below:

Cycle of Change

In accordance with the general simplex procedure, if a nonbasic variable has an
associated reduced cost coefficient that is negative, then that variable is a candidate
for entry into the basis. As the value of this variable is gradually increased, the
values of the current basic variables will change continuously in order to maintain
feasibility. Then, as usual, the value of the new variable is increased precisely to the
point where one of the old basic variables is driven to zero.

We must work out the details of how the values of the current basic variables
change as a new variable is entered. If the new basic vector is d, then the change
in the other variables is given by −B−1d, where B is the current basis. Hence, once
again we are faced with a problem of solving a system associated with the triangular
basis, and once again the solution has special properties. In the next theorem recall
that A is defined by (4.31).

Theorem Let B be a basis from A (ignoring one row), and let d be another column. Then
the components of the vector w = B−1d are either 0, +1, or −1.

Proof Let w be the solution to the equation Bw = d. Then w is the representation
of d in terms of the basis. This equation can be solved by Cramer’s rule as

wk = det Bk

det B
,

where Bk is the matrix obtained by replacing the kth column of B by d. Both B and
Bk are submatrices of the original constraint matrix A. The matrix B may be put
in triangular form with all diagonal elements equal to +1. Hence, accounting for
the sign change that may result from the combined row and column interchanges,
det B = +1 or −1. Likewise, it can be shown (see Exercise 1) that det Bk = 0,+1,
or −1. We conclude that each component of w is either 0, +1, or −1.

4.5 The Simplex Method for Transportation Problems 111

The implication of the above result is that when a new variable is added to the
solution at a unit level, the current basic variables will each change by+1, −1, or 0.
If the new variable has a value θ , then, correspondingly, the basic variables change
by +θ, −θ , or 0. It is therefore only necessary to determine the signs of change for
each basic variable.

The determination of these signs is again accomplished by row and column
scanning. Operationally, one assigns a + to the cell of the entering variable to
represent a change of +θ , where θ is yet to be determined. Then +’s, −’s, and 0’s
are assigned, one by one, to the cells of some basic variables, indicating changes of
+θ, −θ , or 0 to maintain a solution. As usual, after each step there will always be an
equation that uniquely determines the sign to be assigned to another basic variable.
The result will be a sequence of pluses and minuses assigned to cells that form a
cycle leading from the cell of the entering variable back to that cell. In essence,
the new change is part of a cycle of redistribution of the commodity flow in the
transportation system.

Once the sequence of +’s, −’s, and 0’s is determined, the new basic feasible
solution is found by setting the level of the change θ . This is set so as to drive one
of the old basic variables to zero. One must simply examine those basic variables
for which a minus sign has been assigned, for these are the ones that will decrease
as the new variable is introduced. Then θ is set equal to the smallest magnitude of
these variables. This value is added to all cells that have a + assigned to them and
subtracted from all cells that have a − assigned. The result will be the new basic
feasible solution.

The procedure is illustrated by the following example.

Example 6 A completed solution array is shown below:

100 10
20− 10+ 30

20+ 100 30− 60
100 10
10− + 400 50
40 10 30 40 40

In this example x53 is the entering variable, so a plus sign is assigned there. The signs
of the other cells were determined in the order x13, x23, x25, x35, x32, x31, x41,

x51, x54. The smallest variable with a minus assigned to it is x51 = 10. Thus we set
θ = 10.

112 4 The Simplex Method

The Transportation Simplex Algorithm

It is now possible to put together the components developed to this point in the form
of a complete revised simplex procedure for the transportation problem. The steps
are:

Step 1. Compute an initial basic feasible solution using the Northwest Corner
Rule or some other method.

Step 2. Compute the simplex multipliers and the reduced cost coefficients. If all
relative cost coefficients are nonnegative, stop; the solution is optimal.
Otherwise, go to Step 3.

Step 3. Select a nonbasic variable corresponding to a negative cost coefficient to
enter the basis (usually the one corresponding to the most negative cost
coefficient). Compute the cycle of change and set θ equal to the smallest
basic variable with a minus assigned to it. Update the solution. Go to Step
2.

Example 7 We can now completely solve the problem that was introduced in
Example 5 of the first section. The requirements and a first basic feasible solution
obtained by the Northwest Corner Rule are shown below. The plus and minus signs
indicated on the array should be ignored at this point, since they cannot be computed
until the next step is completed.

10 20 30
30 20− 30+ 80

100 10
+ 40− 200 60

10 50 20 80 20

The cost coefficients of the problem are shown in the array below, with the
circled cells corresponding to the current basic variables. The simplex multipliers,
computed by row and column scanning, are shown as well.

➂ ➃ 6 8 9 5
2 ➁ ➃ ➄ 5 3
2 2 2 ➂ 2 1
3 3 2 ➃ ➁ 2
−2 −1 1 2 0

The reduced cost coefficients are found by subtracting ui + vj from cij . In this case
the only negative result is in cell 4,3; so variable x43 will be brought into the basis.
Thus a + is entered into this cell in the original array, and the cycle of zeros and plus
and minus signs is determined as shown in that array. (It is not necessary to continue
scanning once a complete cycle is determined.)

4.5 The Simplex Method for Transportation Problems 113

The smallest basic variable with a minus sign is 20 and, accordingly, 20 is added
or subtracted from elements of the cycle as indicated by the signs. This leads to the
new basic feasible solution shown in the array below:

10 20 30
30 50 80

10 10
20 20 20 60

10 50 20 80 20

The new simplex multipliers corresponding to the new basis are computed, and
the cost array is revised as shown below. In this case all reduced cost coefficients
are positive, indicating that the current solution is optimal.

➂ ➃ 6 8 9 5
2 ➁ 4 ➄ 5 3
2 2 2 ➂ 2 1
3 3 ➁ ➃ ➁ 2
−2 −1 0 2 0

As in all linear programming problems, degeneracy, corresponding to a basic
variable having the value zero, can occur in the transportation problem. If degen-
eracy is encountered in the simplex procedure, it can be handled quite easily by
introduction of the standard perturbation method (see Exercise 15, Chap. 4). In this
method a zero-valued basic variable is assigned the value ε and is then treated in the
usual way. If it later leaves the basis, then the ε can be dropped.

Example 8 To illustrate the method of dealing with degeneracy, consider a modifi-
cation of Example 7, with the fourth row sum changed from 60 to 20 and the fourth
column sum changed from 80 to 40. Then the initial basic feasible solution found
by the Northwest Corner Rule is degenerate. An ε is placed in the array for the
zero-valued basic variable as shown below:

10 20 30
30 20− 30+ 80

100 10
+ ε− 200 20

10 50 20 40 20

The reduced cost coefficients will be the same as in Example 7, and hence again
x43 should be chosen to enter, and the cycle of change is the same as before. In
this case, however, the change is only ε, and variable x44 leaves the basis. The new
reduced cost coefficients are all positive, indicating that the new solution is optimal.

114 4 The Simplex Method

Now the ε can be dropped to yield the final solution (which is, itself, degenerate in
this case).

10 20 30
30 20 30 80

10 10
ε 20 20

10 50 20 40 20

4.6 Efficiency Analysis of the Simplex Method

Extensive experience with the simplex procedure applied to problems from various
fields, and having various values of n and m, has indicated that the method can
be expected to converge to an optimum solution in about m, or perhaps 3m/2,
iterations. Thus, particularly if m is much smaller than n, that is, if the matrix A has
far fewer rows than columns, only a small fraction of the columns would enter the
basis during the course of optimization. However, in a rare worst case (see Chap. 5)
the simplex method does need 2m iterations to reach the optimum.

To explain this phenomena, we provide an efficiency analysis in this section
based on the characteristic property of the basic feasible solution of the constraints.
We establish a worst-case iteration upper bound for the simplex method that poly-
nomially depends on m, n and a condition number defined from the characteristic
property.

Define a characteristic property of a basic feasible solution

Definition (Basic Value Distribution) For a basic feasible solutions, xB, of an LP problem,
the sum of its basic variable values is bounded above Δ (i.e., 1T xB ≤ Δ) and its smallest
entry is bounded below by δ (i.e., min(xB) ≥ δ) for some positive constants Δ and δ.

This property implies that the basic feasible solution is nondegenerate. Clearly,
Δ/δ ≥ m, and, when Δ/δ is smaller, the basic variable values are more evenly
distributed. For the rest materials of this section, we assume that every basic feasible
solution has this (Δ, δ) property for the linear program in the standard form.

We leave the following example as an exercise.

Example Consider the dual example 5 of Markov Decision Process in Sect. 3.1.
Then every basic feasible solution has the basic value distribution (Δ, δ) property
with

Δ = m

1− γ
and δ = 1.

In addition, we abuse notations and also use B to denote the index set of basic
variables and D to denote the index set of nonbasic variables. Similarly, B∗ and D∗
also denote the index sets of optimal basic and nonbasic variables, respectively. We

4.6 Efficiency Analysis of the Simplex Method 115

first introduce a lemma indicating that the objective gap is reduced at a geometric
rate depending on the ratio of δ

Δ
.

Lemma 1 For a feasible linear program in the standard form, let every basic feasible
solution (extreme point) generated by the simplex method have the basic value distribution
(Δ, δ) property. Then starting from any basic feasible solution xk with basis Bk , the next
basic feasible solution, denoted by xk+1 with basis Bk+1, has an objective value reduction

cT xk+1 − z∗

cT xk − z∗
≤ 1− δ

Δ

where z∗ represents the minimal objective value of the linear program.

Proof Let rk and r∗ be the reduced cost vectors corresponding to current basic
feasible xk and optimal solution x∗, respectively. Note that both (rk)T xk = 0 and
(r∗)T x∗ = 0 from complementary slackness.

Recall that the incoming variable xe is selected such that

rk
e = minj∈Dk{rk

j } < 0,

where (rk)T = cT − (yk)T A and (yk)T = cT
Bk (B

k)−1 is the dual solution vector at
the current step. Thus,

cT xk − z∗ = cT xk − cT x∗

= (rk)T xk − (rk)T x∗

= −(rk)T x∗ ≤ −rk
e · 1T x∗ ≤ |rk

e | ·Δ.

On the other hand, we have

cT xk+1 − cT xk = (rk)T xk+1 − (rk)T xk

= (rk)T xk+1 =
n∑

j=1

rk
j · xk+1

j = rk
e · xk+1

e ≤ rk
e · δ,

where we have used facts (rk)T xk = 0 and only one term is nonzero in the
summation. Thus

(cT xk+1 − z∗)− (cT xk − z∗) = cT xk+1 − cT xk ≤ rk
e · δ = −|rk

e | · δ

or

cT xk+1 − z∗

cT xk − z∗
≤ 1− |rk

e | · δ
cT xk − z∗

≤ 1− δ

Δ
.

116 4 The Simplex Method

The next lemma shows that an optimal nonbasic variable (�∈ B∗) but in the
current basis would never be appeared in basis again, that is, it would be implicitly
eliminated from further consideration, after a number of the simplex steps.

Lemma 2 Let x0 be any given basic feasible solution with basis B0 that is not optimal yet.
Then there is an optimal nonbasic variable xj0 , where j0 ∈ B0 but j0 �∈ B∗, that would
never appear in any of the basic feasible solution generated by the simplex method after
K := �Δ

δ
· log

(
mΔ
δ

)� steps starting from x0.

Proof If the initial basic feasible solution x0(≥ 0) is not optimal, then we have
(r∗)T x0 = cT x0 − z∗ > 0. Thus, from r∗ ≥ 0, there must be an index j0 ∈ B0 but
j0 �∈ B∗ such that

r∗
j0x

0
j0 ≥

∑
j∈B0 r∗j x0

j

m
= cT x0 − z∗

m
,

or

r∗
j0 ≥ cT x0 − z∗

mΔ
. (4.38)

After K = �Δ
δ
· log

(
mΔ
δ

)� steps starting from x0, from the geometric rate in
Lemma 1 we must have

cT xK − z∗ <

(
1− δ

Δ

)K

(cT x0 − z∗) ≤ δ

mΔ
(cT x0 − z∗)

and it holds for all subsequent basic feasible solution xk for k > K as well.
Suppose j0 ∈ Bk for k ≥ K , we must have

r∗
j0x

k
j0 ≤ (r∗)T xk = cT xk − z∗ <

δ

mΔ
(cT x0 − z∗)

or r∗
j0 < cT x0−z∗

mΔ
which gives a contradiction to inequality (4.38). Therefore, j0 �∈

Bk for all k ≥ K and it is implicitly eliminated for the rest of the simplex method
consideration.

Finally, we give a total worst-case number of the simplex method steps/iterations.

Theorem 1 Let every basic feasible solution generated by the simplex method have the
basic value (Δ, δ) distribution property. Then the Simplex method terminates in at most

⌈
(n−m)Δ

δ
· log

(
mΔ

δ

)⌉

steps.

The proof of the theorem is simply from the fact that there are no more than n−m

non-optimal basic variables that can be implicitly eliminated.

4.7 Summary 117

4.7 Summary

The simplex method is founded on the fact that the optimal value of a linear
program, if finite, is always attained at a basic feasible solution. Using this
foundation there are two ways in which to visualize the simplex process. The first
is to view the process as one of continuous change. One starts with a basic feasible
solution and imagines that some nonbasic variable is increased slowly from zero. As
the value of this variable is increased, the values of the current basic variables are
continuously adjusted so that the overall vector continues to satisfy the system of
linear equality constraints. The change in the objective function due to a unit change
in this nonbasic variable, taking into account the corresponding required changes
in the values of the basic variables, is the reduced cost coefficient associated with
the nonbasic variable. If this coefficient is negative, then the objective value will
be continuously improved as the value of this nonbasic variable is increased, and
therefore one increases the variable as far as possible, to the point where further
increase would violate feasibility. At this point the value of one of the basic variables
is zero, and that variable is declared nonbasic, while the nonbasic variable that was
increased is declared basic.

The other viewpoint is more discrete in nature. Realizing that only basic feasible
solutions need be considered, various bases are selected and the corresponding basic
solutions are calculated by solving the associated set of linear equations. The logic
for the systematic selection of new bases again involves the reduced cost coefficients
and, of course, is derived largely from the first, continuous, viewpoint.

Since there are m equality constraints, there are really n − m dimensions of
freedom represented by the n−m nonbasic variables. This reduction of independent
decision variables leads to the reduced cost coefficients that are nonzero only for
the nonbasic variables. They are also referred to as reduced gradient coefficients
each measuring how much the function changes relative to a small change of the
corresponding variable.

Problems of special structure are important both for applications and for theory.
The transportation problem represents an important class of linear programs with
structural properties that lead to an efficient implementation of the simplex method.
The most important property of the transportation problem is that any basis is
triangular. This means that the basic variables can be found, one by one, directly
by back substitution, and the basis need never be inverted. Likewise, the simplex
multipliers can be found by back substitution, since they solve a set of equations
involving the transpose of the basis. Moreover, when any basis matrix is triangular
and all nonzero elements are equal to one (or minus one if the signs of some
equations are changed), it follows that the process of back substitution will simply
involve repeated additions and subtractions of the given row and column sums. No
multiplication or division is required. It therefore follows that if the original right-
hand side are integers, the values of all basic variables will be integers. Hence, an
optimal basic solution, where each entry is integral, always exists; that is, there is no
gap between continuous linear program and integer linear program (or the integrality

118 4 The Simplex Method

gap is zero). The transportation problem can be generalized to a minimum cost
flow problem in a network. This leads to the interpretation of a simplex basis as
corresponding to a spanning tree in the network; see Appendix D.

Many linear programming methods have implemented a Presolver procedure to
eliminate redundant or duplicate constraints and/or value fixed variables, and to
check possible constraint inconsistency and unboundedness. This typically results
in problem size reduction and possible infeasibility detection.

4.8 Exercises

1. Using pivoting, solve the simultaneous equations

x1 + 2x2 + x3 = 7

2x1 − x2 + 2x3 = 6

x1 + x2 + 3x3 = 12.

2. Suppose B is an m × m square nonsingular matrix, and let the tableau T be
constructed, T = [I, B] where I is the m × m identity matrix. Suppose that
pivot operations are performed on this tableau so that it takes the form [C, I].
Show that C = B−1.

3. Show that if the vectors a1, a2, . . . , am are a basis in Em, the vectors
a1, a2, . . . , ao−1, ae, ao+1, . . . , am also are a basis if and only if āoe �= 0,
where āoe is defined by the tableau (C.7).

4. For the simplex method with the reduced vector r show the following.

(a) If rj > 0 for every j corresponding to a variable xj that is not basic, then
the corresponding basic feasible solution is the unique optimal solution.

(b) If at a primal simplex step, all reduced coefficients are nonnegative except
rj < 0 for a j corresponding to a nonbasic variable xj , then xj will
enter the basis and never be out the basis for the rest of the simplex steps
assuming the current basic feasible solution is nondegenerate.

5. Show that a degenerate basic feasible solution may be optimal without satisfy-
ing rj � 0 for all j .

6.

(a) Using the simplex procedure, solve

maximize −x1 + x2

subject to x1 − x2 � 2
x1 + x2 � 6

x1 � 0, x2 � 0.

4.8 Exercises 119

(b) Draw a graphical representation of the problem in x1, x2 space and indicate
the path of the simplex steps.

(c) Repeat for the problem

maximize x1 + x2

subject to −2x1 + x2 � 1
x1 − x2 � 1

x1 � 0, x2 � 0.

7. Consider a linear program in standard form: where A has 3 rows and 6 columns.
Suppose, we are using the primal simplex method to solve this linear program.
Let x be the current basic feasible solution, with (x1, x2, x3) as the basic
variables and (x4, x5, x6) as the nonbasic variables. Let B denote the current
basis and the basic variable index set, let D denote the rest of the columns
and the nonbasic variable index set, and let r denote the reduced cost vector.
Assume xB > 0, and suppose:

B−1A =
⎛
⎝

1 0 0 γ 1 −1
0 1 0 −3 2 −2
0 0 1 0 2 3

⎞
⎠

(a) For this part, suppose rT
D = (r4, r5, r6) = (α, β, 1).

(a1) For what values of α and β is x optimal?
(a2) For what values of α and β is x uniquely optimal?
(a3) For what values of α, β, and γ is the problem unbounded?

(b) For this part, suppose rT
D = (r4, r5, r6) = (1, 2,−1), and suppose xB =

(1, 2, 3):

(b1) Which variable is the incoming variable?
(b2) Which variable is the outgoing variable?
(b3) What is the maximum value of the incoming variable?

8. Using the simplex procedure, solve the spare-parts manufacturer’s problem
(Exercise 4, Chap. 2).

9.

(a) Using the simplex method solve

minimize 2x1 + 3x2 + 2x3 + 2x4

subject to x1 + 2x2 + x3 + 2x4 = 3
x1 + x2 + 2x3 + 4x4 = 5
xi � 0, i = 1, 2, 3, 4.

120 4 The Simplex Method

(b) Using the work done in Part (a) and the dual simplex method, solve the
same problem but with the right-hand sides of the equations changed to 8
and 7 respectively.

10. Using the dual simplex procedure, solve

minimize 2x1 + 4x2 + x3 + x4

subject to x1 + 3x2 + x4 � 4
2x1 + x2 � 3

x2 + 4x3 + x4 � 3
xi � 0 i = 1, 2, 3, 4.

11. For the linear program of Exercise 10

(a) How much can the elements of b = (4, 3, 3) be changed without changing
the optimal basis?

(b) How much can the elements of c = (2, 4, 1, 1) be changed without
changing the optimal basis?

(c) What happens to the optimal cost for small changes in b?
(d) What happens to the optimal cost for small changes in c?

12. Consider the problem

minimize x1 − 3x2 − 0.4x3

subject to 3x1 − x2 + 2x3 � 7
−2x1 + 4x2 � 12
−4x1 + 3x2 + 3x3 � 14

x1 � 0, x2 � 0, x3 � 0.

(a) Find an optimal solution.
(b) How many optimal basic feasible solutions are there?
(c) Show that if c4 + 1

3a14 + 4
5a24 � 0, then another activity x4 can be

introduced with cost coefficient c4 and activity vector (a14, a24, a34)

without changing the optimal solution.

13. Rather than select the variable corresponding to the most negative reduced cost
coefficient as the variable to enter the basis, it has been suggested that a better
criterion would be to select that variable which, when pivoted in, will produce
the greatest improvement in the objective function. Show that this criterion
leads to selecting the variable xk corresponding to the index k minimizing
max

i,āik>0
rkāi0/āik.

14. In the ordinary simplex method one new vector is brought into the basis and one
removed at every step. Consider the possibility of bringing two new vectors into
the basis and removing two at each stage. Develop a complete procedure that
operates in this fashion.

4.8 Exercises 121

15. Degeneracy. If a basic feasible solution is degenerate, it is then theoretically
possible that a sequence of degenerate basic feasible solutions will be generated
that endlessly cycles without making progress. It is the purpose of this exercise
and the next two to develop a technique that can be applied to the simplex
method to avoid this cycling.

Corresponding to the linear system Ax = b where A = [a1, a2, . . . , an]
define the perturbed system Ax = b(ε) where b(ε) = b + εa1 + ε2a2 +
· · · + εnan, ε > 0. Show that if there is a basic feasible solution (possibly
degenerate) to the unperturbed system with basis B = [a1, a2, . . . , am], then
corresponding to the same basis, there is a nondegenerate basic feasible solution
to the perturbed system for some range of ε > 0.

16. Show that corresponding to any basic feasible solution to the perturbed system
of Exercise 15, which is nondegenerate for some range of ε > 0, and to a vector
ak not in the basis, there is a unique vector aj in the basis which when replaced
by ak leads to a basic feasible solution; and that solution is nondegenerate for a
range of ε > 0.

17. Show that the tableau associated with a basic feasible solution of the perturbed
system of Exercise 15, and which is nondegenerate for a range of ε > 0,
is identical with that of the unperturbed system except in the column under
b(ε). Show how the proper pivot in a given column to preserve feasibility of
the perturbed system can be determined from the tableau of the unperturbed
system. Conclude that the simplex method will avoid cycling if whenever there
is a choice in the pivot element of a column k, arising from a tie in the minimum
of āi0/āik among the elements i ∈ I0, the tie is resolved by finding the minimum
of āi1/āik, i ∈ I0. If there still remain ties among elements i ∈ I , the process
is repeated with āi2/āik , etc., until there is a unique element.

18. Using the two-phase primal simplex procedure, phase I first and phase II
second, to solve

(a)

minimize −3x1 + x2 + 3x3 − x4

subject to x1 + 2x2 − x3 + x4 = 0
2x1 − 2x2 + 3x3 + 3x4 = 9
x1 − x2 + 2x3 − x4 = 6

xi � 0, i = 1, 2, 3, 4.

(b)

minimize x1 + 6x2 − 7x3 + x4 + 5x5

subject to 5x1 − 4x2 + 13x3 − 2x4 + x5 = 20
x1 − x2 + 5x3 − x4 + x5 = 8

x1 � 0, i = 1, 2, 3.4, 5.

122 4 The Simplex Method

19. Show that in the phase I procedure of a problem that has feasible solutions, if an
artificial variable becomes nonbasic, it need never again be made basic. Thus,
when an artificial variable becomes nonbasic its column can be eliminated from
future tableaus.

20. Consider the system of linear inequalities Ax � b, x � 0 with b � 0. This
system can be transformed to standard form by the introduction of m surplus
variables so that it becomes Ax–y = b, x � 0, y � 0. Let bk = maxi bi and
consider the new system in standard form obtained by adding the kth row to the
negative of every other row. Show that the new system requires the addition of
only a single artificial variable to obtain an initial basic feasible solution.

Use this technique to find a basic feasible solution to the system.

x1 + 2x2 + x3 � 4

2x1 + x2 + x3 � 5

2x1 + 3x2 + 2x3 � 6

xj � 0, i = 1, 2, 3.

21. It is possible to combine the two phases of the two-phase method into a single
procedure by the big-M method. Given the linear program in standard form

minimize cT x

subject to Ax = b, x � 0,

one forms the approximating problem

minimize cT x+M

m∑
i=1

ui

subject to Ax+ u = b

x � 0, u � 0.

In this problem u = (u1, u2, . . . , um) is a vector of artificial variables and

M is a large constant. The term M

m∑
i=1

uj serves as a penalty term for nonzero

ui ’s.
If this problem is solved by the simplex method, show the following:

(a) If an optimal solution is found with y = 0, then the corresponding x is an
optimal basic feasible solution to the original problem.

(b) If for every M > 0 an optimal solution is found with y �= 0, then the
original problem is infeasible.

4.8 Exercises 123

(c) If for every M > 0 the approximating problem is unbounded, then the
original problem is either unbounded or infeasible.

(d) Suppose now that the original problem has a finite optimal value V (∞).
Let V (M) be the optimal value of the approximating problem. Show that
V (M) � V (∞).

(e) Show that for M1 � M2 we have V (M1) � V (M2).
(f) Show that there is a value M0 such that for M � M0, V (M) = V (∞), and

hence conclude that the big-M method will produce the right solution for
large enough values of M .

22. In many applications of linear programming it may be sufficient, for practical
purposes, to obtain a solution for which the value of the objective function is
within a predetermined tolerance ε from the minimum value z∗. Stopping the
simplex algorithm at such a solution rather than searching for the true minimum
may considerably reduce the computations.

(a) Consider a linear programming problem for which the sum of the variables
is known to be bounded above by s. Let z0 denote the current value
of the objective function at some stage of the simplex algorithm, rj the
corresponding reduced cost coefficients, and

M = max
j

(rj).

Show that if M � ε/s, then z0 − z∗ ≤ ε.
(b) Consider the transportation problem described in Sect. 2.2 (Example 3).

Assuming this problem is solved by the simplex method and it is sufficient
to obtain a solution within ε tolerance from the optimal value of the
objective function, specify a stopping criterion for the algorithm in terms
of ε and the parameters of the problem.

23. A matrix A is said to be totally unimodular if the determinant of every square
submatrix formed from it has value 0, +1, or −1

(a) Show that the matrix A defining the equality constraints of a transportation
problem is totally unimodular.

(b) In the system of equations Ax = b, assume that A is totally unimodular
and that all elements of A and b are integers. Show that all basic solutions
have integer components.

24. For the arrays below:

(a) Compute the basic solutions indicated. (Note: They may be infeasible.)
(b) Write the equations for the basic variables, corresponding to the indicated

basic solutions, in lower triangular form.

124 4 The Simplex Method

x x 10
x 20

x x 30
20 20 20

x x 10
x 20
x x 30

20 20 20

25. For the arrays of cost coefficients below, the circled positions indicate basic
variables.

(a) Compute the simplex multipliers.
(b) Write the equations for the simplex multipliers in upper triangular form,

and compare with Part(b) of Exercise 24.

3 ➅ ➆

2 ➃ 3
➀ 5 ➁

➂ 6 ➆

2 ➃ 3
1 ➄ ➁

26. Consider the modified transportation problem where there is more available at

origins than is required at destinations (i.e.,
m∑

i=1
ai >

n∑
j=1

bj).

minimize
m∑

j=1

n∑
i=1

cij xij

subject to
n∑

j=1

xij � ai, i = 1, 2, . . . ,m

n∑
i=1

xij = bj , j = 1, 2, . . . , n

xij � 0, for all i, j.

(a) Show how to convert it to an ordinary transportation problem.
(b) Suppose there is a storage cost of si per unit at origin i for goods not

transported to a destination. Repeat Part(a) with this assumption.

27. Solve the following transportation problem, which is an original example of
Hitchcock.

a = (25 25 50
)

b = (15 20 30 35
) C =

⎡
⎣

10 5 6 7
8 2 7 6
9 3 4 8

⎤
⎦

4.8 Exercises 125

28. In a transportation problem, suppose that two rows or two columns of the cost
coefficient array differ by a constant. Show that the problem can be reduced by
combining those rows or columns.

29. The transportation problem is often solved more quickly by carefully selecting
the starting basic feasible solution. The matrix minimum technique for finding
a starting solution is: (Step 1) Find the lowest cost unallocated cell in the array,
and allocate the maximum possible to it, (Step 2) Reduce the corresponding row
and column requirements, and drop the row or column having zero remaining
requirement. Go back to Step 1 unless all remaining requirements are zero.

(a) Show that this procedure yields a basic feasible solution.
(b) Apply the method to Exercise 5.

30. The caterer problem. A caterer is booked to cater a banquet each evening for the
next T days. He requires rt clean napkins on the t th day for t = 1, 2, . . . , T .
He may send dirty napkins to the laundry, which has two speeds of service—fast
and slow. The napkins sent to the fast service will be ready for the next day’s
banquet; those sent to the slow service will be ready for the banquet 2 days later.
Fast and slow service cost c1 and c2 per napkin, respectively, with c1 > c2. The
caterer may also purchase new napkins at any time at cost c0. He has an initial
stock of s napkins and wishes to minimize the total cost of supplying fresh
napkins.

(a) Formulate the problem as a transportation problem. (Hint: Use T + 1
sources and T destinations.)

(b) Using the values T = 4, s = 200, r1 = 100, r2 = 130, r3 = 150, r4 =
140, c1 = 6, c2 = 4, c0 = 12, solve the problem.

31. The marriage assignment problem. A group of n men and n women live on an
island. The amount of happiness that the ith man and the j th woman derive by
spending a fraction xij of their lives together is cij xij . What is the nature of the
living arrangements that maximizes the total happiness of the islanders?

32. Anticycling Rule. A remarkably simple procedure for avoiding cycling was
developed by Bland, and we discuss it here.

Bland’s Rule. In the simplex method:

(a) Select the column to enter the basis by j = min{j : rj < 0}; that is, select the
lowest indexed favorable column.

(b) In case ties occur in the criterion for determining which column is to leave the
basis, select the one with lowest index.

We can prove by contradiction that the use of Bland’s rule prohibits cycling.
Suppose that cycling occurs. During the cycle a finite number of columns enter
and leave the basis. Each of these columns enters at level zero, and the cost
function does not change.

Delete all rows and columns that do not contain pivots during a cycle,
obtaining a new linear program that also cycles. Assume that this reduced linear
program has m rows and n columns. Consider the solution stage where column

126 4 The Simplex Method

n is about to leave the basis, being replaced by column e. The corresponding
tableau is as follows (where the entries shown are explained below):

a1 · · · ae · · · an b
� 0 0 0
� 0 0 0
...

...
...

> 0 1 0
cT < 0 0 0

Without loss of generality, we assume that the current basis consists of the
last m columns. In fact, we may define the reduced linear program in terms of
this tableau, calling the current coefficient array A and the current reduced cost
vector c. In this tableau we pivot on amp, so amp > 0. By Part(b) of Bland’s
rule, an can leave the basis only if there are no ties in the ratio test, and since
b = 0 because all rows are in the cycle, it follows that aip � 0 for all i �= m.

Now consider the situation when column n is about to reenter the basis.
Part(a) of Bland’s rule ensures that rn < 0 and rj � 0 for all i �= n. Apply
the formula ri = ci − yT ai to the last m columns to show that each component
of y except ym is nonpositive; and ym > 0. Then use this to show that re =
ce − yT ae < ce < 0, contradicting re � 0.

33. Prove that every basic feasible solution of the dual example 5 of the Markov
Decision Process in Sect. 3.1 satisfies the basic value distribution (Δ, δ)

property with

Δ = m

1− γ
and δ = 1.

References

4.1–4.4 All of this is now standard material contained in most courses in linear
programming. See the references cited at the end of Chap. 2. For the
original work in this area, see Dantzig [D2] for development of the simplex
method; Orden [O2] for the artificial basis technique; Dantzig, Orden and
Wolfe [D8], Orchard-Hays [O1], and Dantzig [D4] for the revised simplex
method; and Charnes and Lemke [C3] and Dantzig [D5] for upper bounds.
The synthetic carrot interpretation is due to Gale [G2]. The idea of using
LU decomposition for the simplex method is due to Bartels and Golub
[B2]. See also Bartels [B1]. For a nice simple introduction to Gaussian
elimination, see Forsythe and Moler [F15]. For an expository treatment
of modern computer implementation issues of linear programming, see
Murtagh [M9]. The degeneracy technique discussed in Exercises 15–17

References 127

is due to Charnes [C2]. The anticycling method of Exercise 30 is due to
Bland [B19]. For the state of the art in Simplex solvers see Bixby [B18].

4.4 The dual simplex method is due to Lemke [L4]. The general primal–
dual algorithm is due to Dantzig, Ford and Fulkerson [D7]. See also Ford
and Fulkerson [F13]. The economic interpretation given in this section is
apparently novel. The concepts of reduction are due to Shefi [S5], who
has developed a complete theory in this area. For more details along the
lines presented here, see Luenberger [L15]. For a more comprehensive
description of the Dantzig and Wolfe [D11] decomposition method, see
Dantzig [D6].

4.5 The transportation problem in its present form was first formulated by
Hitchcock [H11]. Koopmans [K8] also contributed significantly to the
early development of the problem. The simplex method for the trans-
portation problem was developed by Dantzig [D3]. Most textbooks on
linear programming include a discussion of the transportation problem. See
especially Simonnard [S6], Murty [M11], and Bazaraa and Jarvis [B5].
The method of changing basis is often called the stepping stone method.
The assignment problem has a long and interesting history. The important
fact that the integer problem is solved by a standard linear programming
problem follows from a theorem of Birkhoff [B16], which states that the
extreme points of the set of feasible assignments are permutation matrices.

4.6 The efficiency analysis here was first provided by Ye [Y4] and later
extended by Kitahara and Mizuno [KM].

Chapter 5
Interior-Point Methods

Linear programs can be viewed in two somewhat complementary ways. They are,
in one view, a class of continuous optimization problems each with continuous
variables defined on a convex feasible region and with a continuous objective
function. They are, therefore, a special case of the general form of problem
considered in this text. However, linearity implies a certain degree of degeneracy,
since for example the derivatives of all functions are constants and hence the
differential methods of general optimization theory cannot be directly used. From
an alternative view, linear programs can be considered as a class of combinatorial
problems because it is known that solutions can be found by restricting attention
to the vertices of the convex polyhedron defined by the constraints. Indeed, this
view is natural when considering network problems such as those of early chapters.
However, the number of vertices may be large, up to n!/m!(n−m) !, making direct
search impossible for even modest size problems.

The simplex method embodies both of these viewpoints, for it restricts attention
to vertices, but exploits the continuous nature of the variables to govern the progress
from one vertex to another, defining a sequence of adjacent vertices with improving
values of the objective as the process reaches an optimal point. The simplex method,
with ever-evolving improvements, has for five decades provided an efficient general
method for solving linear programs.

Although it performs well in practice, visiting only a small fraction of the total
number of vertices, a definitive theory of the simplex method’s performance was
unavailable. However, in 1972, Klee and Minty showed by examples that for certain
linear programs the simplex method will examine every vertex. These examples
proved that in the worst case, the simplex method requires a number of steps that is
exponential in the size of the problem.

© Springer Nature Switzerland AG 2021
D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
https://doi.org/10.1007/978-3-030-85450-8_5

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85450-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-85450-8_5

130 5 Interior-Point Methods

In view of this result, many researchers believed that a good algorithm, different
than the simplex method, might be devised whose number of steps would be
polynomial rather than exponential in the program’s size—that is, the time required
to compute the solution would be bounded above by a polynomial in the size of the
problem.1

Indeed, in 1979, a new approach to linear programming, Khachiyan’s ellipsoid
method was announced with great acclaim. The method is quite different in structure
than the simplex method, for it constructs a sequence of shrinking ellipsoids each of
which contains the optimal solution set and each member of the sequence is smaller
in volume than its predecessor by at least a certain fixed factor. Therefore, the
solution set can be found to any desired degree of approximation by continuing the
process. Khachiyan proved that the ellipsoid method, developed during the 1970s
by other mathematicians, is a polynomial-time algorithm for linear programming.

Practical experience, however, was disappointing. In almost all cases, the simplex
method was much faster than the ellipsoid method. However, Khachiyan’s ellipsoid
method showed that polynomial time algorithms for linear programming do exist.
It left open the question of whether one could be found that, in practice, was faster
than the simplex method.

It is then perhaps not surprising that the announcement by Karmarkar in 1984
of a new polynomial time algorithm, an interior-point method, with the potential
to improve the practical effectiveness of the simplex method made front-page news
in major newspapers and magazines throughout the world. It is this interior-point
approach that is the subject of this chapter and the next.

This chapter begins with a brief introduction to complexity theory, which is the
basis for a way to quantify the performance of iterative algorithms, distinguishing
polynomial-time algorithms from others.

Next the example of Klee and Minty showing that the simplex method is not
a polynomial-time algorithm in the worst case is presented. Following that the
ellipsoid algorithm is defined and shown to be a polynomial-time algorithm. These
two sections provide a deeper understanding of how the modern theory of linear
programming evolved, and help make clear how complexity theory impacts linear
programming. However, the reader may wish to consider them optional and omit
them at first reading.

The development of the basics of interior-point theory begins with Sect. 5.4
which introduces the concept of barrier functions and the analytic center. Section 5.5
introduces the central path which underlies interior-point algorithms. The relations
between primal and dual in this context are examined. An overview of the details
of specific interior-point algorithms based on the theory are presented in Sects. 5.6
and 5.7

1 We will be more precise about complexity notions such as “polynomial algorithm” in Sect. 5.1
below.

5.1 Elements of Complexity Theory 131

5.1 Elements of Complexity Theory

Complexity theory is arguably the foundation for analysis of computer algorithms.
The goal of the theory is twofold: to develop criteria for measuring the effectiveness
of various algorithms (and thus, be able to compare algorithms using these criteria),
and to assess the inherent difficulty of various problems.

The term complexity refers to the amount of resources required by a computation.
In this chapter we focus on a particular resource, namely, computing time. In
complexity theory, however, one is not interested in the execution time of a
program implemented in a particular programming language, running on a particular
computer over a particular input. This involves too many contingent factors.
Instead, one wishes to associate to an algorithm more intrinsic measures of its time
requirements.

Roughly speaking, to do so one needs to define:

• a notion of input size,
• a set of basic operations, and
• a cost for each basic operation.

The last two allow one to associate a cost of a computation. If x is any input, the
cost C(x) of the computation with input x is the sum of the costs of all the basic
operations performed during this computation.

Let A be an algorithm and Jn be the set of all its inputs having size n. The
worst-case cost function of A is the function T wA defined by

T wA (n) = sup
x∈Jn

C(x).

If there is a probability structure on Jn it is possible to define the average-case cost
function T a

A given by

T a
A(n) = En(C(x)).

where En is the expectation over Jn. However, the average is usually more difficult
to find, and there is of course the issue of what probabilities to assign.

We now discuss how the objects in the three items above are selected. The
selection of a set of basic operations is generally easy. For the algorithms we
consider in this chapter, the obvious choice is the set {+, −, ×, /, ≤} of the
four arithmetic operations and the comparison. Selecting a notion of input size and a
cost for the basic operations depends on the kind of data dealt with by the algorithm.
Some kinds can be represented within a fixed amount of computer memory; others
require a variable amount.

Examples of the first are fixed-precision floating-point numbers, stored in a fixed
amount of memory (usually 32 or 64 bits). For this kind of data the size of an
element is usually taken to be 1 and consequently to have unit size per number.

132 5 Interior-Point Methods

Examples of the second are integer numbers which require a number of bits
approximately equal to the logarithm of their absolute value. This (base 2) logarithm
is usually referred to as the bit-size of the integer. Similar ideas apply for rational
numbers.

Let A be some kind of data and x = (x1, . . . , xn) ∈ An. If A is of the first kind
above then we define size(x) = n. Otherwise, we define size(x) = ∑n

i=1 bit-size
(xi).

The cost of operating on two unit size numbers is taken to be 1 and is called the
unit cost. In the bit-size case, the cost of operating on two numbers is the product of
their bit-sizes (for multiplications and divisions) or their maximum (for additions,
subtractions, and comparisons).

The consideration of integer or rational data with their associated bit-size and
bit cost for the arithmetic operations is usually referred to as the Turing model of
computation. The consideration of idealized reals with unit size and unit cost is
today referred as the real number arithmetic model. When comparing algorithms,
one should make clear which model of computation is used to derive complexity
bounds.

A basic concept related to both models of computation is that of polynomial time.
An algorithm A is said to be a polynomial time algorithm if T w

A (n) is bounded
above by a polynomial. A problem can be solved in polynomial time if there is a
polynomial time algorithm solving the problem. The notion of average polynomial
time is defined similarly, replacing T w

A by T a
A.

The notion of polynomial time is usually taken as the formalization of efficiency
in complexity theory.

5.2 ∗The Simplex Method Is Not Polynomial-Time

When the simplex method is used to solve a linear program in standard form with
coefficient matrix A ∈ Em×n, b ∈ Em and c ∈ En, the number of pivot steps to
solve the problem starting from a basic feasible solution is typically a small multiple
of m: usually between 2m and 3m. In fact, Dantzig observed that for problems with
m ≤ 50 and n ≤ 200 the number of iterations is ordinarily less than 1.5m.

At one time researchers believed—and attempted to prove—that the simplex
algorithm (or some variant thereof) always requires a number of iterations that is
bounded by a polynomial expression in the problem size. That was until Victor Klee
and George Minty exhibited a class of linear programs each of which requires an
exponential number of iterations when solved by the conventional simplex method.

5.2 ∗The Simplex Method Is Not Polynomial-Time 133

One form of the Klee–Minty example is

maximize
n∑

j=1

10n−j xj

subject to 2
i−1∑
j=1

10i−j xj + xi ≤ 100i−1i = 1, . . . , n (5.1)

xj ≥ 0 j = 1, . . . , n.

The problem above is easily cast as a linear program in standard form.
A specific case is that for n = 3, giving

maximize 100x1 + 10x2 + x3

subject to x1 ≤ 1

20x1 + x2 ≤ 100

200x1 + 20x2 + x3 ≤ 10, 000

x1 � 0, x2 � 0, x3 � 0.

In this case, we have three constraints and three variables (along with their
nonnegativity constraints). After adding slack variables, the problem is in standard
form. The system has m = 3 equations and n = 6 nonnegative variables. It can be
verified that it takes 23 − 1 = 7 pivot steps to solve the problem with the simplex
method when at each step the pivot column is chosen to be the one with the largest
(because this a maximization problem) reduced cost. (See Exercise 1.)

The general problem of the class (1) takes 2n − 1 pivot steps and this is in fact
the number of vertices minus one (which is the starting vertex). To get an idea of
how bad this can be, consider the case where n = 50. We have 250 − 1 ≈ 1015.
In a year with 365 days, there are approximately 3 × 107 s. If a computer ran
continuously, performing a million pivots of the simplex algorithm per second, it
would take approximately

1015

3× 107 × 106 ≈ 33 years

to solve a problem of this class using the greedy pivot selection rule.
Although it is not polynomial in the worst case, the simplex method remains

one of major solvers for linear programming. In fact, the method has been recently
proved to be (strongly) polynomial for solving the Markov Decision Process with
any fixed discount rate.

134 5 Interior-Point Methods

5.3 ∗The Ellipsoid Method

The basic ideas of the ellipsoid method stem from research done in the 1960s and
1970s mainly in the Soviet Union (as it was then called) by others who preceded
Khachiyan. In essence, the idea is to enclose the region of interest in ever smaller
ellipsoids.

The significant contribution of Khachiyan was to demonstrate that under certain
assumptions, the ellipsoid method constitutes a polynomially bounded algorithm for
linear programming.

The version of the method discussed here is really aimed at finding a point of a
polyhedral set � given by a system of linear inequalities.

� = {y ∈ Em : yT aj ≤ cj , j = 1, . . . n.}

Finding a point of � can be thought of as equivalent to solving a linear programming
problem.

Two important assumptions are made regarding this problem:

(A1) There is a vector y0 ∈ Em and a scalar R > 0 such that the closed ball
S(y0, R) with center y0 and radius R, that is

{y ∈ Em : |y− y0| ≤ R},

contains �.
(A2) If � is nonempty, there is a scalar r > 0 such that � contains a ball of the

form S(y, r) with center at some y ∈ � and radius r . (This assumption
implies that if � is nonempty, then it has a nonempty interior and its volume
is at least vol(S(0, r)).)2

Definition An ellipsoid in Em is a set of the form

E = {y ∈ Em : (y− z)T Q(y− z) ≤ 1},

where z ∈ Em is a given point (called the center) and Q is a positive definite matrix (see
Sect. A.4 of Appendix A) of dimension m×m. This ellipsoid is denoted E(z, Q).

The unit sphere S(0, 1) centered at the origin 0 is a special ellipsoid with Q = I,
the identity matrix.

The axes of a general ellipsoid are the eigenvectors of Q and the lengths of
the axes are λ

−1/2
1 , λ

−1/2
2 , . . . , λ

−1/2
m , where the λi ’s are the corresponding

eigenvalues. It can be shown that the volume of an ellipsoid is

vol(E) = vol(S(0, 1))�m
i=1λ

−1/2
i = vol(S(0, 1)) det(Q−1/2).

2 The (topological) interior of any set � is the set of points in � which are the centers of some
balls contained in �.

5.3 ∗The Ellipsoid Method 135

Fig. 5.1 A half-ellipsoid

Cutting Plane and New Containing Ellipsoid

In the ellipsoid method, a series of ellipsoids Ek is defined, with centers yk and with
the defining Q = B−1

k , where Bk is symmetric and positive definite.
At each iteration of the algorithm, we have � ⊂ Ek. It is then possible to check

whether yk ∈ �. If so, we have found an element of � as required. If not, there is at
least one constraint that is violated. Suppose aT

j yk > cj . Then

� ⊂ 1

2
Ek = {y ∈ Ek : aT

j y ≤ aT
j yk}.

This set is half of the ellipsoid, obtained by cutting the ellipsoid in half through its
center (Fig. 5.1).

The successor ellipsoid Ek+1 is defined to be the minimal-volume ellipsoid
containing (1/2)Ek. It is constructed as follows. Define

τ = 1

m+ 1
, δ = m2

m2 − 1
, σ = 2τ.

Then put

yk+1 = yk − τ

(aT
j Bkaj)1/2

Bkaj

Bk+1 = δ

(
Bk − σ

Bkaj aT
j Bk

aT
j Bkaj

)
. (5.2)

Theorem 1 The ellipsoid Ek+1 = E(yk+1, B−1
k+1) defined as above is the ellipsoid of least

volume containing (1/2)Ek . Moreover,

vol(Ek+1)

vol(Ek)
=
(

m2

m2 − 1

)(m−1)/2
m

m+ 1
< exp

(
− 1

2(m+ 1)

)
< 1.

136 5 Interior-Point Methods

Proof We shall not prove the statement about the new ellipsoid being of least
volume, since that is not necessary for the results that follow. To prove the remainder
of the statement, we have

vol(Ek+1)

vol(Ek)
= det(B1/2

k+1)

det(B1/2
k)

.

For simplicity, by a change of coordinates, we may take Bk = I. Then Bk+1 has

m − 1 eigenvalues equal to δ = m2

m2−1
and one eigenvalue equal to δ − 2δτ =

m2

m2−1
(1 − 2

m+1) = (m
m+1)2. The reduction in volume is the product of the square

roots of these, giving the equality in the theorem.
Then using (1+ x)p � exp, we have

(
m2

m2 − 1

)(m−1)/2
m

m+ 1
=
(

1+ 1

m2 − 1

)(m−1)/2 (
1− 1

m+ 1

)

< exp

(
1

2(m+ 1)
− 1

(m+ 1)

)
= exp

(
− 1

2(m+ 1)

)
.

Convergence

The ellipsoid method is initiated by selecting y0 and R such that condition (A1) is
satisfied. Then B0 = R2I, and the corresponding E0 contains �. The updating of
the Ek’s is continued until a solution is found.

Under the assumptions stated above, a single repetition of the ellipsoid method
reduces the volume of an ellipsoid to one-half of its initial value in O(m) iterations.
(See Appendix A for O notation.) Hence it can reduce the volume to less than that
of a sphere of radius r in O(m2 log(R/r)) iterations, since its volume is bounded
from below by vol(S(0, 1))rm and the initial volume is vol(S(0, 1))Rm. Generally
a single iteration requires O(m2) arithmetic operations. Hence the entire process
requires O(m4 log(R/r)) arithmetic operations.3

Ellipsoid Method for Usual Form of LP

Now consider the linear program (where A is m× n)

(P)
maximize cT x
subject to Ax ≤ b, x ≥ 0

3 Assumption (A2) is sometimes too strong. It has been shown, however, that when the data consists
of integers, it is possible to perturb the problem so that (A2) is satisfied and if the perturbed problem
has a feasible solution, so does the original �.

5.4 The Analytic Center 137

and its dual

(D)
minimize yT b
subject to yT A ≥ cT , y ≥ 0.

Note that both problems can be solved by finding a feasible point to inequalities

− cT x+ bT y ≤ 0

Ax ≤ b

−AT y ≤ −c (5.3)

x, y ≥ 0,

where both x and y are variables. Thus, the total number of arithmetic operations
for solving a linear program is bounded by O((m+ n)4 log(R/r)).

A clever way for linear programming is to apply the ellipsoid method to solve
only one of the primal or dual problems. We start with a large ellipsoid that contains
at least one optimal solution and then adopt two types of cutting planes. At each
iteration, we first check if the center is feasible or not: if not, generate the cutting
plane from a violated constraint; otherwise, apply the cutting plane from the linear
objective function. Overall, one can apply the ellipsoid method as long as it is
possible (1) to check whether the center is in the region of interest, and if not, (2) to
find a cutting plane separating the center and the region. The practical convergence
rate seems close to that proven for the worst case. Therefore, it is a safe and
conservative method.

5.4 The Analytic Center

The new interior-point algorithms introduced by Karmarkar move by successive
steps inside the feasible region. It is the interior of the feasible set rather than
the vertices and edges that plays a dominant role in this type of algorithm. In fact,
these algorithms purposely avoid the edges of the set, only eventually converging to
one as a solution.

Our study of these algorithms begins in the next section, but it is useful at this
point to introduce a concept that definitely focuses on the interior of a set, termed
the set’s analytic center. As the name implies, the center is away from the edge.
In addition, the study of the analytic center introduces a special structure, termed a
barrier or potential that is fundamental to interior-point methods.

Consider a set S in a subset of X of En defined by a group of inequalities as

S = {x ∈ X : gj (x) � 0, j = 1, 2, . . . , m},

138 5 Interior-Point Methods

and assume that the functions gj are continuous. S has a nonempty interior S̊ =
{x ∈ X : gj (x) > 0, all j }. Associated with this definition of the set is the potential
function

ψ(x) = −
m∑

j=1

log gj (x)

defined on S̊.
The analytic center of S is the vector (or set of vectors) that minimizes the

potential; that is, the vector (or vectors) that solve

min ψ(x) = min

⎧
⎨
⎩−

m∑
j=1

log gj (x) : x ∈ X, gj (x) > 0 for each j

⎫
⎬
⎭ .

Example 1 (A Cube) Consider the set S defined by xi � 0, (1 − xi) � 0, for
i = 1, 2, . . . , n. This is S = [0, 1]n, the unit cube in En. The analytic center can
be found by differentiation to be xi = 1/2, for all i. Hence, the analytic center is
identical to what one would normally call the center of the unit cube.

In general, the analytic center depends on how the set is defined—on the
particular inequalities used in the definition. For instance, the unit cube is also
defined by the inequalities xi � 0, (1 − xi)

d � 0 with odd d > 1. In this case
the solution is xi = 1/(d+ 1) for all i. For large d this point is near the inner corner
of the unit cube.

Also, the addition of redundant inequalities can change the location of the
analytic center. For example, repeating a given inequality will change the center’s
location.

There are several sets associated with linear programs for which the analytic
center is of particular interest. One such set is the feasible region itself. Another is
the set of optimal solutions. There are also sets associated with dual and primal–dual
formulations. All of these are related in important ways.

Let us illustrate by considering the analytic center associated with a bounded
polytope � in Em represented by n(> m) linear inequalities; that is,

� = {y ∈ Em : cT − yT A � 0},

where A ∈ Em×n and c ∈ En are given and A has rank m. Denote the interior of �

by

�̊ = {y ∈ Em : cT − yT A > 0}.

5.4 The Analytic Center 139

s1s2

s3 s4

s5 ya
ya

ya

Fig. 5.2 Analytic center and hyperplane translation

The potential function for this set is

ψ�(y) ≡ −
n∑

j=1

log(cj − yT aj) = −
n∑

j=1

log sj , (5.4)

where s ≡ c − AT y is a slack vector, each value of which is proportional to the
distance from point y to an edge. Hence the potential function is the negative sum of
the logarithms of the slack variables or, equivalently, the reciprocal of the product,
see the left figure in Fig. 5.2. The analytic center of � is the interior point of � that
minimizes the potential function or maximizes the product of the slack variables.
This point is denoted by ya and has the associated sa = c−AT ya . The pair (ya, sa)

is uniquely defined, since the potential function is strictly convex (see Sect. 7.4) in
the bounded convex set �. The product,

∏n
j=1 sa

j , represents the analytic volume of
a polytope, a measurement of the size of the constraint set.

Setting to zero the derivatives of ψ(y) with respect to each yi gives

n∑
j=1

aij

cj − yT aj

= 0, for all i,

which can be written

n∑
j=1

aij

sj
= 0, for all i.

Now define xj = 1/sj for each j . We introduce the notation

x ◦ s ≡ (x1s1, x2s2, . . . , xnsn)
T ,

140 5 Interior-Point Methods

which is component multiplication. Then the analytic center is defined by the
conditions

x ◦ s = 1

Ax = 0

AT y+ s = c.

The analytic center can be defined when the interior is empty or equalities are
present, such as

�e = {y ∈ Em : cT − yT A � 0, By = b}.

In this case the analytic center is chosen on the linear surface {y : By = b} to
maximize the product of the slack variables s = c − AT y. Thus, in this context
the interior of �e refers to the interior of the positive orthant of slack variables:
Rn+ ≡ {s : s � 0}. This definition of interior depends only on the region of the slack
variables. Even if there is only a single point in �e with s = c − AT y for some y
where By = b with s > 0, we still say that �̊e is not empty.

Cutting Plane and Analytic Volume of Reduction

Define by

Va(A, c) :=
n∏

j=1

sa
j =

n∏
j=1

(cj − aT
j ya)

the analytic volume of polytope Ω(A, c). If a constraint hyperplane, say the first
one, needs to be translated, change c1 − aT

1 y ≥ 0 to aT
1 ya − aT

1 y ≥ 0; i.e., the
first constraint hyperplane is parallelly moved downward cutting center ya; see the
right figure in Fig. 5.2. Then we see a smaller polytope given by (A, c) where c1 =
aT

1 ya(< c1) and cj = cj for all j = 2, . . . , n. How much is the analytic volume
Va(A, c) compared with Va(A, c)?

Theorem Va(A,c)
Va(A,c) ≤ exp(−1) ≤ 1

2.718 .

We leave the proof of the theorem as an exercise.
Now consider the translated hyperplane that represents the objective hyperplane

and imagine that the plane moves continuously downward to the optimal solution.
Then the analytic center would also move downward continuously and its trajectory
would form a path. We derive this path algebraically in the next section.

5.5 The Central Path 141

5.5 The Central Path

The concept underlying interior-point methods for linear programming is to use
nonlinear programming techniques of analysis and methodology. The analysis is
often based on differentiation of the functions defining the problem. Traditional
linear programming does not require these techniques since the defining functions
are linear. Duality in general nonlinear programs is typically manifested through
Lagrange multipliers (which are called dual variables in linear programming). The
analysis and algorithms of the remaining sections of the chapter use these nonlinear
techniques. These techniques are discussed systematically in later chapters, so rather
than treat them in detail at this point, these current sections provide only minimal
detail in their application to linear programming. It is expected that most readers
are already familiar with the basic method for minimizing a function by setting
its derivative to zero, and for incorporating constraints by introducing Lagrange
multipliers. These methods are discussed in detail in Chaps. 11–15.

The computational algorithms of nonlinear programming are typically iterative
in nature, often characterized as search algorithms. At any step with a given point,
a direction for search is established and then a move in that direction is made to
define the next point. There are many varieties of such search algorithms and they
are systematically presented throughout the text. In this chapter, we use versions of
Newton’s method as the search algorithm, but we postpone a detailed study of the
method until later chapters.

Not only have nonlinear methods improved linear programming, but interior-
point methods for linear programming have been extended to provide new
approaches to nonlinear programming. This chapter is intended to show how
this merger of linear and nonlinear programming produces elegant and effective
methods. These ideas take an especially pleasing form when applied to linear
programming. Study of them here, even without all the detailed analysis, should
provide good intuitive background for the more general manifestations.

Consider a primal linear program in standard form

(LP) minimize cT x (5.5)

subject to Ax = b, x � 0.

We denote the feasible region of this program by Fp. We assume that F̊p = {x :
Ax = b, x > 0} is nonempty and the optimal solution set of the problem is bounded.

Associated with this problem, we define for μ � 0 the barrier problem

(BP) minimize cT x− μ

n∑
j=1

log xj (5.6)

subject to Ax = b, x > 0.

142 5 Interior-Point Methods

It is clear that μ = 0 corresponds to the original problem (5.5). As μ → ∞, the
solution approaches the analytic center of the feasible region (when it is bounded),
since the barrier term swamps out cT x in the objective. As μ is varied continuously
toward 0, there is a path x(μ) defined by the solution to (BP). This path x(μ) is
termed the primal central path. As μ→ 0 this path converges to the analytic center
of the optimal face {x : cT x = z∗, Ax = b, x � 0}, where z∗ is the optimal value
of (LP).

A strategy for solving (LP) is to solve (BP) for smaller and smaller values of μ

and thereby approach a solution to (LP). This is indeed the basic idea of interior-
point methods.

At any μ > 0, under the assumptions that we have made for problem (5.5), the
necessary and sufficient conditions for a unique and bounded solution are obtained
by introducing a Lagrange multiplier vector y for the linear equality constraints to
form the Lagrangian (see Chap. 11)

cT x− μ

n∑
j=1

log xj − yT (Ax− b).

The derivatives with respect to the xj ’s are set to zero, leading to the conditions

cj − μ/xj − yT aj = 0, for each j

or equivalently

μX−11+ AT y = c, (5.7)

where as before aj is the jth column of A, 1 is the vector of 1’s, and X is the diagonal
matrix whose diagonal entries are the components of x > 0. Setting sj = μ/xj the
complete set of conditions can be rewritten

x ◦ s = μ1

Ax = b (5.8)

AT y+ s = c.

Note that y is a dual feasible solution and c− AT y > 0 (see Exercise 4).

Example 2 (A Square Primal) Consider the problem of maximizing x1 within the
unit square S = [0, 1]2. The problem is formulated as

min −x1

s.t. x1 + x3 = 1

x2 + x4 = 1

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

5.5 The Central Path 143

Fig. 5.3 The analytic path
for the square

Here x3 and x4 are slack variables for the original problem to put it in standard
form. The optimality conditions for x(μ) consist of the original two linear constraint
equations and the four equations

y1 + s1 = −1, y2 + s2 = 0, y1 + s3 = 0, y2 + s4 = 0

together with the relations sj = μ/xj for j = 1, 2, . . . , 4. These equations are
readily solved with a series of elementary variable eliminations to find

x1(μ) = 1− 2μ±√1+ 4μ2

2
x2(μ) = 1/2.

Using the “+” solution, it is seen that as μ→ 0 the solution goes to x → (1, 1/2).
Note that this solution is not a corner of the cube. Instead it is at the analytic center
of the optimal face {x : x1 = 1, 0 � x2 � 1}. See Fig. 5.3. The limit of x(μ) as
μ→∞ can be seen to be the point (1/2, 1/2). Hence, the central path in this case is
a straight line progressing from the analytic center of the square (at μ→∞) to the
analytic center of the optimal face (at μ→ 0).

Dual Central Path

Now consider the dual problem

(LD) maximize yT b

subject to yT A+ sT = cT , s � 0.

144 5 Interior-Point Methods

We may apply the barrier approach to this problem by formulating the problem

(BD) maximize yT b+ μ

n∑
j=1

log sj

subject to yT A+ sT = cT , s > 0.

We assume that the dual feasible set Fd has an interior F̊d = {(y, s) : yT A+ sT =
cT , s > 0} is nonempty and the optimal solution set of (LD) is bounded. Then, as μ

is varied continuously toward 0, there is a path (y(μ), s(μ)) defined by the solution
to (BD). This path is termed the dual central path.

To work out the necessary and sufficient conditions we introduce x as a Lagrange
multiplier and form the Lagrangian

yT b+ μ

n∑
j=1

log sj − (yT A+ sT − cT)x.

Setting to zero the derivative with respect to yi leads to

bi − aix = 0, for all i,

where ai is the ith row of A. Setting to zero the derivative with respect to sj leads to

μ/sj − xj = 0, or 1− xj sj = 0, for all j.

Combining these equations and including the original constraint yield the complete
set of conditions which are identical to the optimality conditions for the primal
central path (5.8). Note that x is indeed a primal feasible solution and x > 0.

To see the geometric representation of the dual central path, consider the dual
level set

�(z) = {y : cT − yT A � 0, yT b � z}
for any z < z∗ where z∗ is the optimal value of (LD). Then, the analytic center
(y(z), s(z)) of �(z) coincides with the dual central path as z tends to the optimal
value z∗ from below. This is illustrated in Fig. 5.4, where the feasible region of the
dual set (not the primal) is shown. The level sets �(z) are shown for various values
of z. The analytic centers of these level sets correspond to the dual central path.

Example 3 (The Square Dual) Consider the dual of Example 2. This is

max y1 + y2

subject to y1 � −1

y1 � 0

y2 � 0 (twice).

5.5 The Central Path 145

Fig. 5.4 The central path as
analytic centers in the dual
feasible region

The solution to the dual barrier problem is easily found from the solution of the
primal barrier problem to be

y1(μ) = −1− μ/x1(μ), y2(μ) = −2μ.

As μ → 0, we have y1 → −1, y2 → 0, which is the unique solution to the
dual LP. However, as μ → ∞, the vector y is unbounded, for in this case the dual
feasible set is itself unbounded.

Primal–Dual Central Path

Suppose the feasible region of the primal (LP) has interior points and its optimal
solution set is bounded. Then, the dual also has interior points (see Exercise 4). The
primal–dual path is defined to be the set of vectors (x(μ) > 0, y(μ), s(μ) > 0)

that satisfy the conditions

x ◦ s = μ1

Ax = b

AT y+ s = c

for 0 � μ � ∞. Hence the central path is defined without explicit reference to
an optimization problem. It is simply defined in terms of the set of equality and
inequality conditions.

Since conditions (5.8) and the above equations are identical, the primal–dual
central path can be split into two components by projecting onto the relevant space,
as described in the following proposition.

Proposition 1 Suppose the feasible sets of the primal and dual programs contain interior
points. Then the primal–dual central path (x(μ), y(μ), s(μ)) exists for all μ, 0 � μ <∞.

146 5 Interior-Point Methods

Furthermore, x(μ) is the primal central path, and (y(μ), s(μ)) is the dual central path.
Moreover, x(μ) and (y(μ), s(μ)) converge to the analytic centers of the optimal primal
solution and dual solution faces, respectively, as μ→ 0.

Duality Gap

Let (x(μ), y(μ), s(μ)) be on the primal–dual central path. Then from (5.8) it
follows that

cT x− yT b = yT Ax+ sT x− yT b = sT x = nμ.

The value cT x − yT b = sT x is the difference between the primal objective value
and the dual objective value. This value is always nonnegative (see the weak duality
lemma in Sect. 3.2) and is termed the duality gap. At any point on the primal–dual
central path, the duality gap is equal to nμ. It is clear that as μ → 0 the duality
gap goes to zero, and hence both x(μ) and (y(μ), s(μ)) approach optimality for the
primal and dual, respectively.

The duality gap provides a measure of closeness to optimality. For any primal
feasible x, the value cT x gives an upper bound as cT x � z∗ where z∗ is the optimal
value of the primal. Likewise, for any dual feasible pair (y, s), the value yT b gives a
lower bound as yT b � z∗. The difference, the duality gap g = cT x− yT b, provides
a bound on z∗ as z∗ � cT x− g. Hence if at a feasible point x, a dual feasible (y, s)
is available, the quality of x can be measured as cT x− z∗ � g.

5.6 Solution Strategies

The various definitions of the central path directly suggest corresponding strategies
for solution of a linear program. We outline three general approaches here: the
primal barrier or path-following method, the primal–dual path-following method,
and the primal–dual potential reduction method, although the details of their
implementation and analysis must be deferred to later chapters after study of general
nonlinear methods. Table 5.1 depicts these solution strategies and the simplex
methods described in Chaps. 4 and 3 with respect to how they meet the three
optimality conditions: Primal Feasibility, Dual Feasibility, and Zero-Duality during
the iterative process.

For example, the primal simplex method keeps improving a primal feasible
solution, maintains the zero-duality gap (complementarity slackness condition) and
moves toward dual feasibility; while the dual simplex method keeps improving a
dual feasible solution, maintains the zero-duality gap (complementarity condition)
and moves toward primal feasibility (see Sect. 3.3). The primal barrier method
keeps improving a primal feasible solution and moves toward dual feasibility and

5.6 Solution Strategies 147

Table 5.1 Properties of
algorithms

P-F D-F 0-Duality

Primal simplex
√ √

Dual simplex
√ √

Primal barrier
√

Primal–dual path-following
√ √

Primal–dual potential reduction
√ √

complementarity; and the primal–dual interior-point methods keep improving a
primal and dual feasible solution pair and move toward complementarity.

Primal Barrier Method

A direct approach is to use the barrier construction and solve the problem

minimize cT x− μ
∑n

j=1
log xj (5.9)

subject to Ax = b, x > 0,

for a very small value of μ. In fact, if we desire to reduce the duality gap to ε it is
only necessary to solve the problem for μ = ε/n. Unfortunately, when μ is small,
the problem (5.9) could be highly ill-conditioned in the sense that the necessary
conditions are nearly singular. This makes it difficult to directly solve the problem
for small μ.

An overall strategy, therefore, is to start with a moderately large μ (say μ =
100) and solve that problem approximately. The corresponding solution is a point
approximately on the primal central path, but it is likely to be quite distant from the
point corresponding to the limit of μ → 0. However this solution point at μ = 100
can be used as the starting point for the problem with a slightly smaller μ, for this
point is likely to be close to the solution of the new problem. The value of μ might
be reduced at each stage by a specific factor, giving μk+1 = γμk , where γ is a fixed
positive parameter less than one and k is the stage count.

If the strategy is begun with a value μ0, then at the kth stage we have μk = γ kμ0.
Hence to reduce μk/μ0 to below ε, requires

k = log ε

log γ

stages.

148 5 Interior-Point Methods

Often a version of Newton’s method for minimization is used to solve each of the
problems. For the current strategy, Newton’s method works on problem (5.9) with
fixed μ by considering the central path equations (5.8)

x ◦ s = μ1

Ax = b (5.10)

AT y+ s = c.

From a given point x ∈ F̊p, Newton’s method moves to a closer point x+ ∈ F̊p

by moving in the directions dx, dy and ds determined from the linearized version
of (5.10)

μX−2dx + ds = μX−11− c,

Adx = 0, (5.11)

−AT dy − ds = 0.

(Recall that X is the diagonal matrix whose diagonal entries are components of
x > 0.) The new point is then updated by taking a step in the direction of dx , as
x+ = x+ dx .

Notice that if x ◦ s = μ1 for some s = c − AT y, then d ≡ (dx, dy, ds) = 0
because the current point satisfies Ax = b and hence is already the central path
solution for μ. If some component of x ◦ s is less than μ, then d will tend to
increment the solution so as to increase that component. The converse will occur
for components of x ◦ s greater than μ.

This process may be repeated several times until a point close enough to the
proper solution to the barrier problem for the given value of μ is obtained. That is,
until the necessary and sufficient conditions (5.7) are (approximately) satisfied.

There are several details involved in a complete implementation and analysis of
Newton’s method. These items are discussed in later chapters of the text. However,
the method works well if either μ is moderately large, or if the algorithm is initiated
at a point very close to the solution, exactly as needed for the barrier strategy
discussed in this subsection.

To solve (5.11), premultiplying both sides by X2 we have

μdx + X2ds = μX1 − X2c.

Then, premultiplying by A and using Adx = 0, we have

AX2ds = μAX1− AX2c.

Using ds = −AT dy we have

(AX2AT)dy = −μAX1+ AX2c.

5.6 Solution Strategies 149

Thus, dy can be computed by solving the above linear system of equations. Then ds
can be found from the third equation in (5.11) and finally dx can be found from the
first equation in (5.11), together this amounts to O(nm2+m3) arithmetic operations
for each Newton step.

Primal–Dual Path-Following

Another strategy for solving a linear program is to follow the central path from a
given initial primal–dual solution pair. Consider a linear program in standard form

Primal Dual
minimize cT x maximize yT b
subject to Ax = b, x � 0 subject to yT A � cT .

Assume that the interior of both primal and dual feasible regions F̊ �= ∅; that is,
both4

F̊p = {x : Ax = b, x > 0} �= ∅ and F̊d = {(y, s) : s = c− AT y > 0} �= ∅;

and denote by z∗ the optimal objective value.
The central path can be expressed as

C =
{
(x, y, s) ∈ F̊ : x ◦ s = xT s

n
1
}

in the primal–dual form. On the path we have x ◦ s = μ1 and hence sT x = nμ.
A neighborhood of the central path C is of the form

N(η) = {(x, y, s) ∈ F̊ : |s ◦ x− μ1| < ημ, where μ = sT x/n} (5.12)

for some η ∈ (0, 1), say η = 1/4. This can be thought of as a tube whose center is
the central path.

The idea of the path-following method is to move within a tubular neighborhood
of the central path toward the solution point. A suitable initial point (x0, y0, s0) ∈
N(η) can be found by solving the barrier problem for some fixed μ0 or from
an initialization phase proposed later. After that, step by step moves are made,
alternating between a predictor step and a corrector step. After each pair of steps,
the point achieved is again in the fixed given neighborhood of the central path, but
closer to the linear program’s solution set.

4 The symbol ∅ denotes the empty set.

150 5 Interior-Point Methods

The predictor step is designed to move essentially parallel to the true central
path. The step d ≡ (dx, dy, ds) is determined from the linearized version of the
primal–dual central path equations of (5.9), as

s ◦ dx + x ◦ ds = γμ1− x ◦ s,

Adx = 0, (5.13)

−AT dy − ds = 0,

where here one selects γ = 0. (To show the dependence of d on the current pair
(x, s) and the parameter γ , we write d = d(x, s, γ).)

The new point is then found by taking a step in the direction of d, as
(x+, y+, s+) = (x, y, s) + α(dx, dy, ds), where α is the step size. Note that
dT

x ds = −dT
x AT dy = 0 here. Then

(x+)T s+ = (x+ αdx)
T (s+ αds) = xT s+ α(dT

x s+ xT ds) = (1− α)xT s,

where the last step follows by multiplying the first equation in (5.13) by 1T . Thus,
the predictor step reduces the duality gap by a factor 1− α. The maximum possible
step size α in that direction is made in that parallel direction without going outside
of the neighborhood N(2η).

The corrector step essentially moves perpendicular to the central path in order to
get closer to it. This step moves the solution back to within the neighborhoodN(η),
and the step is determined by selecting γ = 1 in (5.13) with μ = xT s/n. Notice
that if x ◦ s = μ1, then d = 0 because the current point is already a central path
solution.

This corrector step is identical to one step of the barrier method. Note, however,
that the predictor–corrector method requires only one sequence of steps, each
consisting of a single predictor and corrector. This contrasts with the barrier method
which requires a complete sequence for each μ to get back to the central path, and
then an outer sequence to reduce the μ’s.

One can prove that for any (x, y, s) ∈ N(η) with μ = xT s/n, the step size in
the predictor step satisfies

α � 1

2
√

n
.

Thus, the iteration complexity of the method is O(
√

n log(1/ε)) to achieve μ/μ0 �
ε where nμ0 is the initial duality gap. Moreover, one can prove that the step size
α → 1 as xT s → 0, that is, the duality reduction speed is accelerated as the gap
becomes smaller.

5.6 Solution Strategies 151

Primal–Dual Potential Reduction Algorithm

In this method a primal–dual potential function is used to measure the solution’s
progress. The potential is reduced at each iteration. There is no restriction on either
neighborhood or step size during the iterative process as long as the potential
is reduced. The greater the reduction of the potential function, the faster the
convergence of the algorithm. Thus, from a practical point of view, potential
reduction algorithms may have an advantage over path-following algorithms where
iterates are confined to lie in certain neighborhoods of the central path.

For x ∈ F̊p and (y, s) ∈ F̊d the primal–dual potential function is defined by

ψn+ρ(x, s) ≡ (n+ ρ) log(xT s)−
n∑

j=1

log(xj sj), (5.14)

where ρ � 0.
From the arithmetic and geometric mean inequality (also see Exercise 10) we

can derive that

n log(xT s)−
n∑

j=1

log(xj sj) � n log n.

Then

ψn+ρ(x, s) = ρ log(xT s)+ n log(xT s)−
n∑

j=1

log(xj sj) � ρ log(xT s)+ n log n.

(5.15)

Thus, for ρ > 0, ψn+ρ(x, s) → −∞ implies that xT s → 0. More precisely, we
have from (5.15)

xT s � exp

(
ψn+ρ(x, s)− n log n

ρ

)
.

Hence the primal–dual potential function gives an explicit bound on the magnitude
of the duality gap.

The objective of this method is to drive the potential function down toward minus
infinity. The method of reduction is a version of Newton’s method (5.13). In this
case we select γ = n/(n+ ρ) in (5.13). Notice that is a combination of a predictor
and corrector choice. The predictor uses γ = 0 and the corrector uses γ = 1. The
primal–dual potential method uses something in between. This seems logical, for
the predictor moves parallel to the central path toward a lower duality gap, and the
corrector moves perpendicular to get close to the central path. This new method
does both at once. Of course, this intuitive notion must be made precise.

152 5 Interior-Point Methods

For ρ � √n, there is in fact a guaranteed decrease in the potential function by a
fixed amount δ (see Exercises 12 and 13). Specifically,

ψn+ρ(x+, s+)− ψn+ρ(x, s) � −δ (5.16)

for a constant δ � 0.2. This result provides a theoretical bound on the number of
required iterations and the bound is competitive with other methods. However, a
faster algorithm may be achieved by conducting a line search along direction d to
achieve the greatest reduction in the primal–dual potential function at each iteration.

We outline the algorithm here:

Step 1. Start at a point (x0, y0, s0) ∈ F̊ with ψn+ρ(x0, s0) ≤ ρ log((s0)
T x0) +

n log n+O(
√

n log n) which is determined by an initiation procedure, as
discussed in Sect. 5.7. Set ρ ≥ √n. Set k = 0 and γ = n/(n + ρ). Select
an accuracy parameter ε > 0.

Step 2. Set (x, s) = (xk, sk) and compute (dx, dy, ds) from (5.13).
Step 3. Let xk+1 = xk + ᾱdx, yk+1 = yk + ᾱdy, and sk+1 = sk + ᾱds where

ᾱ = arg min
α≥0

ψn+ρ(xk + αdx, sk + αds).

Step 4. Let k = k + 1. If
sT
k xk

sT
0 x0

≤ ε, Stop. Otherwise return to Step 2.

Theorem 2 The algorithm above terminates in at most O(ρ log(n/ε)) iterations with

(sk)
T xk

(s0)
T x0

≤ ε.

Proof Note that after k iterations, we have from (5.16)

ψn+ρ(xk, sk) ≤ ψn+ρ(x0, s0)−k·δ ≤ ρ log((s0)
T x0)+n log n+O(

√
n log n)−k·δ.

Thus, from the inequality (5.15),

ρ log(sT
k xk)+ n log n ≤ ρ log(sT

0 x0)+ n log n+O(
√

n log n)− k · δ,

or

ρ(log(sT
k xk)− log(sT

0 x0)) ≤ −k · δ +O(
√

n log n).

Therefore, as soon as k ≥ O(ρ log(n/ε)), we must have

ρ(log(sT
k xk)− log(sT

0 x0)) ≤ −ρ log(1/ε),

5.6 Solution Strategies 153

or

sT
k xk

sT
0 x0

≤ ε.

Theorem 2 holds for any ρ ≥ √
n. Thus, by choosing ρ = √

n, the iteration
complexity bound becomes O(

√
n log(n/ε)).

Iteration Complexity

The computation of each iteration basically requires solving (5.13) for d. Note that
the first equation of (5.13) can be written as

Sdx + Xds = γμ1− XS1,

where X and S are two diagonal matrices whose diagonal entries are components of
x > 0 and s > 0, respectively. Premultiplying both sides by S−1 we have

dx + S−1Xds = γμS−11− x.

Then, premultiplying by A and using Adx = 0, we have

AS−1Xds = γμAS−11− Ax = γμAS−11− b.

Using ds = −AT dy we have

(AS−1XAT)dy = b− γμAS−11.

Thus, the primary computational cost of each iteration of the interior-point
algorithm discussed in this section is to form and invert the normal matrix
AXS−1AT , which typically requires O(nm2+m3) arithmetic operations. However,
an approximation of this matrix can be updated and inverted using far fewer
arithmetic operations. In fact, using a rank one technique (see Chap. 10) to update
the approximate inverse of the normal matrix during the iterative progress, one
can reduce the average number of arithmetic operations per iteration to O(

√
nm2).

Thus, if the relative tolerance ε is viewed as a variable, we have the following total
arithmetic operation complexity bound to solve a linear program:

Corollary Let ρ = √
n. Then, the algorithm above Theorem 2 terminates in at most

O(nm2 log(n/ε)) arithmetic operations.

154 5 Interior-Point Methods

5.7 Termination and Initialization

There are several remaining important issues concerning interior-point algorithms
for linear programs. The first issue involves termination. Unlike the simplex method
which terminates with an exact solution, interior-point algorithms are continuous
optimization algorithms that generate an infinite solution sequence converging to
an optimal solution. If the data of a particular problem are integral or rational, an
argument is made that, after the worst-case time bound, an exact solution can be
rounded from the latest approximate solution. Several questions arise. First, under
the real number computation model (that is, the data consists of real numbers), how
can we terminate at an exact solution? Second, regardless of the data’s status, is there
a practical test, which can be computed cost-effectively during the iterative process,
to identify an exact solution so that the algorithm can be terminated before the
worse-case time bound? Here, by exact solution we mean one that could be found
using exact arithmetic, such as the solution of a system of linear equations, which
can be computed in a number of arithmetic operations bounded by a polynomial
in n.

The second issue involves initialization. Almost all interior-point algorithms
require the regularity assumption that F̊ �= ∅. What is to be done if this is not true?
A related issue is that interior-point algorithms have to start at a strictly feasible
point near the central path.

∗Termination

Complexity bounds for interior-point algorithms generally depend on an ε which
must be zero in order to obtain an exact optimal solution. Sometimes it is
advantageous to employ an early termination or rounding method while ε is still
moderately large. There are five basic approaches.

• A “purification” procedure finds a feasible corner whose objective value is at
least as good as the current interior point. This can be accomplished in strongly
polynomial time (that is, the complexity bound is a polynomial only in the
dimensions m and n). One difficulty is that there may be many non-optimal
vertices close to the optimal face, and the procedure might require many pivot
steps for difficult problems.

• A second method seeks to identify an optimal basis. It has been shown that if
the linear program is nondegenerate, the unique optimal basis may be identified
early. The procedure seems to work well for some problems but it has difficulty
if the problem is degenerate. Unfortunately, most real linear programs are
degenerate.

• The third approach is to slightly perturb the data such that the new program
is nondegenerate and its optimal basis remains one of the optimal bases of the
original program. There are questions about how and when to perturb the data

5.7 Termination and Initialization 155

Fig. 5.5 Illustration of the projection of an interior point onto the optimal face

during the iterative process, decisions which can significantly affect the success
of the effort.

• The fourth approach is to guess the optimal face and find a feasible solution on
that face. It consists of two phases: the first phase uses interior-point algorithms
to identify the complementarity partition (P ∗, Z∗) (see Exercise 6), and the
second phase adapts the simplex method to find an optimal primal (or dual)
basic solution and one can use (P ∗, Z∗) as a starting base for the second phase.
This method is often called the crossover method. It is guaranteed to work in
finite time and is implemented in several popular linear programming software
packages.

• The fifth approach is to guess the optimal face and project the current interior
point onto the interior of the optimal face. See Fig. 5.5. The termination criterion
is guaranteed to work in finite time.

The fourth and fifth methods above are based on the fact that (as observed in practice
and subsequently proved) many interior-point algorithms for linear programming
generate solution sequences that converge to a strictly complementary solution or
an interior solution on the optimal face; see Exercise 8.

Initialization

Most interior-point algorithms must be initiated at a strictly feasible point. The
complexity of obtaining such an initial point is the same as that of solving the
linear program itself. More importantly, a complete algorithm should accomplish
two tasks: (1) detect the infeasibility or unboundedness status of the problem, then
(2) generate an optimal solution if the problem is neither infeasible nor unbounded.

156 5 Interior-Point Methods

Several approaches have been proposed to accomplish these goals:

• The primal and dual can be combined into a single linear feasibility problem, and
a feasible point found. Theoretically, this approach achieves the currently best
iteration complexity bound, that is, O(

√
n log(1/ε)). Practically, a significant

disadvantage of this approach is the doubled dimension of the system of
equations that must be solved at each iteration.

• The big-M method can be used by adding one or more artificial column(s) and/or
row(s) and a huge penalty parameter M to force solutions to become feasible
during the algorithm. A major disadvantage of this approach is the numerical
problems caused by the addition of coefficients of large magnitude.

• Phase I-then-Phase II methods are effective. A major disadvantage of this
approach is that the two (or three) related linear programs must be solved
sequentially.

• A modified Phase I–Phase II method approaches feasibility and optimality
simultaneously. To our knowledge, the currently best iteration complexity bound
of this approach is O(n log(1/ε)), as compared to O(

√
n log(1/ε)) of the three

above. Other disadvantages of the method include the assumption of nonempty
interior and the need of an objective lower bound.

The HSD Algorithm

There is an algorithm, termed the Homogeneous Self-Dual Algorithm that over-
comes the difficulties mentioned above. The algorithm achieves the theoretically
best O(

√
n log(1/ε)) complexity bound and is often used in linear programming

software packages.
The algorithm is based on the construction of a homogeneous and self-dual linear

program related to (LP) and (LD) (see Sect. 5.5). We now briefly explain the two
major concepts, homogeneity and self-duality, used in the construction.

In general, a system of linear equations of inequalities is homogeneous if the
right hand side components are all zero. Then if a solution is found, any positive
multiple of that solution is also a solution. In the construction used below, we
allow a single inhomogeneous constraint, often called a normalizing constraint.
Karmarkar’s original canonical form is a homogeneous linear program.

A linear program is termed self-dual if the dual of the problem is equivalent to
the primal. The advantage of self-duality is that we can apply a primal–dual interior-
point algorithm to solve the self-dual problem without doubling the dimension of the
linear system solved at each iteration.

5.7 Termination and Initialization 157

The homogeneous and self-dual linear program (HSDP) is constructed from (LP)
and (LD) in such a way that the point x = 1, y = 0, τ = 1, z = 1, θ = 1 is
feasible. The primal program is

(HSDP) minimize (n+ 1)θ

subject to Ax −bτ +b̄θ = 0,

−AT y +cτ −c̄θ ≥ 0,

bT y −cT x +z̄θ ≥ 0,

−b̄T y +c̄T x −z̄τ = −(n+ 1),

y free, x ≥ 0, τ ≥ 0, θ free;

where

b̄ = b− Al, c̄ = c− 1, z̄ = cT 1+ 1. (5.17)

Notice that b̄, c̄, and z̄ represent the “infeasibility” of the initial primal point, dual
point, and primal–dual “gap,” respectively. They are chosen so that the system is
feasible. For example, for the point x = 1, y = 0, τ = 1, θ = 1, the last equation
becomes

0+ cT x− 1T x− (cT x+ 1) = −n− 1.

Note also that the top two constraints in (HSDP), with τ = 1 and θ = 0, represent
primal and dual feasibility (with x ≥ 0). The third equation represents reversed
weak duality (with bT y ≥ cT x) rather than the reverse. So if these three equations
are satisfied with τ = 1 and θ = 0 they define primal and dual optimal solutions.
Then, to achieve primal and dual feasibility for x = 1, (y, s) = (0, 1), we add the
artificial variable θ . The fourth constraint is added to achieve self-duality.

The problem is self-dual because its overall coefficient matrix has the property
that its transpose is equal to its negative. It is skew-symmetric.

Denote by s the slack vector for the second constraint and by κ the slack scalar
for the third constraint. Denote by Fh the set of all points (y, x, τ, θ, s, κ)

that are feasible for (HSDP). Denote by F 0
h the set of strictly feasible points with

(x, τ , s, κ) > 0 in Fh. By combining the constraints (Exercise 14) we can write
the last (equality) constraint as

1T x+ 1T s+ τ + κ − (n+ 1)θ = (n+ 1), (5.18)

which serves as a normalizing constraint for (HSDP). This implies that for 0 ≤ θ ≤
1 the variables in this equation are bounded.

We state without proof the following basic result.

Theorem 1 Consider problems (HSDP).

(i) (HSDP) has an optimal solution and its optimal solution set is bounded.

158 5 Interior-Point Methods

(ii) The optimal value of (HSDP) is zero, and

(y, x, τ, θ, s, κ) ∈ Fh implies that (n+ 1)θ = xT s+ τκ.

(iii) There is an optimal solution (y∗, x∗, τ ∗, θ∗ = 0, s∗, κ∗) ∈ Fh such that

(
x∗ + s∗
τ ∗ + κ∗

)
> 0,

which we call a strictly self-complementary solution.

Part (ii) of the theorem shows that as θ goes to zero, the solution tends toward
satisfying complementary slackness between x and s and between τ and κ . Part
(iii) shows that at a solution with θ = 0, the complementary slackness is strict
in the sense that at least one member of a complementary pair must be positive.
For example, x1s1 = 0 is required by complementary slackness, but in this case
x1 = 0, s1 = 0 will not occur; exactly one of them must be positive.

We now relate optimal solutions to (HSDP) to those for (LP) and (LD).

Theorem 2 Let (y∗, x∗, τ ∗, θ∗ = 0, s∗, κ∗) be a strictly-self complementary solution
for (HSDP).

(i) (LP) has a solution (feasible and bounded) if and only if τ ∗ > 0. In this case, x∗/τ ∗
is an optimal solution for (LP) and y∗/τ ∗, s∗/τ ∗ is an optimal solution for (LD).

(ii) (LP) has no solution if and only if κ∗ > 0. In this case, x∗/κ∗ or y∗/κ∗or both are
certificates for proving infeasibility: if cT x∗ < 0 then (LD) is infeasible; if−bT y∗ < 0
then (LP) is infeasible; and if both cT x∗ < 0 and −bT y∗ < 0 then both (LP) and (LD)
are infeasible.

Proof We prove the second statement. We first assume that one of (LP) and (LD)
is infeasible, say (LD) is infeasible. Then there is some certificate x̄ ≥ 0 such that
Ax̄ = 0 and cT x̄ = −1. Let (ȳ = 0, s̄ = 0) and

α = n+ 1

1T x̄+ 1T s̄+ 1
> 0.

Then one can verify that

ỹ∗ = αȳ, x̃∗ = αx̄, τ̃ ∗ = 0, θ̃∗ = 0, s̃∗ = αs̄, κ̃∗ = α

is a self-complementary solution for (HSDP). Since the supporting set (the set of
positive entries) of a strictly complementary solution for (HSDP) is unique (see
Exercise 6), κ∗ > 0 at any strictly complementary solution for (HSDP).

Conversely, if τ ∗ = 0, then κ∗ > 0, which implies that cT x∗ − bT y∗ < 0, i.e.,
at least one of cT x∗ and −bT y∗ is strictly less than zero. Let us say cT x∗ < 0. In
addition, we have

Ax∗ = 0, AT y∗ + s∗ = 0, (x∗)T s∗ = 0 and x∗ + s∗ > 0.

5.7 Termination and Initialization 159

From Farkas’ lemma (Exercise 5), x∗/κ∗ is a certificate for proving dual infeasibil-
ity. The other cases hold similarly.

To solve (HSDP), we have the following theorem that resembles the central path
analyzed for (LP) and (LD).

Theorem 3 Consider problem (HSDP). For any μ > 0, there is a unique (y, x, τ, θ, s, κ)

in F̊h, such that

(
x ◦ s
τκ

)
= μ1.

Moreover, (x, τ) = (1, 1), (y, s, κ) = (0, 0, 1) and θ = 1 is the solution with μ = 1.

Theorem 3 defines an endogenous path associated with (HSDP):

C =
{
(y, x, τ, θ, s, κ) ∈ F 0

h :
(

x ◦ s
τκ

)
= xT s+ τκ

n+ 1
1
}

.

Furthermore, the potential function for (HSDP) can be defined as

ψn+1+ρ(x, τ, s, κ) = (n+ 1+ ρ) log(xT s+ τκ)−
n∑

j=1

log(xj sj)− log(τκ),

(5.19)

where ρ ≥ 0. One can then apply the interior-point algorithms described earlier to
solve (HSDP) from the initial point (x, τ) = (1, 1), (y, s, κ) = (0, 1, 1) and
θ = 1 with μ = (xT s+ τκ)/(n+ 1) = 1.

The HSDP method outlined above enjoys the following properties:

• It does not require regularity assumptions concerning the existence of optimal,
feasible, or interior feasible solutions.

• It can be initiated at x = 1, y = 0, and s = 1, feasible or infeasible, on the
central ray of the positive orthant (cone), and it does not require a big-M penalty
parameter or lower bound.

• Each iteration solves a system of linear equations whose dimension is almost the
same as that used in the standard (primal–dual) interior-point algorithms.

• If the linear program has a solution, the algorithm generates a sequence that
approaches feasibility and optimality simultaneously; if the problem is infeasible
or unbounded, the algorithm produces an infeasibility certificate for at least one
of the primal and dual problems; see Exercise 5.

160 5 Interior-Point Methods

5.8 Summary

The simplex method has for decades been an efficient method for solving linear
programs, despite the fact, in the worst case, the method may visit every vertex
of the feasible region and this can be exponential in the number of variables and
constraints. The ellipsoid method was the first method that was proved to converge
in time proportional to a polynomial in the size of the program, rather than to
an exponential in the size. However, in practice, it was disappointingly less fast
than the simplex method. Later, the interior-point method initiated by Karmarkar
significantly advanced the field of linear programming, for it not only was proved
to be a polynomial-time method, but it was found in practice to be faster than the
simplex method when applied to large-scale linear programs.

The interior-point method is based on introducing a logarithmic barrier function
with a weighting parameter μ; and now there is a general theoretical structure
defining the analytic center, the central path of solutions as μ→ 0, and the duals of
these concepts. This structure is useful for specifying and analyzing various versions
of interior-point methods.

Most methods employ a step of Newton’s method to find a point near the central
path when moving from one value of μ to another. One approach is the predictor-
corrector method, which first takes a step in the direction of decreasing μ and
then a corrector step to get closer to the central path. Another method employs a
potential function whose value can be decreased at each step, which guarantees
convergence and assures that intermediate points simultaneously make progress
toward the solution while taking much larger step sizes.

Complete algorithms based on these approaches require a number of other
features and details. For example, once systematic movement toward the solution is
terminated, a final phase may crossover to a nearby vertex or to a non-vertex point on
a face of the constraint set. Also, an efficient homogeneous and self-dual algorithm
has been developed with no need for an initial feasible solution and it automatically
detects possible infeasibility when it terminates. These features are incorporated
into several commercial software packages, and generally they perform well, able
to solve very large linear programs in reasonable time.

There has also been recent theoretical progress in using a volumetric center to
replace the analytic center in designing interior-point methods, which reduce the
iteration bound to

√
m from

√
n.

5.9 Exercises

1. Using the simplex method, solve the program (5.1) and count the number of
pivots required.

2. Prove the volume reduction rate in Theorem 1 for the ellipsoid method.

5.9 Exercises 161

3. Develop a cutting plane method, based on the ellipsoid method, to find a point
satisfying convex inequalities

fi(x) � 0, i = 1, . . . , m, |x|2 � E2,

where fi ’s are convex functions of x in C1.
4. Consider the linear program (5.5) and assume that F̊p = {x : Ax = b, x > 0}

is nonempty and its optimal solution set is bounded. Show that the dual of the
problem has a nonempty interior.

5. (Farkas’ lemma) Prove: Exactly one of the feasible sets {x : Ax = b, x � 0}
and {y : yT A � 0, yT b = 1} is nonempty. A vector y in the latter set is called
an infeasibility certificate for the former.

6. (Strict complementarity) Consider any linear program in standard form and
its dual and let both of them be feasible. Then, there always exists a strictly
complementary solution pair, (x∗, y∗, s∗), such that

x∗j s∗j = 0 and x∗j + s∗j > 0 for all j.

Moreover, the supports of x∗ and s∗, P ∗ = {j : x∗j > 0} and Z∗ = {j : s∗j >

0}, are invariant among all strictly complementary solution pairs.
7. (Central path theorem) Let (x(μ), y(μ), s(μ)) be the central path of (5.9).

Then prove

(a) The central path point (x(μ), y(μ), s(μ)) is bounded for 0 < μ � μ0 and
any given 0 < μ0 < ∞.

(b) For 0 < μ′ < μ,

cT x(μ′) � cT x(μ) and bT y(μ′) � bT y(μ).

Furthermore, if x(μ′) �= x(μ) and y(μ′) �= y(μ),

cT x(μ′) < cT x(μ) and bT y(μ′) > bT y(μ).

(c) (x(μ), y(μ), s(μ)) converges to an optimal solution pair for (LP) and
(LD). Moreover, the limit point x(0)P ∗ is the analytic center on the primal
optimal face, and the limit point s(0)Z∗ is the analytic center on the dual
optimal face, where (P ∗, Z∗) is the strict complementarity partition of the
index set {1, 2, . . . , n}.

8. Consider a primal–dual interior point (x, y, s) ∈ N(η) where η < 1. Prove
that there is a fixed quantity δ > 0 such that

xj � δ, for all j ∈ P ∗

162 5 Interior-Point Methods

and

sj � δ, for all j ∈ Z∗,

where (P ∗, Z∗) is defined in Exercise 6.
9. (Potential level theorem) Define the potential level set

�(δ) := {(x, y, s) ∈ F̊ : ψn+ρ(x, s) � δ}.

Prove

(a)

�(δ1) ⊂ �(δ2) if δ1 � δ2.

(b) For every δ, �(δ) is bounded and its closure �(δ) has nonempty intersec-
tion with the solution set.

10. Given 0 < x, 0 < s ∈ En, show that

n log(xT s)−
n∑

j=1

log(xj sj) � n log n

and

xT s � exp

[
ψn+p(x, s)− n log n

p

]
.

11. (Logarithmic approximation) If d ∈ En such that |d|∞ < 1 then

1T d �
n∑

i=1

log(1+ di) � 1T d− |d|2
2(1− |d|∞)

.

[Note:If d = (d1, d2, . . . dn) then |d|∞ ≡ maxj {|dj |}.]
12. Let the direction (dx, dy, ds) be generated by system (5.13) with γ = n/(n+

ρ) and μ = xT s/n, and let the step size be

α = θ
√

min(Xs)

|(XS)−1/2(xT s
(n+ρ)

1− Xs)|
, (5.20)

where θ is a positive constant less than 1. Let

x+ = x+ αdx, y+ = y+ αdy, and s+ = s+ αds.

References 163

Then, using Exercise 11 and the concavity of the logarithmic function show
(x+, y+, s+) ∈ F̊ and

ψn+ρ(x+, s+)− ψn+ρ(x, s)

� −θ
√

min(Xs) |(Xs)−1/2(1− (n+ ρ)

xT s
Xs)| + θ2

2(1− θ)
.

13. Let v = Xs in Exercise 12. Prove

√
min(v)|V−1/2(1− (n+ ρ)

1T V
v)| � √3/4,

where V is the diagonal matrix of v. Thus, the two exercises imply

ψn+ρ(x+, s+)− ψn+ρ(x, s) � −θ
√

3/4+ θ2

2(1− θ)
= −δ

for a constant δ. One can verify that δ > 0.2 when θ = 0.4.
14. Prove property (5.18) for (HDSP).
15. Prove Theorem 1 in Sect. 5.7.
16. Prove the analytic volume reduction theorem presented in Sect. 5.4 using the

analytic center conditions.

References

5.1 Computation and complexity models were developed by a number of scien-
tists; see, e.g., Cook [C5], Hartmanis and Stearns [H5] and Papadimitriou
and Steiglitz [P2] for the bit complexity models and Blum et al. [B21] for
the real number arithmetic model. For a general discussion of complexity
see Vavasis [V4]. For a comprehensive treatment which served as the basis
for much of this chapter, see Ye [Y3].

5.2 The Klee Minty example is presented in [K5]. Much of this material
is based on a teaching note of Cottle on Linear Programming taught at
Stanford [C6]. Practical performances of the simplex method can be seen
in Bixby [B18]. The simplex method efficiency for the Markov Decision
Process is due to Ye [Y4].

5.3 The ellipsoid method was developed by Khachiyan [K4]; more develop-
ments of the ellipsoid method can be found in Bland, Goldfarb and Todd
[B20, G10].

5.3 The analytic center for a convex polyhedron given by linear inequalities
was introduced by Huard [H12], and later by Sonnevend [S8]. The barrier
function was introduced by Frisch [F19]. The central path was analyzed

164 5 Interior-Point Methods

in McLinden [M3], Megiddo [M4], and Bayer and Lagarias [B3, B4], Gill
et al. [G5].

5.5 Path-following algorithms were first developed by Renegar [R1]. A pri-
mal barrier or path-following algorithm was independently analyzed by
Gonzaga [G13]. Both Gonzaga [G13] and Vaidya [V1] extended the rank
one updating technique [K2] for solving the Newton equation of each
iteration, and proved that each iteration uses O(n2.5) arithmetic operations
on average. Kojima, Mizuno and Yoshise [K6] and Monteiro and Adler
[M7] developed a symmetric primal–dual path-following algorithm with
the same iteration and arithmetic operation bounds.

5.6–5.7 Predictor-corrector algorithms were developed by Mizuno et al. [M6].
A more practical predictor-corrector algorithm was proposed by Mehrotra
[M5] (also see Lustig et al. [L19] and Zhang and Zhang [Z3]). Mehrotra’s
technique has been used in almost all linear programming interior-point
implementations. A primal potential reduction algorithm was initially
proposed by Karmarkar [K2]. The primal–dual potential function was
proposed by Tanabe [T2] and Todd and Ye [T5]. The primal–dual potential
reduction algorithm was developed by Ye [Y1], Freund [F18], Kojima,
Mizuno and Yoshise [K7], Goldfarb and Xiao [G11], Gonzaga and Todd
[G14], Todd [T4], Tunςel [T10], Tutuncu [T11], and others. The homoge-
neous and self-dual embedding method can be found in Ye et al. [Y2], Luo
et al. [L18], Andersen and Ye [A5], and many others. It is also implemented
in most linear programming software packages such as SEDUMI of Sturm
[S11].

5.1–5.7 There are several comprehensive text books which cover interior-point
linear programming algorithms. They include Bazaraa, Jarvis and Sherali
[B6], Bertsekas [B12], Bertsimas and Tsitsiklis [B13], Cottle [C6], Cottle,
Pang and Stone [C7], Dantzig and Thapa [D9, D10], Fang and Puthenpura
[F2], den Hertog [H6], Murty [M12], Nash and Sofer [N1], Nesterov
[N2], Roos et al. [R4], Renegar [R2], Saigal [S1], Vanderebei [V3], and
Wright [W8].

5.8 The reduction in iteration bound of interior-point method using the volu-
metric center can be found in Lee and Sidford [LS] and references therein.

Chapter 6
Conic Linear Programming

6.1 Convex Cones

Conic Linear Programming, hereafter CLP, is a natural extension of Linear pro-
gramming (LP). In LP, the variables form a vector which is required to be
component-wise nonnegative, while in CLP they are points in a pointed convex
cone (see Appendix B.1) of an Euclidean space, such as vectors as well as matrices
of finite dimensions. For example, Semidefinite programming (SDP) is a kind of
CLP, where the variable points are symmetric matrices constrained to be positive
semidefinite. Both types of problems may have linear equality constraints as well.
Although CLPs have long been known to be convex optimization problems, no
efficient solution algorithm was known until about two decades ago, when it was
discovered that interior-point algorithms for LP discussed in Chap. 5, can be adapted
to solve certain CLPs with both theoretical and practical efficiency. During the same
period, it was discovered that CLP, especially SDP, is representative of a wide
assortment of applications, including combinatorial optimization, statistical com-
putation, robust optimization, Euclidean distance geometry, quantum computing,
optimal control, etc. CLP is now widely recognized as a powerful mathematical
computation model of general importance.

First, we illustrate several convex cones popularly used in conic linear optimiza-
tion.

Example 1 The followings are all (closed) convex cones.

• The n-dimensional nonnegative orthant, En+ = {x ∈ En : x ≥ 0}, is a convex
cone.

• The set of all n-dimensional symmetric positive semidefinite matrices, denoted
by Sn+, is a convex cone, called the positive semidefinite matrix cone. When X is
positive semidefinite (positive definite), we often write the property as X � (�)0.

© Springer Nature Switzerland AG 2021
D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
https://doi.org/10.1007/978-3-030-85450-8_6

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85450-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-85450-8_6

166 6 Conic Linear Programming

• The set {(u; x) ∈ En+1 : u ≥ |x|p} is a convex cone in En+1, called the p-order
cone where 1 ≤ p < ∞. When p = 2, the cone is called second-order cone or
“Ice-cream” cone.

Sometimes, we use the notion of conic inequalities P �K Q or Q �K P, in which
cases we simply mean P−Q ∈ K .

Suppose A and B are k × n matrices. We define the inner product

A • B = trace(AT B) =
∑
i,j

aijbij.

When k = 1, they become n-dimensional vectors and the inner product is the
standard dot product of two vectors. In SDP, this definition is almost always used
for the case where the matrices are both square and symmetric. The matrix norm
associated with the inner product is called Frobenius norm:

|X|f =
√

X • X .

For a cone K , the dual of K is the cone

K∗ := {Y : X • Y ≥ 0 for all X ∈ K}.

It is not difficult to see that the dual cones of the first two cones in Example 1 are all
them self, respectively; while the dual cone of the p-order cone is the q-order cone
where

1

p
+ 1

q
= 1.

One can see that when p = 2, q = 2 as well; that is, they are both 2-order cones.
For a closed convex cone K , the dual of the dual cone is itself.

6.2 Conic Linear Programming Problem

Now let C and Ai , i = 1, 2, . . . , m, be given matrices of Ek×n, b ∈ Em, and K

be a closed convex cone in Ek×n. And let X be an unknown matrix of Ek×n. Then,
the standard form (primal) conic linear programming problem is

(CLP) minimize C • X

subject to Ai • X = bi, i = 1, 2, . . . , m, X ∈ K. (6.1)

Note that in CLP we minimize a linear function of the decision matrix constrained
in cone K and subject to linear equality constraints.

6.2 Conic Linear Programming Problem 167

For convenience, we define an operator from a symmetric matrix to a vector:

AX =

⎛
⎜⎜⎝

A1 • X
A2 • X
· · ·

Am • X

⎞
⎟⎟⎠ . (6.2)

Then, CLP can be written in a compact form:

(CLP) minimize C • X
subject to AX = b, X ∈ K.

When cone K is the nonnegative orthant En+, CLP reduces to linear programming
(LP) in the standard form, where A becomes the constraint matrix A. When K is the
positive semidefinite cone Sn+, CLP is called semidefinite programming (SDP); and
when K is the p-order cone, it is called p-order cone programming. In particular,
when p = 2, the model is called second-order cone programming (SOCP).
Frequently, we write variable X in (CLP) as x if it is indeed a vector, such as when
K is the nonnegative orthant or p-order cone.

One can see that the problem (SDP) (that is, (6.1) with the semidefinite cone)
generalizes classical linear programming in standard form:

minimize cT x,

subject to Ax = b, x ≥ 0.

Define C = Diag[c1, c2, . . . , cn], and let Ai = Diag[ai1, ai2, . . . , ain] for
i = 1, 2, . . .m. The unknown is the n×n symmetric matrix X which is constrained
by X � 0. Since the trace of C•X and Ai •X depend only on the diagonal elements
of X, we may restrict the solutions X to diagonal matrices. It follows that in this
case the SDP problem is equivalent to a linear program, since a diagonal matrix
is positive semidefinite is and only if its all diagonal elements are nonnegative.

One can further see the role of cones in the following examples.

Example 1 Consider the following optimization problems with three variables.

• This is a linear programming problem in standard form:

minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,

(x1; x2; x3) ≥ 0.

168 6 Conic Linear Programming

• This is a semidefinite programming problem where the dimension of the matrix
is two:

minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,[
x1 x2

x2 x3

]
� 0,

Let

C =
[

2 .5
.5 1

]
and A1 =

[
1 .5
.5 1

]
.

Then, the problem can be written in a standard SDP form

minimize C • X
subject to A1 • X = 1, X ∈ S2+.

• This is a second-order cone programming problem:

minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,√
x2

2 + x2
3 ≤ x1.

We present several application examples to illustrate the flexibility of this
formulation.

Example 2 (Binary Quadratic Optimization) Consider a binary quadratic maxi-
mization problem

maximize xT Qx+ 2cT x

subject to xj = {1, −1}, for all j = 1, . . . , n,

which is a difficult nonconvex optimization problem. The problem can be rewrit-
ten as

z∗ ≡ maximize

[
x
1

]T [
Q c
cT 0

] [
x
1

]

subject to (xj)
2 = 1, for all j = 1, . . . , n,

6.2 Conic Linear Programming Problem 169

which can be also written as a homogeneous quadratic binary problem

z∗ ≡ maximize

[
Q c
cT 0

]
•
[

x
xn+1

] [
x

xn+1

]T

subject to Ij •
[

x
xn+1

] [
x

xn+1

]T

= 1, for all j = 1, . . . , n+ 1,

where Ij is the (n + 1) × (n + 1) matrix whose components are all zero except at
the j th position on the main diagonal where it is 1. Let (x∗; x∗n+1) be an optimal
solution for the homogeneous problem. Then, one can see that x∗/x∗n+1 would be an
optimal solution to the original problem.

Since

[
x

xn+1

] [
x

xn+1

]T

forms a positive semidefinite matrix (with rank equal to

1), a semidefinite relaxation of the problem is defined as

zSDP ≡ maximize

[
Q c
cT 0

]
•Y

subject to Ij • Y = 1, for all j = 1, . . . , n+ 1, (6.3)

Y ∈ Sn+1+ ,

where the symmetric matrix Y has dimension n + 1. Obviously, zSDP is a upper
bound of z∗, since the rank-1 requirement is not enforced in the relaxation.

Let’s see how to use the relaxation. For simplicity, assuming zSDP > 0, it has
been shown that in many cases of this problem an optimal SDP solution either
constitutes an exact solution or can be rounded to a good approximate solution of
the original problem. In the former case, one can show that a rank-1 optimal solution
matrix Y exists for the semidefinite relaxation and it can be found by using a rank-
reduction procedure. For the latter case, one can, using a randomized rank-reduction
procedure or the principle components of Y, find a rank-1 feasible solution matrix
Ŷ such that

[
Q c
cT 0

]
• Ŷ ≥ α · ZSDP ≥ α · Z∗

for a provable factor 0 < α ≤ 1. Thus, one can find a feasible solution to the
original problem whose objective value is no less than a factor α of the true maximal
objective cost.

Example 3 (Sensor Network Localization) This problem is that of determining the
location of sensors (for example, several cell phones scattered in a building) when
measurements of some of their separation Euclidean distances can be determined,
but their specific locations are not known. In general, suppose there are n unknown

170 6 Conic Linear Programming

points xj ∈ Ed, j = 1, . . . , n. We consider an edge to be a path between two
points, say, i and j . There is a known subset Ne of pairs (edges) ij for which the
separation distance dij is known. For example, this distance might be determined
by the signal strength or delay time between the points. Typically, in the cell phone
example, Ne contains those edges whose lengths are small so that there is a strong
radio signal. Then, the localization problem is to find locations xj , j = 1, . . . , n,
such that

|xi − xj |2 = (dij)
2, for all (i, j) ∈ Ne,

subject to possible rotation and translation. (If the locations of some of the sensors
are known, these may be sufficient to determine the rotation and translation as well.)

Let X = [x1 x2 . . . xn] be the d × n matrix to be determined. Then

|xi − xj |2 = (ei − ej)
T XT X(ei − ej),

where ei ∈ En is the vector with 1 at the ith position and zero everywhere else. Let
Y = XT X. Then the semidefinite relaxation of the localization problem is to find Y
such that

(ei − ej)(ei − ej)
T • Y = (dij)

2, for all (i, j) ∈ Ne,

Y � 0.

This problem is one of finding a feasible solution; the objective function is null. But
if the distance measurements have noise, one can add additional variables and an
error objective to minimize. For example,

minimize
∑

(i,j)∈Ne
|zij |

subject to (ei − ej)(ei − ej)
T • Y+ zij = (dij)

2, for all (i, j) ∈ Ne,

Y � 0.

This problem can be converted into a conic linear program with mixed nonnegative
orthant and semidefinite cones.

Under certain graph structure, an optimal SDP solution Y of the formulation would
be guaranteed rank-d so that it constitutes an exact solution of the original problem.
Also, in general Y can be rounded to a good approximate solution of the original
problem. For example, one can, using a randomized rank-reduction procedure or the
d principle components of Y, find a rank-d solution matrix Ŷ.

6.2 Conic Linear Programming Problem 171

Example 4 (Sensor Network Localization with Anchors) In the sensor network
localization example, often a few of the sensors’ locations are known and they are
termed anchors, denoted by (a1, . . . , ad+1). Then, the localization problem is to find
location vectors xj , j = d + 2, d + 2, . . . , n, such that

|xi − xj |2 = (dij)
2, for all (i, j) ∈ Ne

|aa − xj |2 = (daj)
2, for all (a, j) ∈ Na,

where, in addition, subset Na of pairs (edges) between an anchor and a sensor, aj

(a = 1, . . . , d + 1), for which the distance daj is known.
Then the SDP relaxation becomes

(ei − ej)(ei − ej)
T • Y = (dij)

2, for all (i, j) ∈ Ne,

(
aa

−ej

)(
aa

−ej

)T

•
(

Id X
XT Y

)
= (daj)

2, for all (a, j) ∈ Na

Z :=
(

Id X
XT Y

)
� 0.

Here Id is the d-dimensional identity matrix and the variable symmetric matrix Z is
of dimension d + n. If the rank of Z is d , we have found exact localizations.

Figure 6.1 illustrates results for d = 2 where points are randomly distributed in
a unit square; “Diamond” represents an anchor location (three are used), “Circle”
represents a true sensor location, and “Star” represents the sensor location (xj)
computed from the SDP relaxation. The figure on the left has total 50 points where
we assume every distance value below 0.35 is known; while the figure on the right
has a total of 100 points where we assume every distance value below 0.25 is known.

0.5

0.5

0.4

0.3

0.2

0.1

0

0

–0.1

–0.2

–0.3

–0.4

–0.5
–0.5 0.50–0.5

0.5

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5

Fig. 6.1 Sensor network localization illustration; left with 50 points and right with 100 points

172 6 Conic Linear Programming

6.3 Farkas’ Lemma for Conic Linear Programming

We first introduce the notion of “interior” of cones.

Definition 1 We call X an interior point of cone K if and only if, for any point
Y ∈ K∗, Y • X = 0 implies Y = 0.

The set of interior points of K is denoted by
◦
K .

Theorem 1 The interior of the following convex cones are given as:

• The interior of the nonnegative orthant cone is the set of all vectors where every entry is
positive.

• The interior of the positive semidefinite cone is the set of all positive definite matrices.
• The interior of p-order cone is the set of {(u; x) ∈ En+1 : u > |x|p}.
We give a sketch of the proof for the second-order cone, i.e., p = 2. Let (ū; x̄) �=

0 be any second-order cone point but ū = |x̄|. Then, we can choose a dual cone
(also the second-order cone) point (v; y) such that

v = αū, y = −αx̄,

for a positive α. Note that

(ū; x̄) • (v; y) = αv̄2 − α|x̄|2 = 0.

Then, one can let α > 0 so that (v; y) cannot be zero.
Now let (ū; x̄) be any given second-order cone point with ū > |x̄|. We like to

prove that, for any dual cone (also the second-order cone) point (v; y),

(ū; x̄) • (v; y) = 0

implies that (v; y) is zero. Note that

0 = (ū; x̄) • (v; y) = ūv + x̄ • y

or

ūv ≤ −x̄ • y ≤ |x̄||y|.

If v = 0, we must have y = 0; otherwise,

ū ≤ |x̄||y|/v ≤ |x|,

which contradicts ū > |x̄|.

6.3 Farkas’ Lemma for Conic Linear Programming 173

We leave the proof of the following proposition as an exercise.

Proposition 1 Let X ∈ ◦K and Y ∈ K∗. Then For any nonnegative constant κ , Y • X ≤ κ

implies that Y is bounded.

Let us now consider the feasible region of (CLP) (6.1):

F := {X : AX = b, X ∈ K};

where the interior of the feasible region is

◦
F := {X : AX = b, X ∈ ◦K}.

If F is empty with K = En+, from Farkas’ lemma for linear programming, a vector
y ∈ Em, with yT A ≤ 0 and yT b > 0, always exists and is called an infeasibility
certificate for the system {x : Ax = b, x ≥ 0}.

Does this alternative relations hold for K being a general closed convex one? Let
us rigorousize the question. Let us define the reverse operator of (6.2) from a vector
to a matrix:

yT A =
m∑

i=1

Aiyi. (6.4)

Note that, by the definition, for any matrix X ∈ Ek×n

yT A • X = yT (AX),

that is, the association property holds. Also, (yT A)T = AT y, that is, the transpose
operation applies here as well.

Then, the question becomes: when F is empty, does there exist a vector y ∈
Em such that −yTA ∈ K∗ and yT b > 0? Similarly, one can ask: when set
{y : CT − yTA ∈ K} is empty, does there exist a matrix X ∈ K∗ such that AX = 0
and C • X < 0? Note that the answer to the second question is also “yes” when
K = En+.

Example 1 The answer to either question is “not necessarily”; see example
below.

• For the first question, consider K = S2+ and

A1 =
[

1 0
0 0

]
, A2 =

[
0 1
1 0

]

174 6 Conic Linear Programming

and

b =
[

0
2

]

• For the second question, consider K = S2+ and

C =
[

0 1
1 0

]
and A1 =

[
1 0
0 0

]
.

However, if the data set A satisfies additional conditions, the answer would be
“yes”; see theorem below.

Theorem 2 (Farkas’ Lemma for CLP) We have

• Consider set

Fp := {X : AX = b, X ∈ K}.

Suppose that there exists a vector
◦
y such that − ◦

y
T

A ∈
◦

K∗. Then,

1. Set C := {AX ∈ Em : X ∈ K} is a closed convex set;
2. Fp has a (feasible) solution if and only if set {y : −yT A ∈ K∗, yT b > 0} has no

feasible solution.

• Consider set

Fd := {y : CT − yT A ∈ K}.

Suppose that there exists a vector
◦
X∈

◦
K∗ such that A ◦

X= 0. Then,

1. Set C := {S+ yT A : S ∈ K} is a closed convex set;
2. Fd has a (feasible) solution if and only if set {X : AX = 0, X ∈ K∗, C • X < 0}

has no feasible solution.

Proof We prove the first statement of the theorem. We prove the first part. It is clear
that C is a convex set. To prove that C is a closed set, we need to show that if
yk := AXk ∈ Em for Xk ∈ K , k = 1, . . ., converges to a vector ȳ, then ȳ ∈ C or
there is X̄ ∈ K such that ȳ := AX̄. Without loss of generality, we assume that yk is
a bounded sequence. Then, we have, for a positive constant c,

c ≥ −(
◦
y)T yk = −(

◦
y)T (AXk) = −(

◦
y)T A • Xk,∀k.

Since −(
◦
y)T A ∈

◦
K∗, by definition, the sequence of Xk is also bounded. Then there

is at least an accumulate point X̄ ∈ K because K is a closed cone. Thus, we must
have ȳ := AX̄.

6.3 Farkas’ Lemma for Conic Linear Programming 175

We now prove the second part. If Fp has a feasible solution X̄. Then, let y make
−yTA ∈ K∗

−yT b = −yT (AX̄) = −yT A • X̄ ≥ 0.

Thus, it must be true yT b ≤ 0, that is, {y : −yTA ∈ K∗, yT b > 0}must be empty.
On the other hand, let Fp has no feasible solution, or equivalently, b �∈ C. We

now show that {y : −yTA ∈ K∗, yT b > 0} must be nonempty.
Since C is a closed convex set, from the separating hyperplane theorem, there

must exist a ȳ ∈ Em such that

ȳT b > ȳT y, ∀y ∈ C,

or, from y = AX, X ∈ K , we have

ȳT b > ȳT (AX) = ȳT A • X, ∀X ∈ K.

That is, ȳTA • X is bounded above for all X ∈ K .
Immediately, we see ȳT b > 0 since 0 ∈ K . Next, it must be true −ȳT A ∈ K∗.

Otherwise, we must be able to find an X̄ ∈ K such that −ȳTA • X̄ < 0 by the
definition of K and its dual K∗. For any positive constant α we maintain αX̄ ∈ K

and let α go to∞. Then, ȳT A• (αX̄) goes to∞, contradicting the fact that ȳT A•X
is bounded above for all X ∈ K . Thus, ȳ is a feasible solution in {y : −yTA ∈
K∗, yT b > 0}.

Note that C may not be a closed set if the interior condition of Theorem 2 is not
met. Consider A1, A2 and b in Example 1, and we have

C =
{
AX =

[
A1 • X
A2 • X

]
: X ∈ S2+

}
.

Let

Xk =
[1

k
1

1 k

]
∈ S2+, ∀k = 1,

Then we see

yk = AXk =
[1

k

2

]
.

As k →∞ we see yk converges b, but b is not in C.

176 6 Conic Linear Programming

6.4 Conic Linear Programming Duality

Because conic linear programming is an extension of classical linear programming,
it would seem that there is a natural dual to the primal problem, and that this dual
is itself a conic linear program. This is indeed the case, and it is related to the primal
in much the same way as primal and dual linear programs are related. Furthermore,
the primal and dual together lead to the formation a primal–dual solution method,
which is discussed later in this chapter.

The dual of the (primal) CLP (6.1) is

(CLD) maximize yT b

subject to
∑m

i
yiAi + S = CT , S ∈ K∗. (6.5)

On written in a compact form:

(CLD) maximize yT b

subject to yT A+ S = CT , S ∈ K∗.

Notice that S represents a slack matrix, and hence the problem can alternatively be
expressed as

maximize yT b

subject to
∑m

i
yiAi �K∗ CT . (6.6)

Recall that conic inequality Q �K P means P−Q ∈ K .
Again, just like linear programming, the dual of (CLD) will be (CLP), and they

form a primal and dual pair. Whichever is the primal, then the other will be the dual.
We would see more primal and dual relations later.

Example 1 Here are dual problems to the three instances in Example 1 where y is
just a scalar.

• The dual to the linear programming instance:

maximize y

subject to y(1, 1, 1)+ (s1, s2, s3) = (2, 1, 1),

s = (s1, s2, s3) ∈ K∗ = E3+.

• The dual to semidefinite programming instance:

maximize y

subject to yA1 + S = C,

S ∈ K∗ = S2+,

6.4 Conic Linear Programming Duality 177

where recall

C =
[

2 0.5
0.5 1

]
and A1 =

[
1 0.5

0.5 1

]
.

• The dual to the second-order cone instance:

maximize y

subject to y(1, 1, 1)+ (s1, s2, s3) = (2, 1, 1),√
s2

2 + s2
3 ≤ s1, or s = (s1, s2, s3) in second-order cone.

Let us consider a couple of more dual examples of the problems we posted earlier.

Example 2 (The Dual of Binary Quadratic Maximization) Consider the semidefi-
nite relaxation (6.3) for the binary quadratic maximization problem. It’s dual is

minimize
∑n+1

j=1
yj

subject to
∑n+1

j=1
yj Ij − S =

[
Q c
cT 0

]
, S � 0.

Note that

n+1∑
j=1

yj Ij −
[

Q c
cT 0

]

is exactly the Hessian matrix of the Lagrange function of the quadratic maximization
problem; see Chap. 11. Therefore, there is a close connection between the Lagrange
and conic dualities. The problems is to find a diagonal matrix Diag[(y1; . . . ; yn+1)]
such that the Lagrange Hessian is positive semidefinite and its sum of diagonal
elements is minimized.

Example 3 (The Dual of Sensor Localization) Consider the semidefinite program-
ming relaxation for the sensor localization problem (with no noises). It’s dual is

maximize
∑

(i,j)∈Ne

yij

subject to
∑

(i,j)∈Ne

yij (ei − ej)(ei − ej)
T + S = 0, S � 0.

Here, yij represents an internal force or tension on edge (i, j). Obviously, yij = 0
for all (i, j) ∈ Ne is a feasible solution for the dual. However, finding nontrivial
internal forces is a fundamental problem in network and structure design, and the
maximization of the dual would help to achieve the goal.

178 6 Conic Linear Programming

Many optimization problems can be directly cast in the CLD form.

Example 4 (Euclidean Facility Location) This problem is to determine the location
of a facility serving n clients placed in a Euclidean space, whose known locations
are denoted by aj ∈ Ed, j = 1, . . . , n. The location of the facility would minimize
the sum of the Euclidean distances from the facility to each of the clients. Let the
location decision be vector f ∈ Ed . Then the problem is

minimize
∑n

j=1 |f− aj | .

The problem can be reformulated as

minimize
∑n

j=1 δj

subject to sj + f = aj , ∀j = 1, . . . , n,

|sj | ≤ δj , ∀j = 1, . . . , n.

This is a conic formulation in the (CLD) form. To see it clearly, let d = 2 and n = 3
in the example, and let

AT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 −1 0
0 0 0 0 −1
0 1 0 0 0
0 0 0 −1 0
0 0 0 0 −1
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ E9×5, b =

⎡
⎢⎢⎢⎢⎢⎣

1
1
1
0
0

⎤
⎥⎥⎥⎥⎥⎦
∈ E5, c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
a1

0
a2

0
a3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ E9,

and variable vector

y = [δ1; δ2; δ3; f] ∈ E5.

Then, the facility location problem becomes

minimize yT b

subject to yT A+ sT = cT , s ∈ K;

where K is the product of three second-order cones each of which has dimension 3.
More precisely, the first three elements of s ∈ E9 are in the 3-dimensional second-
order cone; and so are the second three elements and the third three elements of s.
In general, the product of (possibly mixed) cones, say K1, K2 and K3, is denoted
by K1 ⊕ K2 ⊕ K3, and X ∈ K1 ⊕ K2 ⊕ K3 means that X is divided into three

6.4 Conic Linear Programming Duality 179

components such that

X = (X1; X2; X3), where X1 ∈ K1, X2 ∈ K2, and X3 ∈ K3.

The dual of the facility location problem would be in the (CLP) form:

minimize cT x

subject to Ax = b, x ∈ K∗;

where

K∗ = (K1 ⊕K2 ⊕K3)
∗ = K∗

1 ⊕K∗
2 ⊕K∗

3 .

That is, in this particular problem, the first three elements of x ∈ E9 are in the
3-dimensional second-order cone; and so are the second three elements and the third
three elements of x.

Consider further the equality constraints, the dual can be simplified as

maximize
∑3

j=1 aT
j xj

subject to
∑3

j=1 xj = 0 ∈ E2,

|xj | ≤ 1, ∀ j = 1, 2, 3.

Example 5 (Quadratic Constraints) Quadratic constraints can be transformed to
linear semidefinite form by using the concept of Schur complements. Let A be a
(symmetric) m-dimension positive definite matrix, C be a symmetric n-dimension
matrix, and B be an m× n matrix. Then, matrix

S = C− BT A−1B

is called the Schur complement of A in the matrix

Z =
[

A B
BT C

]
.

Moreover, Z is positive semidefinite if and only if S is positive semidefinite.
Now consider a general quadratic constraint of the form

yT BT By− cT y− d ≤ 0. (6.7)

This is equivalent to

[
I By

yT BT cT y+ d

]
� 0 (6.8)

180 6 Conic Linear Programming

because the Schur complement of this matrix with respect to I is the negative of the
left side of the original constraint (6.7). Note that in this larger matrix, the variable
y appears only affinely, not quadratically.

Indeed, (6.8) can be written as

P(y) = P0 + y1P1 + y2P2 + · · · ynPn � 0, (6.9)

where

P0 =
[

I 0
0 d

]
, Pi =

[
0 bi

bT
i ci

]
for i = 1, 2, . . . n

with bi being the ith column of B and ci being the ith component of c. The constraint
(6.9) is of the form that appears in the dual form of a semidefinite program.

There is a more efficient mixed semidefinite and second-order cone formulation
of the inequality (6.7) to reduce the dimension of semidefinite cone. We first
introduce slack variable s and s0 by linear constraints:

By− s = 0

Then, we let |s| ≤ s0 (or (s0; s) in the second-order cone) and

[
1 s0

s0 cT y+ d

]
� 0.

Again, the matrix constraint is of the dual form of a semidefinite cone, but its
dimension is fixed at 2.

Suppose the original optimization problem has a quadratic objective: mini-
mize q(x). The objective can be written instead as: minimize t subject to q(x) ≤ t ,
and then this constraint as well as any number of other quadratic constraints can
be transformed to semidefinite constraints, and hence the entire problem converted
to a mixed second-order cone and semidefinite program. This approach is useful
in many applications, especially in various problems of financial engineering and
control theory.

The duality is manifested by the relation between the optimal values of the primal
and dual programs. The weak form of this relation is spelled out in the following
lemma, the proof of which, like the weak form of other duality relations we have
studied, is essentially an accounting issue.

Weak Duality in CLP Let X be feasible for (CLP) and (y, S) feasible for (CLD). Then,

C • X ≥ yT b.

6.4 Conic Linear Programming Duality 181

Proof By direct calculation

C • X− yT b = (

m∑
i=1

yiAi + S) • X− yT b

=
m∑

i=1

yi(Ai • X)+ S • X− yT b

=
m∑

i=1

yibi + S •X− yT b

= S • X ≥ 0,

where the last inequality comes from X ∈ K and S ∈ K∗.

As in other instances of duality, the strong duality of conic linear programming
is weak unless other conditions hold. For example, the duality gap may not be zero
at optimality in the following SDP instance.

Example 6 The following semidefinite program has a duality gap:

C =
⎡
⎣

0 1 0
1 0 0
0 0 0

⎤
⎦ , A1 =

⎡
⎣

0 0 0
0 1 0
0 0 0

⎤
⎦ , A2 =

⎡
⎣

0 −1 0
−1 0 0

0 0 2

⎤
⎦

and

b =
[

0
2

]
.

The primal minimal objective value is 0 achieved by

X =
⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦

and the dual maximal objective value is −2 achieved by y = [0, −1]; so the duality
gap is 2.

However, under certain technical conditions, there would be no duality gap. One
condition is related to whether or not the primal feasible region Fp or dual feasible
region has an interior feasible solution. We say Fp has an interior (feasible solution)
if and only if

◦
F p:= {X : AX = b, X ∈ ◦K}

182 6 Conic Linear Programming

is nonempty, and Fd has an interior feasible solution if and only if

◦
F d := {(y, S) : yT A+ S = C, S ∈ ◦K

∗
}

is nonempty. We state here a version of the strong duality theorem.

Strong Duality in (CLP)

i) Let (CLP) or (CLD) be infeasible, and furthermore the other be feasible and has an
interior. Then the other is unbounded.

ii) Let (CLP) and (CLD) be both feasible, and furthermore one of them has an interior.
Then there is no duality gap between (CLP) and (CLD).

iii) Let (CLP) and (CLD) be both feasible and have interior. Then, both have optimal
solutions with no duality gap.

Proof We let cone H = K ⊕ E1+ in the following proof.

(i) Suppose Fd is empty and Fp is feasible and has an interior feasible solution.

Then, we have an X̄ ∈ ◦K and τ̄ = 1 that is an interior feasible solution to
(homogeneous) conic system:

AX̄− bτ̄ = 0, (X̄, τ̄) ∈ ◦
H .

Now, for any z∗, we form an alternative system pair based on Farkas’ Lemma
(Theorem 2):

{(X, τ) : AX− bτ = 0, C • X− z∗τ < 0, (X, τ) ∈ H },

and

{(y; S, κ) : AT y+ S = C, −bT y+ κ = −z∗, (S, κ) ∈ H ∗}.

But the latter is infeasible, so that the former has a feasible solution (X, τ).
At such a feasible solution, if τ > 0, we have C • (X/τ) < z∗ for any z∗.
Otherwise, τ = 0 implies that a new solution X̄+ αX is feasible for (CLP) for
any positive α; and, as α →∞, the objective value of the new solution goes to
−∞. Hence, either way we have a feasible solution for (CLP) whose objective
value is unbounded from below.

(ii) Let Fp be feasible and have an interior feasible solution, and let z∗ be its
objective infimum. Again, we have an alternative system pair as listed in the
proof of i). But now the former is infeasible, so that we have a solution for the
latter. From the Weak Duality theorem bT y ≤ z∗, thus we must have κ = 0,
that is, we have a solution (y, S) such that

AT y+ S = C, bT y = z∗, S ∈ K∗.

6.4 Conic Linear Programming Duality 183

(iii) We only need to prove that there exists a solution X ∈ Fp such that C•X = z∗,
that is, the infimum of (CLP) is attainable. But this is just the other side of the
proof given that Fd is feasible and has an interior feasible solution, and z∗ is
also the supremum of (CLD).

Again, if one of (CLP) and (CLD) has no interior feasible solution, the common
objective value may not be attainable. For example,

C =
[

1 0
0 0

]
, A1 =

[
0 1
1 0

]
, and b1 = 2.

The dual is feasible but has no interior, while the primal has an interior. The common
objective value equals 0, but no primal solution attaining the infimum value.

Most of these examples that make the strong duality failed are superficial, and
a small perturbation would overcome the failure. Thus, in real applications and in
the rest of the chapter, we may assume that both (CLP) and (CLD) have interior
when they are feasible. Consequently, any primal and dual optimal solution pair
must satisfy the optimality conditions:

C • X− yT b = 0
AX = b

yT A+ S = CT

X ∈ K, S ∈ K∗
; (6.10)

or

X • S = 0
AX = b

yT A+ S = CT

X ∈ K, S ∈ K∗
. (6.11)

We now present an application of the strong duality theorem.

Example 7 (Robust Portfolio Design) The Markowitz portfolio design model (also
see 4) is

minimize xT Σx

subject to 1T x = 1, πT x ≥ π,

184 6 Conic Linear Programming

where Σ is the covariance matrix and π is the expect return rate vector of a set
of stocks, and π is the desired return rate of the portfolio. The problem can be
equivalently written as a mixed conic problem

minimize Σ • X

subject to 1T x = 1, πT x ≥ π,

X− xxT � 0.

Now suppose Σ is incomplete and/or uncertain, and it is expressed by

Σ0 +
m∑

i=1

yiΣ i (� 0),

for some variables yi’s. Then, we like to solve a robust model

minimize

{
maxy

(
Σ0 +∑m

i=1 yiΣ i

) • X
s.t. Σ0 +∑m

i=1 yiΣ i � 0

}

subject to 1T x = 1, πT x ≥ π,

X− xxT � 0.

The inner problem is an SDP problem. Assuming strong duality holds, we replace
it by its dual, and have

minimize

⎧
⎨
⎩

minY Σ0 • (Y+ X)

s.t. Σ i • (Y+ X) = 0, ∀i = 1, . . . ,m,

Y � 0

⎫
⎬
⎭

subject to 1T x = 1, πT x ≥ π,

X− xxT � 0.

Then, we can integrate the two minimization problems together and form

minimize Σ0 • (Y+ X)

subject to 1T x = 1, πT x ≥ π,

Σ i • (Y+ X) = 0, ∀i = 1, . . . ,m,

Y � 0, X− xxT � 0.

Finally, like the dual construction presented in Sect. 3.1, the following rules are
direct consequences of the original definition and the equivalence of various forms
of conic linear programs where xj is the j th block of variables and yi is the dual
vector associated with the ith block of constraints (Table 6.1).

6.5 Complementarity and Solution Rank of SDP 185

Table 6.1 Relations of the conic primal and dual and vice versa; either side can be primal or dual

Obj. coef. vector/matrix Right-hand side
Right-hand side Obj. coef. vector/matrix
A AT

Max model Min model

xj ∈ K j th block-constraint slacks ∈ K∗

xj free j th block-constraint slacks = 0
ith block-constraint slacks ∈ K yi ∈ K∗

ith block-constraint slacks = 0 yi free

6.5 Complementarity and Solution Rank of SDP

In linear programming, since x ≥ 0 and s ≥ 0,

0 = x • s = xT s =
n∑

j=1

xj sj

implies that xjsj = 0 for all j = 1, . . . , n. This property is often called comple-
mentarity. Thus, besides feasibility, and optimal linear programming solution pair
must satisfy complementarity.

Now consider semidefinite cone Sn+. Since X � 0 and S � 0, 0 = X • S implies
XS = 0, that is, the regular matrix product of the two is a zero matrix. In other
words, every column (or row) of X is orthogonal to every column (or row) of S.
We also call such property complementarity. Thus, besides feasibility, an optimal
semidefinite programming solution pair must satisfy complementarity.

Proposition 1 Let X∗ and (y∗, S∗) be any optimal SDP solution pair with zero-duality
gap. Then complementarity of X∗ and S∗ implies

rank(X∗)+ rank(S∗) ≤ n.

Furthermore, is there an optimal (dual) S∗ such that rank(S∗) ≥ d, then the rank of any
optimal (primal) X∗ is bounded above by n−d, where integer 0 ≤ d ≤ n; and the converse
is also true.

In certain SDP problems, one may be interested in finding an optimal solution
whose rank is minimal, while the interior-point algorithm for SDP (developed later)
typically generates solution whose rank is maximal for primal and dual, respectively.
Thus, a rank reduction method sometimes is necessary to achieve this goal. For
linear programming in the standard form, it is known that if there is an optimal
solution, then there is an optimal basic solution x∗ whose positive entries have at
most m many. Is there a similar structural fact for semidefinite programming? In
deed, we have

Proposition 2 If there is an optimal solution for SDP, then there is an optimal solution of
SDP whose rank r satisfies r(r+1)

2 ≤ m.

186 6 Conic Linear Programming

The proposition resembles the linear programming fundamental theorem of
Carathéodory in Sect. 2.4. We now give a sketch of similar constructive proof,
as well as several other rank-reduction methods.

Null-Space Rank Reduction

Let X∗ be an optimal solution of SDP with rank r . If r(r + 1)/2 > m, we
orthonormally factorize X∗

X∗ = (V∗)T V∗, V∗ ∈ Er×n.

Then we consider a related SDP problem

minimize V∗C(V∗)T • U
subject to V∗Ai (V∗)T • U = bi, i = 1, . . . ,m

U ∈ Sr+.

(6.12)

Note that, for any feasible solution of (6.12) one can construct a feasible solution
for original SDP using

X(U) = (V∗)T UV∗ and C • X(U) = V∗C(V∗)T • U.

Thus, the minimal value of (6.12) is also z∗, and in particular U = I (the identity
matrix) is a minimizer of (6.12), since

V∗C(V∗)T • I = C • (V∗)T V∗ = C • X∗ = z∗.

Also, one can show that any feasible solution U of (6.12) is its minimizer, so that
X(U) is a minimizer of original SDP.

Consider the system of homogeneous linear equations:

V∗Ai (V∗)T •W = 0, i = 1, . . . ,m.

where W ∈ Sr (i.e., a r×r symmetric matrix that does not need to be semidefinite).
This system has r(r + 1)/2 real variables and m equations. Thus, as long as
r(r + 1)/2 > m, we must be able to find a symmetric matrix W �= 0 to satisfy
all the m equations. Without loss of generality, let W be either indefinite or negative
semidefinite (if it is positive semidefinite, we take −W as W), that is, W have at
least one negative eigenvalue. Then we consider

U(α) = I+ αW.

6.5 Complementarity and Solution Rank of SDP 187

Choosing a α∗ sufficiently large such that U(α∗) � 0 and it has at least one 0
eigenvalue (or rank(U(α∗)) < r). Note that

V∗Ai (V∗)T •U(α∗) = V∗Ai (V∗)T •(I+α∗W) = V∗Ai(V∗)T •I = bi, i = 1, . . . , m.

That is, U(α∗) is feasible and also optimal for (6.12). Thus, X(U(α∗)) is a new
minimizer for the original SDP, and its rank is strictly less than r . This process
can be repeated till the system of homogeneous linear equations has only all-zero
solution, which is necessary when r(r + 1)/2 ≤ m. Such a solution rank reduction
procedure is called the Null-space reduction, which is deterministic.

To see an application of Proposition 2, consider a general quadratic minimization
with sphere constraint

z∗ ≡ minimize xT Qx+ 2cT x

subject to |x|2 = 1, x ∈ En,

where Q is general. The problem has an SDP relaxation:

zSDP ≡ maximize

[
Q c
cT 0

]
• Y

subject to

[
I 0

0T 0

]
• Y = 1,

[
0 0

0T 1

]
• Y = 1,

Y ∈ Sn+1+ .

Note that the relaxation and its dual both have interior so that the strong duality
theorem holds, and it must have a rank-1 optimal SDP solution because m = 2.
But a rank-1 optimal SDP solution would be optimal to the original quadratic
minimization with sphere constraint. Thus, we must have z∗ = zSDP .

Gaussian Projection Rank Reduction

There is also a randomized procedure to produce an approximate SDP solution with
a desired low rank d . Again, let X∗ be an optimal solution of SDP with rank r > d

and we factorize X∗ as

X∗ = (V∗)T V∗, V∗ ∈ Er×n.

188 6 Conic Linear Programming

We then generate i.i.d. Gaussian random variables ξ
j
i with mean 0 and variance

1/d , i = 1, . . . , r; j = 1, . . . , d , and form random vectors ξ j = (ξ
j

1 ; . . . ; ξj
r),

j = 1, . . . , d . Finally, we let

X̂ = (V∗)T
⎡
⎣

d∑
j=1

ξ j (ξ j)T

⎤
⎦V∗.

Note that the rank of X̂ is d and

E(X̂) = (V∗)T E

⎡
⎣

d∑
j=1

ξ j (ξ j)T

⎤
⎦V∗ = (V∗)T IV∗ = X∗.

One can further show that X̂ would be a good rank-d approximate SDP solution in
many cases.

Randomized Binary Rank Reduction

As discussed in the binary QP optimization, we like to produce a vector x where
each entry is either 1 or−1. A procedure to achieve this is as follows. Let X∗ be any
optimal solution of SDP and we factorize X∗ as

X∗ = (V∗)T V∗, V∗ ∈ En×n.

Then, we generate a random n-dimensional vector ξ where each entry is a
i.i.d. Gaussian random variable with mean 0 and variance 1. Then we let

x̂ = sign((V∗)T ξ)

where

sign(x) =
{

1 if x ≥ 0
−1 otherwise.

It was proved by Sheppard [257]:

E[x̂i x̂j] = 2

π
arcsin(X∗ij), i, j = 1, 2, . . . , n.

Obviously, each entry of x̂ is either 1 or −1.

6.5 Complementarity and Solution Rank of SDP 189

One can further show x̂ would be a good approximate solution to the original
binary QP. Let us consider the (homogeneous) binary quadratic maximization
problem

z∗ := maximize xT Qx

subject to xj = {1, −1}, for all j = 1, . . . , n,

where we assume Q is positive semidefinite. Then, the SDP relaxation would be

zSDP := maximize Q • X

subject to Ij • X = 1, for all j = 1, . . . , n,

X ∈ Sn+;

and let X∗ be any optimal solution, from which we produced a random binary vector
x̂. Let us evaluate the expected objective value

E(x̂T Qx̂) = E(Q • x̂x̂T) = Q • E(x̂x̂T) = Q • 2

π
arcsin[X∗] = 2

π
(Q • arcsin[X∗]),

where arcsin[X∗] ∈ Sn whose (i, j) the entry equals arcsin(X∗ij). One can further
show

arcsin[X∗] − X∗ � 0

so that (from Q � 0)

Q • arcsin[X∗] ≥ Q • X∗ = zSDP ≥ z∗,

that is, the expected objective value of x̂ is no less than factor 2
π

of the maximal
value of the binary QP.

The randomized binary reduction can be extended to quadratic optimization with
simple bound constraints such as x2

j ≤ 1.

Objective-Guide Rank Reduction

Often, adding certain terms into the objective function may help to find a low-rank
SDP solution. Consider a chain sensor network localization problem depicted in
Figure 6.2, where the lengths of three edges, (0, 1), (1, 2), and (2, 3) are known
to be 1 for four points indexed by {0, 1, 2, 3}. Fixing position x0 = (0) (at the
origin), we would like to formulate a sensor network localization problem to find

190 6 Conic Linear Programming

To Maximize

Fig. 6.2 Sensor network localization of a chain network

three other positions by solving

|x1|2 = 1
|x2 − x1|2 = 1
|x3 − x2|2 = 1.

If we simply apply the SDP relaxation to solve this feasibility problem, the SDP
solution would have rank greater than 1.

However, if we add an objective function to the formulation as follows:

maximize |x3|2
subject to |x1|2 = 1

|x2 − x1|2 = 1
|x3 − x2|2 = 1

and apply the SDP relaxation to solve this new formulation, then the SDP solution
would be rank one. That is, we would be able to find the positions along on a single
line (dimension 1). This added objective would create nonzero tensional forces on
the edges, and their forces have to be balanced at each joint point. Therefore, we call
it the tensegrity (Tensional-Integrity) objective. The tensional forces on the edges
are the dual variables of the SDP relaxation.

6.6 Interior-Point Algorithms for Conic Linear
Programming

Since (CLP) is a convex minimization problem, many optimization algorithms are
applicable for solving it. However, the most natural conic linear programming
algorithm seems to be an extension of the interior-point linear programming
algorithm described in Chap. 5. We describe what it is now.

To develop efficient interior-point algorithms, the key is to find a suitable barrier
or potential function. There is a general theory on selection of barrier functions for
(CLP), depending on the convex cone involved. We present few for the convex cones
listed in Example 1.

Example 1 The following are barrier function for each of the convex cones.

6.6 Interior-Point Algorithms for Conic Linear Programming 191

• The n-dimensional nonnegative orthant En+:

B(x) = −
n∑

j=1

log(xj).

• The n-dimensional semidefinite cone Sn+:

B(X) = − log(det X).

• The (n+ 1)-dimensional second-order cone {(u; x) : u ≥ |x|}:

B(u; x) = − log(u2 − |x|2).

In the rest of the section, we devote our discussion on solving (SDP). Similar to
LP, we consider (SDP) with the barrier function added in the objective:

(SDPB) minimize C • X− μ log det(X)

subject to X ∈ ◦
F p,

or (SDD) with the barrier function added in the objective:

(SDDB) maximize yT b+ μ log det(S)

subject to (y, S) ∈ ◦
F d,

where again μ > 0 is called the barrier weight parameter. For a given μ, the
minimizers of (SDPB) and (SDDB) satisfy conditions:

XS = μI
AX = b

AT y+ S = C
X � 0, S � 0

(6.13)

Since

μ = trace(XS)

n
= X • S

n
= C • X− yT b

n
,

so that μ equals the average of complementarity or duality gap. And, these
minimizers, denoted by (X(μ), y(μ), S(μ)), form the central path of SDP for
μ ∈ (0,∞). It is known that when μ → 0, (X(μ), y(μ), S(μ)) tends to an optimal
solution pair whose rank is maximal (Exercise 12).

192 6 Conic Linear Programming

We can also extend the primal–dual potential function from LP to SDP as a
descent merit function:

ψn+ρ(X, S) = (n+ ρ) log(X • S)− log(det(X) · det(S))

where ρ ≥ 0. Note that if X and S are diagonal matrices, these definitions reduce to
those for linear programming.

Once we have an interior feasible point (X, y, S), we can generate a new iterate
(X+, y+, S+) by solving for (Dx, dy, Ds) from the primal–dual system of linear
equations

D−1DxD−1 + Ds = n

n+ ρ
μX−1 − S,

Ai • Dx = 0, for all i, (6.14)
∑m

i
(dy)iAi + Ds = 0,

where D is the (scaling) matrix

D = X
1
2 (X

1
2 SX

1
2)−

1
2 X

1
2

and μ = X • S/n. Then one assigns X+ = X + αDx, y+ = y + αdy, and S+ =
s+ αDs for a step size α > 0. Furthermore, it can be shown that there exists a step
size α = ᾱ such that

ψn+ρ(X+, S+)− ψn+ρ(X, S) ≤ −δ

for a constant δ > 0.2.
We outline the algorithm here

Step 1. Given (X0, y0, S0) ∈ ◦
F . Set ρ ≥ √n and k := 0.

Step 2. Set (X, S) = (Xk, Sk) and compute (Dx, dy, Ds) from (6.14).
Step 3. Let Xk+1 = Xk + ᾱDx, yk+1 = yk + ᾱdy, and Sk+1 = Sk + ᾱDs, where

ᾱ = arg min
α≥0

ψn+ρ(Xk + αDx, Sk + αDs).

Step 4. Let k := k + 1. If Xk•Sk

X0•S0 ≤ ε, Stop. Otherwise return to Step 2.

Theorem 3 Let ψn+ρ(X0, S0) ≤ ρ log(X0 • S0)+ n log n. Then, the algorithm terminates
in at most O(ρ log(n/ε)) iterations.

6.6 Interior-Point Algorithms for Conic Linear Programming 193

Initialization: The HSD Algorithm

The linear programming Homogeneous Self-Dual Algorithm is also extendable to
conic linear programming. Consider the minimization problem

(HSDCLP) min (n+ 1)θ

s.t. AX −bτ +b̄θ = 0,

−AT y +Cτ −C̄θ = S ∈ K∗,
bT y −C • X +z̄θ = κ ≥ 0,

−b̄T y +C̄ • X −z̄τ = −(n+ 1),

y free, X ∈ K, τ ≥ 0, θ free,

where

b̄ = b−AX0, C̄ = C− S0, z̄ = C • X0 + 1

Here X0 and S0 are any pair of interior points in the interior of K and K∗ such
that they form a central path point with μ = 1. Note that X0 and S0 don’t need to
satisfy other equality constraint, so that they can be easily identified. For examples,
x0 = s0 = 1 for the nonnegative orthant cone; x0 = s0 = (1; 0) for the p-order
cone; and X0 = S0 = I for the semidefinite cone.

Let F be the set of all feasible points (y, X ∈ K, τ ≥ 0, θ, S ∈ K∗, κ ≥ 0).

Then
◦
F is the set of interior feasible points (y, X ∈ ◦K, τ > 0, θ, S ∈ ◦K

∗
, κ > 0).

Theorem 4 Consider the conic optimization (HSDCLP).

i) (HSDCLP) is self-dual, that is, its dual has an identical form of (HSDCLP).
ii) (HSDCLP) has an optimal solution and its optimal solution set is bounded.

iii) (HSDCLP) has an interior feasible point

y = 0, X = X0, τ = 1, θ = 1, S = S0, κ = 1.

iv) For any feasible point (y, X, τ, θ, S, κ) ∈ F

S0 • X+ X0 • S+ τ + κ − (n + 1)θ = (n+ 1),

and

X • S+ τκ = (n + 1)θ.

v) The optimal objective value of (HSDCLP) is zero, that is, any optimal solution of
(HSDCLP) has

X∗ • S∗ + τ ∗κ∗ = (n + 1)θ∗ = 0.

194 6 Conic Linear Programming

Now we are ready to apply the interior-point algorithm, starting from an available
initial interior-point feasible solution, to solve (HSDCLP). The question is: how is
an optimal solution of (HSDCLP) related to optimal solutions of original (CLP) and
(CLD)? We present the next theorem, and leave this proof as an exercise.

Theorem 5 Let (y∗, X∗, τ ∗, θ∗ = 0, S∗, κ∗) be a (maximal rank) optimal solution of
(HSDCLP) (as it is typically computed by interior-point algorithms).

i) (CLP) and (CLD) have an optimal solution pair if and only if τ ∗ > 0. In this case,
X∗/τ ∗ is an optimal solution for (CLP) and (y∗/τ ∗, S∗/τ ∗) is an optimal solution for
(CLD).

ii) (CLP) or (CLD) has an infeasibility certificate if and only if κ∗ > 0. In this case,
X∗/κ∗ or S∗/κ∗ or both are certificates for proving infeasibility; see Farkas’ lemma
for CLP.

iii) For all other cases, τ ∗ = κ∗ = 0.

6.7 Summary

A relatively new class of mathematical programming problems, Conic linear
programming (hereafter CLP), is a natural extension of Linear programming that
is a central decision model in Management Science and Operations Research. In
CLP, the unknown is a vector or matrix in a closed convex cone while its entries are
also restricted by some linear equalities and/or inequalities.

One of cones is the semidefinite cone, that is, the set of all symmetric positive
semidefinite matrices in a given dimension. There is a variety of interesting and
important practical problems that can be naturally cast in this form. Because many
problems which appear nonlinear (such as quadratic problems) become essentially
linear in semidefinite form. We have described some of these applications and
selected results in Combinatory Optimization, Robust Optimization, and Engineer-
ing Sensor Network. We have also illustrated some analyses to show why CLP is an
effective model to tackle these difficult optimization problems.

We present fundamental theorems underlying conic linear programming. These
theorems include Farkas’ lemma, weak and strong dualities, and solution rank
structure. We show the common features and differences of these theorems between
LP and CLP.

The efficient interior-point algorithms for linear programming can be extended
to solving these problems as well. We describe these extensions applied to general
conic programming problems. These algorithms closely parallel those for linear
programming. There is again a central path and potential functions, and Newton’s
method is a good way to follow the path or reduce the potential function. The homo-
geneous and self-dual algorithm, which is popularly used for linear programming,
is also extended to CLP.

6.8 Exercises 195

6.8 Exercises

1. Prove that

i) The dual cone of En+ is itself.
ii) The dual cone of Sn+ is itself.

iii) The dual cone of p-order cone is the q-order cone where 1
p
+ 1

q
= 1 and

1 ≤ p ≤ ∞.

2. When both K1 and K2 are closed convex cones. Show

i) (K∗
1)∗ = K1.

ii) K1 ⊂ K2 �⇒ K∗
2 ⊂ K∗

1 .
iii) (K1 ⊕K2)

∗ = K∗
1 ⊕K∗

2 .
iv) (K1 +K2)

∗ = K∗
1 ∩K∗

2 .
v) (K1 ∩K2)

∗ = K∗
1 +K∗

2 .

Note: by definition S + T = {s+ t : s ∈ S, t ∈ T }.
3. Prove the following:

i) Theorem 1.
ii) Proposition 1.

iii) Let X ∈ ◦K and Y ∈
◦

K∗. Then X • Y > 0.

4. Guess an optimal solution and the optimal objective value of each instance of
Example 1.

5. Prove the second statement of Theorem 2.
6. Verify the weak duality theorem of the three CLP instances in Example 1 in

Sect. 6.2 and Example 1 in Sect. 6.4.
7. Consider the SDP relaxation of the sensor network localization problem with

four sensors:

(ei − ej)(ei − ej)
T • X = 1, ∀i < j = 1, 2, 3, 4,

X ∈ S4+,

in which m = 6. Show that the SDP problem has the solution with rank 3,
which reaches the bound of Proposition 2.

8. Derive the SDP relaxation problem for Sensor Network Localization with
Anchors in Example 4.

9. Let A and B be two symmetric and positive semidefinite matrices. Prove that
A • B ≥ 0, and A • B = 0 implies AB = 0.

10. Let X and S both be positive definite. Prove that

n log(X • S)− log(det(X) · det(S)) ≥ n log n.

196 6 Conic Linear Programming

11. Consider a SDP and the potential level set

�(δ) = {(X, y, S) ∈ ◦
F : ψn+ρ(X, S) ≤ δ}.

Prove that

�(δ1) ⊂ �(δ2) if δ1 ≤ δ2,

and for every δ, �(δ) is bounded and its closure �(δ) has nonempty intersec-
tion with the SDP solution set.

12. Let both (SDP) and (SDD) have interior feasible points. Then for any
0 < μ <∞, the central path point (X(μ), y(μ), S(μ)) exists and is unique.
Moreover,

i) the central path point (X(μ), y(μ), S(μ)) is bounded where 0 < μ ≤ μ0

for any given 0 < μ0 < ∞.
ii) For 0 < μ′ < μ,

C • X(μ′) < C • X(μ) and bT y(μ′) > bT y(μ)

if X(μ) �= X(μ′) and y(μ) �= y(μ′).
iii) (X(μ), y(μ), S(μ)) converges to an optimal solution pair for (SDP) and

(SDD), and the rank of the limit of X(μ) is maximal among all optimal
solutions of (SDP) and the rank of the limit S(μ) is maximal among all
optimal solutions of (SDD).

13. Prove the logarithmic approximation lemma for SDP. Let D ∈ Sn and |D|∞ <

1. Then,

trace(D) ≥ log det(I+ D) ≥ trace(D)− |D|2
2(1− |D|∞)

.

14. Let V ∈◦S
n

+ and ρ ≥ √n. Then,

|V−1/2 − n+ρ
I•V V1/2|

|V−1/2|∞ ≥ √3/4.

15. Prove both Theorems 4 and 5.
16. Using an SDP solver to solve the two SDP relaxation problems for the chain

network example described in Sect. 6.5—one with the added objective and one
without it. Prove that the optimal solution to the former is rank-1 (hint: by
showing its dual has a rank-2 optimal solution).

References 197

References

6.1 Most of the materials presented can be found from convex analysis, such as
Rockafellar [247].

6.2 Semidefinite relaxations have appeared in relation to the relaxation of discrete
optimization problems. In Lovasz and Shrijver [180], a “lifting” procedure is
presented to obtain a problem in �n2

; and then the problem is projected back
to obtain tighter inequalities; see also Balas et al. [14]. Then, there have been
several remarkable results of SDP relaxations for combinatorial optimization.
The binary QP, a generalized Max-Cut problem, was studied by Goemans and
Williamson [G8] and Nesterov [214]. Other SDP relaxations can be found in
the survey by Luo et al. [191] and references therein. More CLP applications
can be found in Boyd et al [B22], Vandenberghe and Boyd [V2], and Lobo,
Vandenberghe and Boyd [177], Lasserre [169], Parrilo [229], etc.

The sensor localization problem described here is due to Biswas and Ye
[B17]. Note that we can view the Sensor Network Localization problem as a
Graph Realization or Embedding problem in Euclidean spaces, see So and Ye
[SY] and references therein; and it is related to the Euclidean Distance Matrix
Completion Problems, see Alfakih et al. [5] and Laurent [170].

6.3 Farkas’ lemma for conic linear constraints are closely linked to convex analysis
(i.e, Rockafellar [247]) and the CLP duality theorems commented next.

6.4 The conic formulation of the Euclidean facility location problem was due
to Xue and Ye [299]. For discussion of Schur complements see Boyd and
Vanderberghe [B23]. Robust optimization models using SDP can be found in
Ben-Tal and Nemirovski [30] and Goldfarb and Iyengar [123], and etc. The
SDP duality theory was studied by Barvinok [18], Nesterov and Nemirovskii
[N2], Ramana [241], Ramana e al. [242], etc. The SDP example with a duality
gap was constructed by R. Freund (private communication).

6.5 Complementarity and rank. The exact rank theorem described here is due to
Pataki [230], also see Barvinok [17]. A analysis of the Gaussian projection
was presented by So et al. [SYZ] which can be seen as a generalization of the
Johnson and Lindenstrauss theorem [154]. The expectation of the randomized
binary reduction is due to Sheppard [257] in 1900, and it was extensively used
in Goemans and Williamson [G8] and Nesterov [214], Ye [300], and Bertsimas
and Ye, [35]. The material on objective-guided rank-reduction is based on a
tensegrity theory for graph realization; see thesis of So [SO].

6.6 In interior-point algorithms, the search direction (Dx, dy, Ds) can be deter-
mined by Newton’s method with three different scalings: primal, dual, and
primal–dual. A primal-scaling (potential reduction) algorithm for semidefi-
nite programming is due to Alizadeh [A4, A3] where “Yinyu Ye suggested
studying the primal–dual potential function for this problem” and “looking at
symmetric preserving scalings of the form X

−1/2
0 XX

−1/2
0 ”, and to Nesterov

and Nemirovskii [N2]. A dual-scaling algorithm was developed by Benson et
al. [28] which exploits the sparse structure of the dual SDP. The primal–dual

198 6 Conic Linear Programming

SDP algorithm described here is due to Nesterov and Todd [N3] and references
therein.

Efficient interior-point algorithms are also developed for optimization over
the second-order cone; see Nesterov and Nemirovskii [N2] and Xue and Ye
[299]. These algorithms have established the best approximation complexity
results for certain combinatorial location problems.

The homogeneous and self-dual initialization model was originally devel-
oped by Ye, Todd and Mizuno for LP [Y2], and for SDP by de Klerk et al.
[81], Luo et al. [L18], and Nesterov et al. [216], and it became the foundational
algorithm implemented in Sturm [S11] and Andersen [8].

Part II
Unconstrained Problems

Chapter 7
Basic Properties of Solutions
and Algorithms

In this chapter we consider optimization problems of the form

minimize f (x) (7.1)

subject to x ∈ �,

where f is a real-valued function and �, the feasible set, is a subset of En.
Throughout most of the chapter attention is restricted to the case where � = En,
corresponding to the completely unconstrained case, but sometimes we consider
cases where � is some particularly simple subset of En.

The first and third sections of the chapter characterize the first- and second-order
conditions that must hold at a solution point of (7.1). These conditions are simply
extensions to En of the well-known derivative conditions for a function of a single
variable that hold at a maximum or a minimum point. The fourth and fifth sections of
the chapter introduce the important classes of convex and concave functions as well
as a natural formulation for a global theory of optimization and provide geometric
interpretations of the derivative conditions derived in the first two sections.

The final sections of the chapter are devoted to basic convergence characteristics
of algorithms. Although this material is not exclusively applicable to optimization
problems but applies to general iterative algorithms for solving other problems
as well, it can be regarded as a fundamental prerequisite for a modern treatment
of optimization techniques. Three essential questions are addressed concerning
iterative solutions and algorithms. The first question, which is qualitative in nature,
is whether a given solution can be verified as an optimizer for the problem.
This question is treated in Sects. 7.1–7.5 and is fundamental to the algorithm
development, since an optimal solution could not be computable if it is not
verifiable. The second question is whether a given algorithm in some sense yields,
at least in the limit, a solution to the original problem. This question is addressed in
Sects. 7.6 and conditions sufficient to guarantee appropriate global convergence are

© Springer Nature Switzerland AG 2021
D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
https://doi.org/10.1007/978-3-030-85450-8_7

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85450-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-85450-8_7

202 7 Basic Properties of Solutions and Algorithms

established. The third question, in some sense, the more quantitative one, is related
to how fast the algorithm converges to a solution. This question is defined more
precisely in Sect. 7.7. Several special types of convergence, which arise frequently
in the development of algorithms for optimization, are explored.

7.1 First-Order Necessary Conditions

Perhaps the first question that arises in the study of the minimization problem
(7.1) is whether a solution exists. The main result that can be used to address this
issue is the theorem of Weierstrass, which states that if f is continuous and � is
compact, a solution exists (see Appendix A.6). This is a valuable result that should
be kept in mind throughout our development; however, our primary concern is with
characterizing solution points and devising effective methods for finding them.

In an investigation of the general problem (7.1) we distinguish two kinds of
solution points: local minimum points, and global minimum points.

Definition A point x∗ ∈ � is said to be a relative minimum point or a local minimum point
of f over � if there is an ε > 0 such that f (x) � f (x∗) for all x ∈ � within a distance ε

of x∗ (that is, x ∈ � and |x − x∗| < ε). If f (x) > f (x∗) for all x ∈ �, x �= x∗, within a
distance ε of x∗, then x∗ is said to be a strict relative minimum point of f over �.

Definition A point x∗ ∈ � is said to be a global minimum point of f over � if f (x) �
f (x∗) for all x ∈ �. If f (x) > f (x∗) for all x ∈ �, x �= x∗, then x∗ is said to be a strict
global minimum point of f over �.

In formulating and attacking problem (7.1) we are, by definition, explicitly
asking for a global minimum point of f over the set �. Practical reality, however,
both from the theoretical and computational viewpoint, dictates that we must in
many circumstances be content with a relative minimum point. In deriving necessary
conditions based on the differential calculus, for instance, or when searching for the
minimum point by a convergent step-wise procedure, comparisons of the values
of nearby points is all that is possible and attention focuses on relative minimum
points. Global conditions and global solutions can, as a rule, only be found if the
problem possesses certain convexity properties that essentially guarantee that any
relative minimum is a global minimum. Thus, in formulating and attacking problem
(7.1) we shall, by the dictates of practicality, usually consider, implicitly, that we are
asking for a relative minimum point. If appropriate conditions hold, this will also be
a global minimum point.

Feasible and Descent Directions

To derive necessary conditions satisfied by a relative minimum point x∗, the basic
idea is to consider movement away from the point in some given direction. Along

7.1 First-Order Necessary Conditions 203

any given direction the objective function can be regarded as a function of a single
variable, the parameter defining movement in this direction, and hence the ordinary
calculus of a single variable is applicable. Thus given x ∈ � we are motivated to say
that a vector d is a feasible direction at x if there is an ᾱ > 0 such that x+ αd ∈ �

for all α, 0 � α � ᾱ. With this simple concept we can state some simple conditions
satisfied by relative minimum points.

Another direction with equal importance is the descent direction along which
the objective value will decrease. This is a set of directions with property {d :
∇f (x)d < 0}. If f (x) ∈ C1, then there is an ᾱ > 0 such that f (x + αd) < f (x)

for all α : 0 < α � ᾱ from Taylor’s theorem Sect. A.6 of Appendix A. Direction
dT = −∇f (x) is the steepest descent one.

In a nutshell, if x∗ is a relative minimum point of f over �, then there must be
no direction that is both feasible and descent at x∗.

Proposition 1 (First-Order Necessary Conditions) Let � be a subset of En and let f ∈
C1 be a function on �. If x∗ is a relative minimum point of f over �, then for any d ∈ En

that is a feasible direction at x∗, we have ∇f (x∗)d � 0.

Proof For any α, 0 � α � ᾱ, the point x(α) = x∗ + αd ∈ �. For 0 � α � ᾱ

define the function g(α) = f (x(α)). Then g has a relative minimum at α = 0. A
typical g is shown in Fig. 7.1. By the ordinary calculus we have

g(α) − g(0) = g′(0)α + o(α), (7.2)

where o(α) denotes terms that go to zero faster than α (see Appendix A). If g′(0) <

0 then, for sufficiently small values of α > 0, the right side of (7.2) will be negative,
and hence g(α) − g(0) < 0, which contradicts the minimal nature of g(0). Thus
g′(0) = ∇f (x∗)d � 0.

Fig. 7.1 Construction for
proof

204 7 Basic Properties of Solutions and Algorithms

A very important special case is where x∗ is in the interior of � (as would be
the case if � = En). In this case there are feasible directions emanating in every
direction from x∗, and hence ∇f (x∗)d � 0 for all d ∈ En. This implies ∇f (x∗) =
0. We state this important result as a corollary.

Corollary (Unconstrained Case) Let � be a subset of En, and let f ∈ C1 be a function
on �. If x∗ is a relative minimum point of f over � and if x∗ is an interior point of �, then
∇f (x∗) = 0.

The necessary conditions in the pure unconstrained case lead to n equations
(one for each component of ∇f) in n unknowns (the components of x∗), which
in many cases can be solved to determine the solution. In practice, however, as
demonstrated in the following chapters, an optimization problem is solved directly
without explicitly attempting to solve the equations arising from the necessary
conditions. Nevertheless, these conditions form a foundation for the theory. We call
a solution a stationary solution if its gradient vector vanishes. A stationary solution
may not be a (local) minimum in general, but it is a global minimum if the objective
is convex (see more in Sect. 7.4).

Proposition 2 (First-Order Sufficient Conditions) Let f ∈ C1 be a convex function on
En. If x∗ meets the first-order conditions ∇f (x∗) = 0, x∗ is a global minimizer of f .

The proof is directly from the property of convex function (see Appendix A.6)

f (x)− f (x∗) ≥ ∇f (x∗)(x− x∗) = 0, ∀x.

Example 1 Consider the problem

minimize f (x1, x2) = x2
1 − x1x2 + x2

2 − 3x2.

There are no constraints, so � = E2. Setting the partial derivatives of f equal to
zero yields the two equations

2x1 − x2 = 0

−x1 + 2x2 = 3.

These have the unique solution x1 = 1, x2 = 2, which is a global minimum point
of f .

Example 2 Consider the problem

minimize f (x1, x2) = x2
1 − x1 + x2 + x1x2

subject to x1 � 0, x2 � 0.

7.2 Examples of Unconstrained Problems 205

This problem has a global minimum at x1 = 1
2 , x2 = 0. At this point

∂f

∂x1
= 2x1 − 1+ x2 = 0

∂f

∂x2
= 1+ x1 = 3

2
.

Thus, the partial derivatives do not both vanish at the solution, but since any
feasible direction must have an x2 component greater than or equal to zero, we
have ∇f (x∗)d � 0 for all d ∈ E2 such that d is a feasible direction at the point
(1/2, 0).

7.2 Examples of Unconstrained Problems

Unconstrained optimization problems occur in a variety of contexts, but most
frequently when the problem formulation is simple. More complex formulations
often involve explicit functional constraints. However, many problems with con-
straints are frequently converted to unconstrained problems, such as using the barrier
functions, e.g., the analytic center problem for (dual) linear programs. We present a
few more examples here that should begin to indicate the wide scope to which the
theory applies.

Example 1 (Logistic Regression) Recall the classification problem where we have
vectors ai ∈ Ed for i = 1, 2, . . . , n1 in a class, and vectors bj ∈ Ed for j =
1, 2, . . . , n2 not. Then we wish to find y ∈ Ed and a number β such that

exp(aT
i y+ β)

1+ exp(aT
i y+ β)

is close to 1 for all i, and

exp(bT
j y+ β)

1+ exp(bT
j y+ β)

is close to 0 for all j . The problem can be cast as a unconstrained optimization
problem, called the max-likelihood,

maximizey, β

(∏
i

exp(aT
i y+ β)

1+ exp(aT
i y+ β)

)⎛
⎝∏

j

(
1− exp(bT

j y+ β)

1+ exp(bT
j y+ β)

)⎞
⎠ ,

206 7 Basic Properties of Solutions and Algorithms

which can be also equivalently, using a logarithmic transformation, written as

minimizey, β

∑
i

log
(

1+ exp(−aT
i y− β)

)
+
∑
j

log
(

1+ exp(bT
j y+ β)

)
.

The optimal solution to logistic regression may be infinite (not attainable), so that
one typically adds a weighted regularization term, e.g., μ|y|2, to the objective for a
fixed parameter μ ≥ 0.

Example 2 (Utility Maximization) A common problem in economic theory is the
determination of the best way to combine various inputs in order to maximize a
utility function f (x1, x2, . . . , xn) (in the monetary unit) of the amounts xj of
the inputs, i = 1, 2, . . . , n. The unit prices of the inputs are p1, p2, . . . , pn.
The producer wishing to maximize profit must solve the problem

maximize f (x1, x2, . . . , xn)− p1x1 − p2x2 . . .− pnxn.

The first-order necessary conditions are that the partial derivatives with respect
to the xi’s each vanish. This leads directly to the n equations

∂f

∂xi

(x1, x2, . . . , xn) = pi, i = 1, 2, . . . , n.

These equations can be interpreted as stating that, at the solution, the marginal value
due to a small increase in the ith input must be equal to the price pi .

Example 3 (Parametric Estimation) A common use of optimization is for the
purpose of function approximation. Suppose, for example, that through an exper-
iment the value of a function g is observed at m points, x1, x2, . . . , xm. Thus,
values g(x1), g(x2), . . . , g(xm) are known. We wish to approximate the function
by a polynomial

h(x) = anx
n + an−1x

n−1 + . . .+ a0

of degree n (or less), where n < m. Corresponding to any choice of the
approximating polynomial, there will be a set of errors εk = g(xk) − h(xk). We
define the best approximation as the polynomial that minimizes the sum of the

squares of these errors; that is, minimizes
m∑

k=1
(εk)

2.

This in turn means that we minimize

f (a) =
m∑

k=1

[
g(xk)−

(
anx

n
k + an−1x

n−1
k + . . .+ a0

)]2

7.2 Examples of Unconstrained Problems 207

with respect to a = (a0, a1, . . . , an) to find the best coefficients. This is a quadratic
expression in the coefficients a. To find a compact representation for this objective

we define qij =
m∑

k=1
(xk)

i+j , bj =
m∑

k=1
g(xk)(xk)

j and c =
m∑

k=1
g(xk)

2. Then after a

bit of algebra it can be shown that

f (a) = aT Qa− 2bT a+ c

where Q = [qij], b = (b1, b2, . . . , bn+1).
The first-order necessary conditions state that the gradient of f must vanish. This

leads directly to the system of n+ 1 equations

Qa = b.

These can be solved to determine a, which turns out also to be sufficient since the
objective function is convex, a point that will be elaborated on later.

Parametric estimation problems can be nonconvex, such as the neural network
function depicted in Fig. 7.2. This network is divided into 6 layers where the initial
layer on the left represents the input vector variable x = f0, and the last layer on the
right represents the vector function f(x) = f5. Vector function f�, � = 0, 1, 2, . . . , 5,
is defined recursively by the parameter weights between two consecutive layers
w�−1

ij as a piece-wise linear/affine function

f �
j = max{0, w�−1

0j +
∑

i

w�−1
ij f �−1

i }, ∀j.

x1
x2
x3
x4
x5

f1(x)
f2(x)
f3(x)
f4(x)
f5(x)

0

1 2 3

4

1 2 3 4

0
5

Fig. 7.2 Neural network function estimation

208 7 Basic Properties of Solutions and Algorithms

Thus, for this example:

f 1
j = max{0, w0

0j +
5∑

i=1

w0
ij xi}, for j = 1, 2, . . . , 9,

f (x)j = f 5
j = max{0, w4

0j +
9∑

i=1

w4
ij f 4

i }, for j = 1, 2, . . . , 5.

Similarly, for a sequence of variable value vector xk and observed function value
vector g(xk), we would like to find all weights (w�

ij)’s to minimize the total

difference between f(xk) and g(xk) for all k, such as
∑

k |f(xk)− g(xk)|2.

Example 4 (Assortment Selection Problem) It is often necessary to select an assort-
ment of factors to meet a given set of requirements. An example is the problem
faced by an electric utility when selecting its power-generating facilities. The level
of power that the company must supply varies by time of the day, by day of the week,
and by season. Its power-generating requirements are summarized by a curve, h(x),
as shown in Fig. 7.3a, which shows the total hours in a year that a power level of at
least x is required for each x. For convenience the curve is normalized so that the
upper limit is unity.

The power company may meet these requirements by installing generating
equipment, such as nuclear or coal-fired, or by purchasing power from a central
energy grid. Associated with type i(i = 1, 2) of generating equipment is a yearly
unit capital cost bi and a unit operating cost ci . The unit price of power purchased
from the grid is c3.

Fig. 7.3 (a) Power requirement curve; (b) x1 and x2 denote the capacities of the nuclear and coal-
fired plants, respectively

7.3 Second-Order Conditions 209

Nuclear plants have a high capital cost and low operating cost, so they are used to
supply a base load. Coal-fired plants are used for the intermediate level, and power
is purchased directly only for peak demand periods. The requirements are satisfied
as shown in Fig. 7.3b, where x1 and x2 denote the capacities of the nuclear and coal-
fired plants, respectively. (For example, the nuclear power plant can be visualized
as consisting of x1/
 small generators of capacity
, where
 is small. The first
such generator is on for about h(
) hours, supplying
h(
) units of energy; the
next supplies
h(2
) units, and so forth. The total energy supplied by the nuclear
plant is thus the area shown.)

The total cost is

f (x1, x2) = b1x1 + b2x2 + c1

∫ x1

0
h(x)dx

+c2

∫ x1+x2

x1

h(x)dx+ c3

∫ 1

x1+x2

h(x)dx,

and the company wishes to minimize this over the set defined by

x1 � 0, x2 � 0, x1 + x2 � 1.

Assuming that the solution is interior to the constraints, by setting the partial
derivatives equal to zero, we obtain the two equations

b1 + (c1 − c2)h(x1)+ (c2 − c3)h(x1 + x2) = 0

b2 + (c2 − c3)h(x1 + x2) = 0,

which represent the necessary conditions.
If x1 = 0, then the general necessary condition theorem shows that the first

equality could relax to � 0. Likewise, if x2 = 0, then the second equality could
relax to � 0. The case x1 + x2 = 1 requires a bit more analysis (see Exercise 2).

7.3 Second-Order Conditions

The proof of Proposition 1 in Sect. 7.1 is based on making a first-order approx-
imation to the function f in the neighborhood of the relative minimum point.
Additional conditions can be obtained by considering higher-order approximations.
The second-order conditions, which are defined in terms of the Hessian matrix ∇2f

of second partial derivatives of f (see Appendix A), are of extreme theoretical
importance and dominate much of the analysis presented in later chapters.

210 7 Basic Properties of Solutions and Algorithms

Proposition 1 (Second-Order Necessary Conditions) Let � be a subset of En and let
f ∈ C2 be a function on �. If x∗ is a relative minimum point of f over �, then for any
d ∈ En that is a feasible direction at x∗ we have

i) ∇f (x∗)d � 0 (7.3)

ii) if ∇f (x∗)d = 0, then dT ∇2f (x∗)d � 0. (7.4)

Proof The first condition is just Proposition 1, and the second applies only if
∇f (x∗)d = 0. In this case, introducing x(α) = x∗ + αd and g(α) = f (x(α))

as before, we have, in view of g′(0) = 0,

g(α) − g(0) = 1

2
g′′(0)α2 + o(α2).

If g′′(0) < 0 the right side of the above equation is negative for sufficiently small α

which contradicts the relative minimum nature of g(0). Thus

g′′(0) = dT ∇2f (x∗)d � 0.

Example 1 For the same problem as Example 2 of Sect. 7.1, we have for d =
(d1, d2)

∇f (x∗)d = 3

2
d2.

Thus condition (ii) of Proposition 1 applies only if d2 = 0. In that case we have
dT ∇2f (x∗)d = 2d2

1 � 0, so condition (ii) is satisfied.
Again of special interest is the case where the minimizing point is an interior

point of �, as, for example, in the case of completely unconstrained problems.
We then obtain the following classical result.

Proposition 2 (Second-Order Necessary Conditions—Unconstrained Case) Let x∗ be
an interior point of the set �, and suppose x∗ is a relative minimum point over � of the
function f ∈ C2. Then

i) ∇f (x∗) = 0 (7.5)

ii) for all d, dT ∇2f (x∗)d � 0. (7.6)

For notational simplicity we often denote ∇2f (x), the n×n matrix of the second
partial derivatives of f , the Hessian of f , by the alternative notation F(x). Condition
(ii) is equivalent to stating that the matrix F(x∗) is positive semidefinite. As we
shall see, the matrix F(x∗), which arises here quite naturally in a discussion of
necessary conditions, plays a fundamental role in the analysis of iterative methods
for solving unconstrained optimization problems. The structure of this matrix is the
primary determinant of the rate of convergence of algorithms designed to minimize
the function f .

7.3 Second-Order Conditions 211

Example 2 Consider the problem

minimize f (x1, x2) = x3
1 − x2

1x2 + 2x2
2

subject to x1 � 0, x2 � 0.

If we assume that the solution is in the interior of the feasible set, that is, if
x1 > 0, x2 > 0, then the first-order necessary conditions are

3x2
1 − 2x1x2 = 0, −x2

1 + 4x2 = 0.

There is a solution to these at x1 = x2 = 0 which is a boundary point, but there is
also a solution at x1 = 6, x2 = 9. We note that for x1 fixed at x1 = 6, the objective
attains a relative minimum with respect to x2 at x2 = 9. Conversely, with x2 fixed
at x2 = 9, the objective attains a relative minimum with respect to x1 at x1 = 6.
Despite this fact, the point x1 = 6, x2 = 9 is not a relative minimum point, because
the Hessian matrix is

F =
[

6x1 − 2x2 −2x1

−2x1 4

]
,

which, evaluated at the proposed solution x1 = 6, x2 = 9, is

F =
[

18 −12
−12 4

]
.

This matrix is not positive semidefinite, since its determinant is negative. Thus the
proposed solution is not a relative minimum point.

Sufficient Conditions for a Relative Minimum

By slightly strengthening the second condition of Proposition 2 above, we obtain a
set of conditions that imply that the point x∗ is a relative minimum. We give here
the conditions that apply only to unconstrained problems, or to problems where the
minimum point is interior to the feasible region, since the corresponding conditions
for problems where the minimum is achieved on a boundary point of the feasible
set are a good deal more difficult and of marginal practical or theoretical value.
A more general result, applicable to problems with functional constraints, is given
in Chap. 11.

212 7 Basic Properties of Solutions and Algorithms

Proposition 3 (Second-Order Sufficient Conditions—Unconstrained Case) Let f ∈
C2 be function defined on a region in which the point x∗is an interior point. Suppose in
addition that

i) ∇f (x∗) = 0 (7.7)

ii) F(x∗) is positive definite (7.8)

Then x∗ is a strict relative minimum point of f .

Proof Since F(x∗) is positive definite, there is an a > 0 such that for all
d, dT F(x∗)d � a|d|2. Thus by the Taylor’s Theorem (with remainder)

f (x∗ + d)− f (x∗) = 1

2
dT F(x∗)d+ o(|d|2)

� (a/2)|d|2 + o(|d|2)

For small |d| the first term on the right dominates the second, implying that both
sides are positive for small d.

7.4 Convex and Concave Functions

In order to develop a theory directed toward characterizing global, rather than local,
minimum points, it is necessary to introduce some sort of convexity assumptions.
This results not only in a more potent, although more restrictive, theory but also
provides an interesting geometric interpretation of the second-order sufficiency
result derived above.

Properties of Convex Functions

We first show that convex functions can be combined to yield new convex functions
and that convex functions when used as constraints yield convex constraint sets.

Proposition 1 Let f1 and f2 be convex functions on the convex set �. Then the function
f1 + f2 is convex on �.

Proof Let x1, x2 ∈ �, and 0 < α < 1. Then

f1(αx1 + (1− α)x2)+ f2(αx1 + (1− α)x2)

� α[f1(x1)+ f2(x1)] + (1− α)[f1(x2)+ f2(x2)].
Proposition 2 Let f be a convex function over the convex set �. Then the function af is
convex for any a � 0.

7.4 Convex and Concave Functions 213

Proof Immediate.

Note that through repeated application of the above two propositions it follows
that a positive combination a1f1 + a2f2 + . . .+ amfm of convex functions is again
convex.

Finally, we consider sets defined by convex inequality constraints.

Proposition 3 Let f be a convex function on a convex set �. The set �c = {x : x ∈
�, f (x) � c} is convex for every real number c.

Proof Let x1, x2 ∈ �c. Then f (x1) � c, f (x2) � c and for 0 < α < 1,

f (αx1 + (1− α)x2) � αf (x1)+ (1− α)f (x2) � c.

Thus αx1 + (1− α)x2 ∈ �c.

We note that, since the intersection of convex sets is also convex, the set of points
simultaneously satisfying

f1(x) � c1, f2(x) � c2, . . . , fm(x) � cm,

where each fi is a convex function, defines a convex set. This is important in
mathematical programming, since the constraint set is often defined this way.

Properties of Differentiable Convex Functions

If a function f is differentiable, then there are alternative characterizations of
convexity.

Proposition 4 Let f ∈ C1. Then f is convex over a convex set � if and only if

f (y) � f (x) +∇f (x)(y − x) (7.9)

for all x, y ∈ �.

Proof First suppose f is convex. Then for all α, 0 � α � 1,

f (αy + (1− α)x) � αf (y)+ (1− α)f (x).

Thus for 0 < α � 1

f (x+ α(y − x))− f (x)

α
� f (y)− f (x).

Letting α → 0 we obtain

∇f (x) (y− x) � f (y)− f (x).

This proves the “only if” part.

214 7 Basic Properties of Solutions and Algorithms

Now assume

f (y) � f (x)+∇f (x) (y− x)

for all x, y ∈ �. Fix x1, x2 ∈ � and α, 0 � α � 1. Setting x = αx1 + (1− α)x2
and alternatively y = x1 or y = x2, we have

f (x1) � f (x)+∇f (x)(x1 − x) (7.10)

f (x2) � f (x)+∇f (x)(x2 − x). (7.11)

Multiplying (7.10) by α and (7.11) by (1− α) and adding, we obtain

αf (x1)+ (1− α)f (x2) � f (x)+∇f (x)[αx1 + (1− α)x2 − x].

But substituting x = αx1 + (1− α)x2, we obtain

αf (x1)+ (1− α)f (x2) � f (αx1 + (1− α)x2).

The statement of the above proposition is illustrated in Fig. 7.4. It can be
regarded as a sort of dual characterization of the original definition illustrated in
Fig. A.1. The original definition essentially states that linear interpolation between
two points overestimates the function, while the above proposition states that linear
approximation based on the local derivative underestimates the function.

For twice continuously differentiable functions, there is another characterization
of convexity.

Proposition 5 Let f ∈ C2. Then f is convex over a convex set � containing an interior
point if and only if the Hessian matrix F of f is positive semidefinite throughout �.

Fig. 7.4 Illustration of
Proposition 4

7.5 Minimization and Maximization of Convex Functions 215

Proof By Taylor’s theorem we have

f (y)− f (x) = ∇f (x)(y− x)+ 1

2
(y− x)T F(x+ α(y − x))(y− x) (7.12)

for some α, 0 � α � 1. Clearly, if the Hessian is everywhere positive semidefinite,
we have

f (y) � f (x)+∇f (x)(y− x), (7.13)

which in view of Proposition 4 implies that f is convex.
Now suppose the Hessian is not positive semidefinite at some point x ∈ �.

By continuity of the Hessian it can be assumed, without loss of generality, that x
is an interior point of �. There is a y ∈ � such that (y−x)T F(x)(y−x) < 0. Again
by the continuity of the Hessian, y may be selected so that for all α, 0 � α � 1,

(y− x)T F(x+ α(y − x)) (y− x) < 0.

This in view of (7.12) implies that (7.13) does not hold; which in view of
Proposition 4 implies that f is not convex.

The Hessian matrix is the generalization to En of the concept of the curvature
of a function, and correspondingly, positive definiteness of the Hessian is the
generalization of positive curvature. Convex functions have positive (or at least
nonnegative) curvature in every direction. Motivated by these observations, we
sometimes refer to a function as being locally convex if its Hessian matrix is positive
semidefinite in a small region, and locally strictly convex if the Hessian is positive
definite in the region. In these terms we see that the second-order sufficiency result
of the last section requires that the function be locally strictly convex at the point
x∗. Thus, even the local theory, derived solely in terms of the elementary calculus,
is actually intimately related to convexity—at least locally. For this reason we can
view the two theories, local and global, not as disjoint parallel developments but
as complementary and interactive. Results that are based on convexity apply even
to nonconvex problems in a region near the solution, and conversely, local results
apply to a global minimum point.

7.5 Minimization and Maximization of Convex Functions

We turn now to the three classic results concerning minimization or maximization
of convex functions.

Theorem 1 Let f be a convex function defined on the convex set �. Then the set � where
f achieves its minimum is convex, and any relative minimum of f is a global minimum.

216 7 Basic Properties of Solutions and Algorithms

Proof If f has no relative minima the theorem is valid by default. Assume now that
c0 is the minimum of f . Then clearly � = {x : f (x) � c0, x ∈ �} and this is
convex by Proposition 3 of the last section.

Suppose now that x∗ ∈ � is a relative minimum point of f , but that there is
another point y ∈ � with f (y) < f (x∗). On the line αy + (1 − α)x∗, 0 < α < 1
we have

f (αy + (1− α)x∗) � αf (y)+ (1− α)f (x∗) < f (x∗),

contradicting the fact that x∗ is a relative minimum point.

We might paraphrase the above theorem as saying that for convex functions, all
minimum points are located together (in a convex set) and all relative minima are
global minima. The next theorem says that if f is continuously differentiable and
convex, then satisfaction of the first-order necessary conditions are both necessary
and sufficient for a point to be a global minimizing point.

Theorem 2 Let f ∈ C1 be convex on the convex set �. If there is a point x∗ ∈ � such
that, for all y ∈ �, ∇f (x∗)(y − x∗) � 0, then x∗ is a global minimum point of f over �.

Proof We note parenthetically that since y−x∗ is a feasible direction at x∗, the given
condition is equivalent to the first-order necessary condition stated in Sect. 7.1. The
proof of the proposition is immediate, since by Proposition 4 of the last section

f (y) � f (x∗)+∇f (x∗)(y− x∗) � f (x∗).

Next we turn to the question of maximizing a convex function over a convex set.
There is, however, no analog of Theorem 1 for maximization; indeed, the tendency
is for the occurrence of numerous nonglobal relative maximum points. Nevertheless,
it is possible to prove one important result. It is not used in subsequent chapters,
but it is useful for some areas of optimization (Fig. 7.5).

Fig. 7.5 The epigraph, the
tubular region, and the
hyperplane

7.6 Global Convergence of Descent Algorithms 217

Theorem 3 Let f be a convex function defined on the bounded, closed convex set �. If f

has a maximum over � it is achieved at an extreme point of �.

Proof Suppose f achieves a global maximum at x∗ ∈ �. We show first that this
maximum is achieved at some boundary point of �. If x∗ is itself a boundary point,
then there is nothing to prove, so assume x∗ is not a boundary point. Let L be any
line passing through the point x∗. The intersection of this line with � is an interval
of the line L having end points y1, y2 which are boundary points of �, and we have
x∗ = αy1 + (1− α)y2 for some α, 0 < α < 1. By convexity of f

f (x∗) � αf (y1)+ (1− α)f (y2) � max{f (y1), f (y2)}.

Thus either f (y1) or f (y2) must be at least as great as f (x∗). Since x∗ is a maximum
point, so is either y1 or y2.

We have shown that the maximum, if achieved, must be achieved at a boundary
point of �. If this boundary point, x∗, is an extreme point of � there is nothing
more to prove. If it is not an extreme point, consider the intersection of � with a
supporting hyperplane H at x∗. This intersection, T1, is of dimension n − 1 or less
and the global maximum of f over T1 is equal to f (x∗) and must be achieved at a
boundary point x1 of T1. If this boundary point is an extreme point of T1, it is also an
extreme point of � by Lemma 1, Sect. B.4, and hence the theorem is proved. If x1 is
not an extreme point of T1, we form T2, the intersection of T1 with a hyperplane in
En−1 supporting T1 at x1. This process can continue at most a total of n times when
a set Tn of dimension zero, consisting of a single point, is obtained. This single point
is an extreme point of Tn and also, by repeated application of Lemma 1, Sect. B.4,
an extreme point of �.

7.6 Global Convergence of Descent Algorithms

A good portion of the remainder of this book is devoted to presentation and analysis
of various algorithms designed to solve nonlinear programming problems. Although
these algorithms vary substantially in their motivation, application, and detailed
analysis, ranging from the simple to the highly complex, they have the common
heritage of all being iterative descent algorithms. By iterative, we mean, roughly,
that the algorithm generates a series of points, each point being calculated on the
basis of the points preceding it. By descent, we mean that as each new point is
generated by the algorithm the corresponding value of some function (evaluated at
the most recent point) decreases in value. Ideally, the sequence of points generated
by the algorithm in this way converges in a finite or infinite number of steps to a
solution of the original problem.

An iterative algorithm is initiated by specifying a starting point. If for arbitrary
starting points the algorithm is guaranteed to generate a sequence of points
converging to a solution, then the algorithm is said to be globally convergent. Quite

218 7 Basic Properties of Solutions and Algorithms

definitely, not all algorithms have this obviously desirable property. Indeed, many of
the most important algorithms for solving nonlinear programming problems are not
globally convergent in their purest form and thus occasionally generate sequences
that either do not converge at all or converge to points that are not solutions. It is
often possible, however, to modify such algorithms, by appending special devices,
so as to guarantee global convergence.

Fortunately, the subject of global convergence can be treated in a unified
manner through the analysis of a general theory of algorithms developed mainly
by Zangwill. From this analysis, which is presented in this section, we derive
the Global Convergence Theorem that is applicable to the study of any iterative
descent algorithm. Frequent reference to this important result is made in subsequent
chapters.

Iterative Algorithms

We think of an algorithm as a mapping. Given a point x in some space X, the output
of an algorithm applied to x is a new point. Operated iteratively, an algorithm is
repeatedly reapplied to the new points it generates so as to produce a whole sequence
of points. Thus, as a preliminary definition, we might formally define an algorithm A

as a mapping taking points in a space X into (other) points in X. Operated iteratively,
the algorithm A initiated at x0 ∈ X would generate the sequence {xk} defined by

xk+1 = A(xk).

In practice, the mapping A might be defined explicitly by a simple mathematical
expression or it might be defined implicitly by, say, a lengthy complex computer
program. Given an input vector, both define a corresponding output.

With this intuitive idea of an algorithm in mind, we now generalize the concept
somewhat so as to provide greater flexibility in our analyses.

Definition An algorithm A is a mapping defined on a space X that assigns to every point
x ∈ X a subset of X.

In this definition the term “space” can be interpreted loosely. Usually X is the
vector space En but it may be only a subset of En or even a more general metric
space. The most important aspect of the definition, however, is that the mapping A,
rather than being a point-to-point mapping of X, is a point-to-set mapping of X.

An algorithm A generates a sequence of points in the following way. Given
xk ∈ X the algorithm yields A(xk) which is a subset of X. From this subset an
arbitrary element xk+1 is selected. In this way, given an initial point x0, the algorithm
generates sequences through the iteration

xk+1 ∈ A(xk).

7.6 Global Convergence of Descent Algorithms 219

It is clear that, unlike the case where A is a point-to-point mapping, the sequence
generated by the algorithm A cannot, in general, be predicted solely from knowledge
of the initial point x0. This degree of uncertainty is designed to reflect uncertainty
that we may have in practice as to specific details of an algorithm.

Example 1 Suppose for x on the real line we define

A(x) = [−|x|/2, |x|/2]

so that A(x) is an interval of the real line. Starting at x0 = 100, each of the sequences
below might be generated from iterative application of this algorithm.

100, 50, 25, 12, −6, −2, 1, 1/2, . . .

100, −40, 20, −5, −2, 1, 1/4, 1/8, . . .

100, 10, −1, 1/16, 1/100, −1/1000, 1/10000, . . .

The apparent ambiguity that is built into this definition of an algorithm is not meant
to imply that actual algorithms are random in character. In actual implementation
algorithms are not defined ambiguously. Indeed, a particular computer program
executed twice from the same starting point will generate two copies of the same
sequence. In other words, in practice algorithms are point-to-point mappings. The
utility of the more general definition is that it allows one to analyze, in a single step,
the convergence of an infinite family of similar algorithms. Thus, two computer
programs, designed from the same basic idea, may differ slightly in some details,
and therefore perhaps may not produce identical results when given the same
starting point. Both programs may, however, be regarded as implementations of the
same point-to-set mappings. In the example above, for instance, it is not necessary
to know exactly how xk+1 is determined from xk so long as it is known that its
absolute value is no greater than one-half xk’s absolute value. The result will always
tend toward zero. In this manner, the generalized concept of an algorithm sometimes
leads to simpler analysis.

Descent

In order to describe the idea of a descent algorithm we first must agree on a subset �

of the space X, referred to as the solution set. The basic idea of a descent function,
which is defined below, is that for points outside the solution set, a single step of the
algorithm yields a decrease in the value of the descent function.

Definition Let � ⊂ X be a given solution set and let A be an algorithm on X. A continuous
real-valued function Z on X is said to be a descent function for � and A if it satisfies

i) if x /∈ � and y ∈ A(x), then Z(y) < Z(x)

ii) if x ∈ � and y ∈ A(x), then Z(y) � Z(x).

220 7 Basic Properties of Solutions and Algorithms

There are a number of ways a solution set, algorithm, and descent function can
be defined. A natural set-up for the problem

minimize f (x) (7.14)

subject to x ∈ �

is to let � be the set of minimizing points, and define an algorithm A on � in
such a way that f decreases at each step and thereby serves as a descent function.
Indeed, this is the procedure followed in a majority of cases. Another possibility
for unconstrained problems is to let � be the set of points x satisfying ∇f (x) = 0.
In this case we might design an algorithm for which |∇f (x)| serves as a descent
function or for which f (x) serves as a descent function.

∗Closed Mappings

An important property possessed by some algorithms is that they are closed. This
property, which is a generalization for point-to-set mappings of the concept of
continuity for point-to-point mappings, turns out to be the key to establishing a
general global convergence theorem. In defining this property we allow the point-
to-set mapping to map points in one space X into subsets of another space Y .

Definition A point-to-set mapping A from X to Y is said to be closed at x ∈ X if the
assumptions

i) xk → x, xk ∈ X,
ii) yk → y, yk ∈ A(xk)

imply
iii) y ∈ A(x).

The point-to-set map A is said to be closed on X if it is closed at each point of X.

Example 2 As a special case, suppose that the mapping A is a point-to-point
mapping; that is, for each x ∈ X the set A(x) consists of a single point in Y . Suppose
also that A is continuous at x ∈ X. This means that if xk → x then A(xk) → A(x),
and it follows that A is closed at x. Thus for point-to-point mappings continuity
implies closedness. The converse is, however, not true in general.

The definition of a closed mapping can be visualized in terms of the graph of
the mapping, which is the set {(x, y) : x ∈ X, y ∈ A(x)}. If X is closed, then A
is closed throughout X if and only if this graph is a closed set. This is illustrated
in Fig. 7.6. However, this equivalence is valid only when considering closedness
everywhere. In general a mapping may be closed at some points and not at others.

Example 3 The reader should verify that the point-to-set mapping defined in
Example 1 is closed.

Many complex algorithms that we analyze are most conveniently regarded as the
composition of two or more simple point-to-set mappings. It is therefore natural to

7.6 Global Convergence of Descent Algorithms 221

Fig. 7.6 Graphs of mappings

Fig. 7.7 Composition of mappings

ask whether closedness of the individual maps implies closedness of the composite.
The answer is a qualified “yes.” The technical details of composition are described
in the remainder of this subsection. They can safely be omitted at first reading while
proceeding to the Global Convergence Theorem.

Definition Let A : X → Y and B : Y → Z be point-to-set mappings. The composite
mapping C = BA is defined as the point-to-set mapping C : X → Z with

C(x) =
⋃

y∈A(x)

B(y).

This definition is illustrated in Fig. 7.7.

Proposition Let A : X → Y and B : Y → Z be point-to-set mappings. Suppose A is
closed at x and B is closed on A(x). Suppose also that if xk → x and yk ∈ A(xk), there is
a y such that, for some subsequence {yki}, yki → y. Then the composite mapping C = BA
is closed at x.

Proof Let xk → x and zk → z with zk ∈ C(xk). It must be shown that z ∈ C(x).
Select yk ∈ A(xk) such that zk ∈ B(yk) and according to the hypothesis let y and

{yki} be such that yki → y. Since A is closed at x it follows that y ∈ A(x).

222 7 Basic Properties of Solutions and Algorithms

Likewise, since yki → y, zki → z and B is closed at y, it follows that z ∈
B(y) ⊂ BA(x) = C(x).

Two important corollaries follow immediately.

Corollary 1 Let A : X → Y and B : Y → Z be point-to-set mappings. If A is closed
at x, B is closed on A(x) and Y is compact, then the composite map C = BA is closed at x.

Corollary 2 Let A : X → Y be a point-to-point mapping and B : Y → Z a point-to-
set mapping. If A is continuous at x and B is closed at A(x), then the composite mapping
C = BA is closed at x.

Global Convergence Theorem

The Global Convergence Theorem is used to establish convergence for the following
general situation. There is a solution set �. Points are generated according to
the algorithm xk+1 ∈ A(xk), and each new point always strictly decreases a
descent function Z unless the solution set � is reached. For example, in nonlinear
programming, the solution set may be the set of minimum points (perhaps only
one point), and the descent function may be the objective function itself. A suitable
algorithm is found that generates points such that each new point strictly reduces
the value of the objective. Then, under appropriate conditions, it follows that
the sequence converges to the solution set. The Global Convergence Theorem
establishes technical conditions for which convergence is guaranteed.

Global Convergence Theorem Let A be an algorithm on X, and suppose that, given x0
the sequence {xk}∞k=0 is generated satisfying

xk+1 ∈ A(xk).

Let a solution set � ⊂ X be given, and suppose

i) all points xk are contained in a compact set S ⊂ X

ii) there is a continuous function Z on X such that

(a) if x /∈ �, then Z(y) < Z(x) for all y ∈ A(x)

(b) if x ∈ �, then Z(y) � Z(x) for all y ∈ A(x)

iii) the mapping A is closed at points outside �.

Then the limit of any convergent subsequence of {xk} is a solution.

Proof Suppose the convergent subsequence {xk}, k ∈ K converges to the limit
x. Since Z is continuous, it follows that for k ∈ K, Z(xk) → Z(x). This means
that Z is convergent with respect to the subsequence, and we shall show that it is
convergent with respect to the entire sequence. By the monotonicity of Z on the
sequence {xk} we have Z(xk)−Z(x) � 0 for all k. By the convergence of Z on the
subsequence, there is, for a given ε > 0, a K ∈ K such that Z(xk)− Z(x) < ε for
all k > K, k ∈ K .

7.6 Global Convergence of Descent Algorithms 223

Thus for all k > K

Z(xk)− Z(x) = Z(xk)− Z(xK)+ Z(xK)− Z(x) < ε,

which shows that Z(xk)→ Z(x).
To complete the proof it is only necessary to show that x is a solution. Suppose

x is not a solution. Consider the subsequence {xk+1}K . Since all members of this
sequence are contained in a compact set, there is a K̄ ⊂ K such that {xk+1}K̄
converges to some limit x̄. We thus have xk → x, k ∈ K̄ , and xk+1 ∈ A(xk) with
xk+1 → x̄, k ∈ K̄ . Thus since A is closed at x it follows that x̄ ∈ A(x). But from
above, Z(x̄) = Z(x) which contradicts the fact that Z is a descent function.

Corollary If under the conditions of the Global Convergence Theorem � consists of a
single point x̄, then the sequence {xk} converges to x̄.

Proof Suppose to the contrary that there is a subsequence {xk}K and an ε > 0 such
that |xk − x̄| > ε for all k ∈ K . By compactness there must be K ′ ⊂ K such that
{xk}K ′ , converges, say to x′. Clearly, |x′ − x̄| � ε, but by the Global Convergence
Theorem x′ ∈ �, which is a contradiction.

In later chapters the Global Convergence Theorem is used to establish the con-
vergence of several standard algorithms. Here we consider some simple examples
designed to illustrate the roles of the various conditions of the theorem.

Example 4 In many respects condition (iii) of the theorem, the closedness of A
outside the solution set, is the most important condition. The failure of many
popular algorithms can be traced to nonsatisfaction of this condition. On the real
line consider the point-to-point algorithm

A(x) =
{ 1

2 (x − 1)+ 1 x > 1

1
2x x � 1

and the solution set � = {0}. It is easily verified that a descent function for this
solution set and this algorithm is Z(x) = |x|. However, starting from x > 1, the
algorithm generates a sequence converging to x = 1 which is not a solution. The
difficulty is that A is not closed at x = 1.

Example 5 On the real line X consider the solution set to be empty, the descent
function Z(x) = e−x , and the algorithm A(x) = x + 1. All conditions of the
convergence theorem except (i) hold. The sequence generated from any starting
condition diverges to infinity. This is not strictly a violation of the conclusion of
the theorem but simply an example illustrating that if no compactness assumption is
introduced, the generated sequence may have no convergent subsequence.

224 7 Basic Properties of Solutions and Algorithms

Fig. 7.8 Graph for
Example 6

Example 6 Consider the point-to-set algorithm A defined by the graph in Fig. 7.8
and given explicitly on X = [0, 1] by

A(x) =
{ [0, x) 0 < x � 1

0 x = 0,

where [0, x) denotes a half-open interval (see Appendix A). Letting � = {0}, the
function Z(x) = x serves as a descent function, because for x �= 0 all points in
A(x) are less than x.

The sequence defined by

x0 = 1

xk+1 = xk − 1

2k+2

satisfies xk+1 ∈ A(xk) but it can easily be seen that xk → 1
2 /∈ �. The difficulty

here, of course, is that the algorithm A is not closed outside the solution set.

∗Spacer Steps

In some of the more complex algorithms presented in later chapters, the rule used to
determine a succeeding point in an iteration may depend on several previous points
rather than just the current point, or it may depend on the iteration index k. Such
features are generally introduced in order to obtain a rapid rate of convergence but
they can grossly complicate the analysis of global convergence.

7.7 Speed of Convergence 225

If in such a complex sequence of steps there is inserted, perhaps irregularly but
infinitely often, a step of an algorithm such as steepest descent that is known to
converge, then it is not difficult to ensure that the entire complex process converges.
The step which is repeated infinitely often and guarantees convergence is called a
spacer step, since it separates disjoint portions of the complex sequence. Essentially
the only requirement imposed on the other steps of the process is that they do not
increase the value of the descent function.

This type of situation can be analyzed easily from the following viewpoint.
Suppose B is an algorithm which together with the descent function Z and solution
set �, satisfies all the requirements of the Global Convergence Theorem. Define the
algorithm C by C(x) = {y : Z(y) � Z(x)}. In other words, C applied to x can
give any point so long as it does not increase the value of Z. It is easy to verify that
C is closed. We imagine that B represents the spacer step and the complex process
between spacer steps is just some realization of C. Thus the overall process amounts
merely to repeated applications of the composite algorithm CB. With this viewpoint
we may state the Spacer Step Theorem.

Spacer Step Theorem Suppose B is an algorithm on X which is closed outside the
solution set �. Let Z be a descent function corresponding to B and �. Suppose that the
sequence {xk}∞k=0 is generated satisfying

xk+1 ∈ B(xk)

for k in an infinite index set K , and that

Z(xk+1) � Z(xk)

for all k. Suppose also that the set S = {x : Z(x) � Z(x0)} is compact. Then the limit of
any convergent subsequence of {xk}K is a solution.

Proof We first define for any x ∈ X, B̄(x) = S∩B(x) and then observe that A = CB̄
is closed outside the solution set by Corollary 1. The Global Convergence Theorem
can then be applied to A. Since S is compact, there is a subsequence of {xk}k∈K
converging to a limit x. In view of the above we conclude that x ∈ �.

7.7 Speed of Convergence

The study of speed of convergence is an important but sometimes complex subject.
Nevertheless, there is a rich and yet elementary theory of convergence rates that
enables one to predict with confidence the relative effectiveness of a wide class of
algorithms. In this section we introduce various concepts designed to measure speed
of convergence, and prepare for a study of this most important aspect of nonlinear
programming.

226 7 Basic Properties of Solutions and Algorithms

Order of Convergence

Consider a sequence of real numbers {rk}∞k=0 converging to the limit r∗. We define
several notions related to the speed of convergence of such a sequence.

Definition Let the sequence {rk} converge to r∗. The order of convergence of {rk} is
defined as the supremum of the nonnegative numbers p satisfying

0 � lim
k→∞

|rk+1 − r∗|
|rk − r∗|p < ∞.

To ensure that the definition is applicable to any sequence, it is stated in terms
of limit superior rather than just limit and 0/0 (which occurs if rk = r∗ for all k)
is regarded as finite. But these technicalities are rarely necessary in actual analysis,
since the sequences generated by algorithms are generally quite well behaved.

It should be noted that the order of convergence, as with all other notions related
to speed of convergence that are introduced, is determined only by the properties
of the sequence that hold as k → ∞. Somewhat loosely but picturesquely, we are
therefore led to refer to the tail of a sequence—that part of the sequence that is
arbitrarily far out. In this language we might say that the order of convergence is
a measure of how good the worst part of the tail is. Larger values of the order p

imply, in a sense, faster convergence, since the distance from the limit r∗ is reduced,
at least in the tail, by the pth power in a single step. Indeed, if the sequence has
order p and (as is the usual case) the limit

β = lim
k→∞

|rk+1 − r∗|
|rk − r∗|p

exists, then asymptotically we have

|rk+1 − r∗| = β|rk − r∗|p.

Example 1 The sequence with rk = ak where 0 < a < 1 converges to zero with
order unity, since rk+1/rk = a.

Example 2 The sequence with rk = a(2k) for 0 < a < 1 converges to zero with
order two, since rk+1/r2

k = 1.

Linear Convergence

Most algorithms discussed in this book have an order of convergence equal to unity.
It is therefore appropriate to consider this class in greater detail and distinguish
certain cases within it.

7.7 Speed of Convergence 227

Definition If the sequence {rk} converges to r∗ in such a way that

lim
k→∞

|rk+1 − r∗|
|rk − r∗| = β < 1,

the sequence is said to converge linearly to r∗ with convergence ratio (or rate) β.

Linear convergence is, for our purposes, without doubt the most important type
of convergence behavior. A linearly convergent sequence, with convergence ratio β,
can be said to have a tail that converges at least as fast as the geometric sequence cβk

for some constant c. Thus linear convergence is sometimes referred to as geometric
convergence, although in this book we reserve that phrase for the case when a
sequence is exactly geometric.

As a rule, when comparing the relative effectiveness of two competing algorithms
both of which produce linearly convergent sequences, the comparison is based on
their corresponding convergence ratios—the smaller the ratio the faster the rate.
The ultimate case where β = 0 is referred to as superlinear convergence. We note
immediately that convergence of any order greater than unity is superlinear, but it is
also possible for superlinear convergence to correspond to unity order.

Example 3 The sequence rk = (1/k)k is of order unity, since rk+1/r
p
k → ∞

for p > 1. However, rk+1/rk → 0 as k → ∞ and hence this is superlinear
convergence.

Arithmetic Convergence

Linear convergence is also called geometric convergence. There is another (slower)
type of convergence:

Definition If the sequence {rk} converges to r∗ in such a way that

|rk − r∗| ≤ C
|r0 − r∗|

kp
, k ≥ 1, 0 < p < ∞

where C is a fixed positive number, the sequence is said to converge arithmetically to r∗
with order p.

When p = 1, it is referred as arithmetic convergence. The greater of p the faster
of the convergence.

Example 4 The sequence rk = 1/k converges to zero arithmetically. The conver-
gence is of order one but it is not linear, since lim

k→∞(rk+1/rk) = 1, that is, β is not

strictly less than one.

228 7 Basic Properties of Solutions and Algorithms

∗Average Rates

All the definitions given above can be referred to as step-wise concepts of conver-
gence, since they define bounds on the progress made by going a single step: from
k to k + 1. Another approach is to define concepts related to the average progress
per step over a large number of steps. We briefly illustrate how this can be done.

Definition Let the sequence {rk} converge to r∗. The average order of convergence is the
infimum of the numbers p > 1 such that

lim
k→∞|rk − r∗|1/pk = 1.

The order is infinity if the equality holds for no p > 1.

Example 5 For the sequence rk = a(2k), 0 < a < 1, given in Example 2, we have

|rk|1/2k = a,

while

|rk|1/pk = a(2/p)k → 1

for p > 2. Thus the average order is two.

Example 6 For rk = ak with 0 < a < 1 we have

(rk)
1/pk = ak(1/p)k → 1

for any p > 1. Thus the average order is unity.

As before, the most important case is that of unity order, and in this case we
define the average convergence ratio as lim

k→∞|rk − r∗|1/k. Thus for the geometric

sequence rk = cak, 0 < a < 1, the average convergence ratio is a. Paralleling
the earlier definitions, the reader can then in a similar manner define corresponding
notions of average linear and average superlinear convergence.

Although the above array of definitions can be further embellished and expanded,
it is quite adequate for our purposes. For the most part we work with the step-wise
definitions, since in analyzing iterative algorithms it is natural to compare one step
with the next. In most situations, moreover, when the sequences are well behaved
and the limits exist in the definitions, then the step-wise and average concepts of
convergence rates coincide.

7.7 Speed of Convergence 229

∗Convergence of Vectors

Suppose {xk}∞k=0 is a sequence of vectors in En converging to a vector x∗. The
convergence properties of such a sequence are defined with respect to some
particular function that converts the sequence of vectors into a sequence of numbers.
Thus, if f is a given continuous function on En, the convergence properties of {xk}
can be defined with respect to f by analyzing the convergence of f (xk) to f (x∗).
The function f used in this way to measure convergence is called the error function.

In optimization theory it is common to choose the error function by which to
measure convergence as the same function that defines the objective function of the
original optimization problem. This means we measure convergence by how fast the
objective converges to its minimum. alternatively, we sometimes use the function
|x− x∗|2 and thereby measure convergence by how fast the (squared) distance from
the solution point decreases to zero.

Generally, the order of convergence of a sequence is insensitive to the particular
error function used; but for step-wise linear convergence the associated convergence
ratio is not. Nevertheless, the average convergence ratio is not too sensitive, as the
following proposition demonstrates, and hence the particular error function used to
measure convergence is not really very important.

Proposition Let f and g be two error functions satisfying f (x∗) = g(x∗) = 0 and, for all
x, a relation of the form

0 � a1g(x) � f (x) � a2g(x)

for some fixed a1 > 0, a2 > 0. If the sequence {xk}∞k=0 converges to x∗ linearly with
average ratio β with respect to one of these functions, it also does so with respect to the
other.

Proof The statement is easily seen to be symmetric in f and g. Thus we assume
{xk} is linearly convergent with average convergence ratio β with respect to f , and
will prove that the same is true with respect to g. We have

β = lim
k→∞ f (xk)

1/k � lim
k→∞ a

1/k
2 g(xk)

1/k = lim
k→∞ g(xk)

1/k

and

β = lim
k→∞ f (xk)

1/k � lim
k→∞ a

1/k

1 g(xk)
1/k = lim

k→∞ g(xk)
1/k.

Thus

β = lim
k→∞ g(xk)

1/k.

As an example of an application of the above proposition, consider the case
where g(x) = |x − x∗|2 and f (x) = (x − x∗)T Q(x − x∗), where Q is a positive

230 7 Basic Properties of Solutions and Algorithms

definite symmetric matrix. Then a1 and a2 correspond, respectively, to the smallest
and largest eigenvalues of Q. Thus average linear convergence is identical with
respect to any error function constructed from a positive definite quadratic form.

Complexity

Complexity theory as outlined in Sect. 5.1 is an important aspect of convergence
theory. This theory can be used in conjunction with the theory of local convergence.
If an algorithm converges according to any order greater than zero, then for a fixed
problem, the sequence generated by the algorithm will converge in a time that is a
function of the convergence order (and rate, if convergence is linear). For example,
if the order is one with rate 0 < c < 1 and the process begins with an error of
R, a final error of r can be achieved by a number of steps n satisfying cnR �
r . Thus it requires approximately n = log(R/r)/ log(1/c) steps. In this form the
number of steps is not affected by the size of the problem. However, problem size
enters in two possible ways. First, the rate c may depend on the size-say going
toward 1 as the size increases so that the speed is slower for large problems. The
second way that size may enter, and this is the more important way, is that the time
to execute a single step almost always increases with problem size. For instance
if, for a problem seeking an optimal vector of dimension m, each step requires a
Gaussian elimination inversion of an m×m matrix, the solution time will increase
by a factor proportional to m3. Overall the algorithm is therefore a polynomial-
time algorithm. Essentially all algorithms in this book employ steps, such as matrix
multiplications or inversion or other algebraic operations, which are polynomial
time in character. Convergence analysis, therefore, focuses on whether an algorithm
is globally convergent, on its local convergence properties, and also on the order
of the algebraic operations required to execute the steps required. The last of these
is usually easily deduced by listing the number and size of the required vector and
matrix operations.

7.8 Summary

There are two different but complementary ways to characterize the solution to
unconstrained optimization problems. In the local approach, one examines the
relation of a given point to its neighbors. This leads to the conclusion that, at an
unconstrained relative minimum point of a smooth function, the gradient of the
function vanishes and the Hessian is positive semidefinite; and conversely, if at a
point the gradient vanishes and the Hessian is positive definite, that point is a relative
minimum point. This characterization has a natural extension to the global approach
where convexity ensures that if the gradient vanishes at a point, that point is a global
minimum point.

7.9 Exercises 231

In considering iterative algorithms for finding either local or global minimum
points, there are two distinct issues: global convergence properties and local
convergence properties. The first is concerned with whether starting at an arbitrary
point the sequence generated will converge to a solution. This is ensured if the
algorithm is closed, has a descent function, and generates a bounded sequence. It
is also explained that global convergence is guaranteed simply by the inclusion,
in a complex algorithm, of spacer steps. This result is called upon frequently in
what follows. Local convergence properties are a measure of the ultimate speed
of convergence and generally determine the relative advantage of one algorithm to
another.

7.9 Exercises

1. To approximate a function g over the interval [0, 1] by a polynomial p of degree
n (or less), we minimize the criterion

f (a) =
∫ 1

0
[g(x)− p(x)]2dx,

where p(x) = anx
n+ an−1x

n−1 + . . .+ a0. Find the equations satisfied by the
optimal coefficients a = (a0, a1, . . . , an).

2. In Example 4 of Sect. 7.2 show that if the solution has x1 > 0, x1 + x2 = 1,
then it is necessary that

b1 − b2 + (c1 − c2)h(x1) = 0

b2 + (c2 − c3)h(x1 + x2) � 0.

Hint: One way is to reformulate the problem in terms of the variables x1 and
y = x1 + x2.

3.

(a) Using the first-order necessary conditions, find a minimum point of the
function

f (x, y, z) = 2x2 + xy + y2 + yz+ z2 − 6x − 7y − 8z+ 9.

(b) Verify that the point is a relative minimum point by verifying that the
second-order sufficiency conditions hold.

(c) Prove that the point is a global minimum point.

232 7 Basic Properties of Solutions and Algorithms

4. In this exercise and the next we develop a method for determining whether a
given symmetric matrix is positive definite. Given an n × n matrix A let Ak

denote the principal submatrix made up of the first k rows and columns. Show
(by induction) that if the first n− 1 principal submatrices are nonsingular, then
there is a unique lower triangular matrix L with unit diagonal and a unique
upper triangular matrix U such that A = LU. (See Appendix C.)

5. A symmetric matrix is positive definite if and only if the determinant of each
of its principal submatrices is positive. Using this fact and the considerations
of Exercise 4, show that an n × n symmetric matrix A is positive definite if
and only if it has an LU decomposition (without interchange of rows) and the
diagonal elements of U are all positive.

6. Using Exercise 5 show that an n×n matrix A is symmetric and positive definite
if and only if it can be written as A = GGT where G is a lower triangular matrix
with positive diagonal elements. This representation is known as the Cholesky
factorization of A.

7. Let fi, i ∈ I be a collection of convex functions defined on a convex set �.
Show that the function f defined by f (x) = sup

i∈I

fi(x) is convex on the region

where it is finite.
8. Let γ be a monotone nondecreasing function of a single variable (that is,

γ (r) � γ (r ′) for r ′ > r) which is also convex; and let f be a convex
function defined on a convex set �. Show that the function γ (f) defined by
γ (f)(x) = γ [f (x)] is convex on �.

9. Let f be twice continuously differentiable on a region � ⊂ En. Show that a
sufficient condition for a point x∗ in the interior of � to be a relative minimum
point of f is that ∇f (x∗) = 0 and that f be locally convex at x∗.

10. Define the point-to-set mapping on En by

A(x) = {y : yT x � b},

where b is a fixed constant. Is A closed?
11. Prove the two corollaries in Sect. 7.6 on the closedness of composite mappings.
12. Show that if A is a continuous point-to-point mapping, the Global Convergence

Theorem is valid even without assumption (i). Compare with Example 2,
Sect. 7.6.

13. Let {rk}∞k=0 and {ck}∞k=0 be sequences of real numbers. Suppose rk → 0 average
linearly and that there are constants c > 0 and C such that c � ck � C for all
k. Show that ckrk → 0 average linearly.

14. Prove a proposition, similar to the one in Sect. 7.7, showing that the order of
convergence is insensitive to the error function.

15. Show that if rk → r∗ (step-wise) linearly with convergence ratio β, then rk →
r∗(average) linearly with average convergence ratio no greater than β.

References 233

16. Given a convex and continuous function {f (x) : En → E}, consider a related
function {φ(x; τ) = τ · f (x/τ) En+1 → E} where the new scalar variable
τ > 0. Prove:

(a) φ is a convex and continuous function.
(b) φ is a homogeneous function with degree 1.
(c) Write out the gradient and Hessian of φ in terms of those of f .

φ is a homogenization function of f , and it will be used later.
17. (Compressed Sensing) Consider the following linear regression problem with a

weighted regularization term for a fixed scalar weight μ > 0:

minimizex f (x) := |Ax− b|2 + μ

n∑
j=1

|xj |p,

where A is a m × n data matrix, b(�= 0) is an m-dimension measuring data
vector, and parameter 0 < p ≤ 1. The purpose of adding the regularization term
is to encourage sparsity in the regression solution x, especially when n >> m.
If p = 1, the model is called LASSO (least absolute shrinkage and selection
operator) that was originally introduced in geophysics and later by Tibshirani
who coined the name. Note that the regularization function is differentiable
everywhere except at xj = 0, and it becomes nonconvex when p < 1.

Let x∗ be a local minimizer and x∗j �= 0 for index j .

(a) What is the necessary condition on the first-order partial derivative ∂f
∂xj
|x∗?

(b) What is the necessary condition on the second-order partial derivative
∂2f

∂2xj
|x∗?

(c) What is a second-order sufficient condition on ∇2f (x∗)?

References

7.1–7.5 For alternative discussions of the material in these sections, see Hadley
[H2], Fiacco and McCormick [F4], Zangwill [Z2] and Luenberger [L8].

7.6 Although the general concepts of this section are well known, the formula-
tion as zero-order conditions appears to be new.

7.7 The idea of using a descent function (usually the objective itself) in
order to guarantee convergence of minimization algorithms is an old one
that runs through most literature on optimization, and has long been
used to establish global convergence. Formulation of the general Global
Convergence Theorem, which captures the essence of many previously
diverse arguments, and the idea of representing an algorithm as a point-

234 7 Basic Properties of Solutions and Algorithms

to-set mapping are both due to Zangwill [Z2]. A version of the Spacer Step
Theorem can be found in Zangwill [Z2] as well.

7.8 Most of the definitions given in this section have been standard for quite
some time. A thorough discussion which contributes substantially to the
unification of these concepts is contained in Ortega and Rheinboldt [O7].

Chapter 8
Basic Descent Methods

We turn now to a description of the basic techniques used for iteratively solving
unconstrained minimization problems. These techniques are, of course, important
for practical application since they often offer the simplest, most direct alternatives
for obtaining solutions; but perhaps their greatest importance is that they establish
certain reference plateaus with respect to difficulty of implementation and speed
of convergence. Thus in later chapters as more efficient techniques and techniques
capable of handling constraints are developed, reference is continually made to the
basic techniques of this chapter both for guidance and as points of comparison.

There is a fundamental underlying structure for almost all the descent algorithms
we discuss. One starts at an initial point; determines, according to a fixed rule, a
direction of movement; and then moves in that direction to a (relative) minimum of
the objective function on that line. At the new point a new direction is determined
and the process is repeated. The primary differences between algorithms (steepest
descent, Newton’s method, etc.) rest with the rule by which successive directions of
movement are selected. Once the selection is made, all algorithms call for movement
to the minimum point on the corresponding line.

The process of determining the minimum point on a given line (one variable
only) is called line search. For general nonlinear functions that cannot be minimized
analytically, this process actually is accomplished by searching, in an intelligent
manner, along the line for the minimum point. These line search techniques, which
are really procedures for solving one-dimensional minimization problems, form the
backbone of nonlinear programming algorithms, since higher dimensional problems
are ultimately solved by executing a sequence of successive line searches. There are
a number of different approaches to this important phase of minimization and the
first half of this chapter is devoted to their, discussion.

The last sections of the chapter are devoted to a description and analysis of the
basic descent algorithms for unconstrained problems; steepest descent, coordinate
descent, and Newton’s method. These algorithms serve as primary models for
the development and analysis of all others discussed in the book.

© Springer Nature Switzerland AG 2021
D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
https://doi.org/10.1007/978-3-030-85450-8_8

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85450-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-85450-8_8

236 8 Basic Descent Methods

8.1 Line Search Algorithms

These algorithms are classified by the order of information of the objective functions
f (x) (of one variable) being evaluated.

0th-Order Method: Golden Section Search and Curve Fitting

A very popular method for resolving the line search problem is the Fibonacci search
method described in this section. The method has a certain degree of theoretical
elegance, which no doubt partially accounts for its popularity, but on the whole, as
we shall see, there are other procedures which in most circumstances are superior.

The method determines the minimum value of a function f over a closed interval
[c1, c2]. In applications, f may in fact be defined over a broader domain, but for
this method a fixed interval of search must be specified. The only property that is
assumed of f is that it is unimodal, that is, it has a single relative minimum (see
Fig. 8.1). The minimum point of f is to be determined, at least approximately, by
measuring the value of f at a certain number of points. It should be imagined, as is
indeed the case in the setting of nonlinear programming, that each measurement of
f is somewhat costly—of time if nothing more.

To develop an appropriate search strategy, that is, a strategy for selecting
measurement points based on the previously obtained values, we pose the following
problem: Find how to successively select N measurement points so that, without
explicit knowledge of f , we can determine the smallest possible region of uncer-
tainty in which the minimum must lie. In this problem the region of uncertainty is
determined in any particular case by the relative values of the measured points in

Fig. 8.1 A unimodal function

8.1 Line Search Algorithms 237

conjunction with our assumption that f is unimodal. Thus, after values are known
at N points x1, x2, . . . , xN with

c1 � x1 < x2 . . . < xN−1 < xN � c2,

the region of uncertainty is the interval [xk−1, xk+1] where xk is the minimum point
among the N , and we define x0 = c1, xN+1 = c2 for consistency. The minimum of
f must lie somewhere in this interval.

The derivation of the optimal strategy for successively selecting measurement
points to obtain the smallest region of uncertainty is fairly straightforward but
somewhat tedious. We simply state the result and give an example.

Let

d1 = c2 − c1, the initial width of uncertainty

dk = width of uncertainty after k measurements.

Then, if a total of N measurements are to be made, we have

dk =
(

FN−k+1

FN

)
d1, (8.1)

where the integers Fk are members of the Fibonacci sequence generated by the
recurrence relation

FN = FN−1 + FN−2, F0 = F1 = 1. (8.2)

The resulting sequence is 1, 1, 2, 3, 5, 8, 13,
The procedure for reducing the width of uncertainty to dN is this: The first

two measurements are made symmetrically at a distance of (FN−1/FN)d1 from
the ends of the initial intervals; according to which of these is of lesser value,
an uncertainty interval of width d2 = (FN−1/FN)d1 is determined. The third
measurement point is placed symmetrically in this new interval of uncertainty
with respect to the measurement already in the interval. The result of this third
measurement gives an interval of uncertainty d3 = (FN−2/FN)d1. In general,
each successive measurement point is placed in the current interval of uncertainty
symmetrically with the point already existing in that interval.

Some examples are shown in Fig. 8.2. In these examples the sequence of
measurement points is determined in accordance with the assumption that each
measurement is of lower value than its predecessors. Note that the procedure always
calls for the last two measurements to be made at the midpoint of the semifinal
interval of uncertainty. We are to imagine that these two points are actually separated
a small distance so that a comparison of their respective values will reduce the
interval to nearly half. This terminal anomaly of the Fibonacci search process is,
of course, of no great practical consequence.

238 8 Basic Descent Methods

Fig. 8.2 Fibonacci search

Search by Golden Section

If the number N of allowed measurement points in a Fibonacci search is made to
approach infinity, we obtain the golden section method. It can be argued, based on
the optimal property of the finite Fibonacci method, that the corresponding infinite
version yields a sequence of intervals of uncertainty whose widths tend to zero faster
than that which would be obtained by other methods.

The solution to the Fibonacci difference equation

FN = FN−1 + FN−2 (8.3)

8.1 Line Search Algorithms 239

is of the form

FN = AτN
1 + BτN

2 , (8.4)

where τ1 and τ2 are roots of the characteristic equation

τ 2 = τ + 1.

Explicitly,

τ1 = 1+√5

2
, τ2 = 1−√5

2
.

(The number τ1 1.618 is known as the golden section ratio and was considered
by early Greeks to be the most aesthetic value for the ratio of two adjacent sides of a
rectangle.) For large N the first term on the right side of (8.4) dominates the second,
and hence

lim
N→∞

FN−1

FN

= 1

τ1
 0.618.

It follows from (8.1) that the interval of uncertainty at any point in the process has
width

dk =
(

1

τ1

)k−1

d1, (8.5)

and from this it follows that

dk+1

dk

= 1

τ1
= 0.618. (8.6)

Therefore, we conclude that, with respect to the width of the uncertainty interval, the
search by golden section converges linearly (see Sect. 7.7) to the overall minimum
of the function f with convergence ratio 1/τ1 = 0.618.

The Fibonacci search method has a certain amount of theoretical appeal, since
it assumes only that the function being searched is unimodal and with respect
to this broad class of functions the method is, in some sense, optimal. In most
problems, however, it can be safely assumed that the function being searched, as
well as being unimodal, possesses a certain degree of smoothness, and one might,
therefore, expect that more efficient search techniques exploiting this smoothness
can be devised; and indeed they can. Techniques of this nature are usually based
on curve fitting procedures where a smooth curve is passed through the previously
measured points in order to determine an estimate of the minimum point. A variety
of such techniques can be devised depending on whether or not derivatives of the
function as well as the values can be measured, how many previous points are

240 8 Basic Descent Methods

used to determine the fit, and the criterion used to determine the fit. In this section
a number of possibilities are outlined and analyzed. All of them have orders of
convergence greater than unity.

Quadratic Fit

The scheme that is often most useful in line searching is that of fitting a quadratic
through three given points. This has the advantage of not requiring any derivative
information. Given x1, x2, x3 and corresponding values f (x1) = f1, f (x2) =
f2, f (x3) = f3 we construct the quadratic passing through these points

q(x) =
3∑

i=1

fi

∏
j �=i (x − xj)∏
j �=i (xi − xj)

, (8.7)

and determine a new point x4 as the point where the derivative of q vanishes. Thus

x4 = 1

2

b23f1 + b31f2 + b12f3

a23f1 + a31f2 + a12f3
, (8.8)

where aij = xi − xj , bij = x2
i − x2

j .
Define the errors εi = x∗ − xi, i = 1, 2, 3, 4. The expression for ε4 must be a

polynomial in ε1, ε2, ε3. It must be second order (since it is a quadratic fit). It must
go to zero if any two of the errors ε1, ε2, ε3 is zero. (The reader should check this.)
Finally, it must be symmetric (since the order of points is relevant). It follows that
near a minimum point x∗ of f , the errors are related approximately by

ε4 = M(ε1ε2 + ε2ε3 + ε1ε3), (8.9)

where M depends on the values of the second and third derivatives of f at x∗.
If we assume that εk → 0 with an order greater than unity, then for large k the

error is governed approximately by

εk+2 = Mεkεk−1.

Letting yk = log Mεk this becomes

yk+2 = yk + yk−1

with characteristic equation

λ3 − λ − 1 = 0.

8.1 Line Search Algorithms 241

The largest root of this equation is λ 1.3 which thus determines the rate of growth
of yk and is the order of convergence of the quadratic fit method.

1st-Order Method: Bisection and Curve Fitting Methods

In this section the bisection and a number fitting methods using the first derivative
information are described. All curve fitting methods have orders of convergence
greater than unity in contrast to the classic bisection method, which exhibits linear
convergence.

The Bisection Method

Let g = f ′ be a continuous function and root x∗ be such that g(x∗) = 0. Suppose
the root is between [0, R] and g(0)·g(R) < 0, then the bisection method is to check
the midpoint R/2: if g(0) · g(R/2) ≥ 0, then the root is in [R/2, R]; otherwise it
is in [0, R/2]. Therefore, the length of the interval is halved each step, giving a
convergence ratio of 0.5.

There is a discrete version of bisection with K consecutive points (1, 2,, K)

with one of these points being the root. Then the bisection would check the median
point and decide which half of the number of points to remove from consideration.
Therefore, the bisection would terminate exactly in at most log2(K) steps.

Quadratic Fit: Method of False Position

Suppose that at two points xk and xk−1 where measurements f (xk), f
′(xk),

f ′(xk−1) are available, it is possible to fit the quadratic

q(x) = f (xk)+ f ′(xk)(x − xk)+ f ′(xk−1)− f ′(xk)

xk−1 − xk

· (x − xk)
2

2
,

which has the same corresponding values. An estimate xk+1 can then be determined
by finding the point where the derivative of q vanishes; thus

xk+1 = xk − f ′(xk)

[
xk−1 − xk

f ′(xk−1)− f ′(xk)

]
. (8.10)

(See Fig. 8.3.) Comparing this formula with Newton’s method, we see again that
the value f (xk) does not enter; hence, our fit could have been passed through
either f (xk) or f (xk−1). Also the formula can be regarded as an approximation
to Newton’s method where the second derivative is replaced by the difference of
two first derivatives.

242 8 Basic Descent Methods

Fig. 8.3 False position for minimization

Fig. 8.4 False position for solving equations

Again, since this method does not depend on values of f directly, it can be
regarded as a method for solving f ′(x) ≡ g(x) = 0. Viewed in this way the method,
which is illustrated in Fig. 8.4.

We next present that the order of convergence of the method of false position is
τ1 1.618, the golden mean. We leave its proof as an exercise (see Exercise 1).

Proposition Let g = f ′ have a continuous second derivative and suppose x∗ is such that
g(x∗) = 0, g′(x∗) �= 0. Then for x0 sufficiently close to x∗, the sequence {xk}∞k=0 generated
by the method of false position (8.10) converges to x∗ with order τ1 1.618.

Cubic Fit

Given the points xk−1 and xk together with the values f (xk−1), f
′(xk−1), f (xk),

f ′(xk), it is also possible to fit a cubic equation to the points having corresponding
values. The next point xk+1 can then be determined as the relative minimum point

8.1 Line Search Algorithms 243

of this cubic. This leads to

xk+1 = xk − (xk − xk−1)

[
f ′(xk)+ u2 − u1

f ′(xk)− f ′(xk−1)+ 2u2

]
, (8.11)

where

u1 = f ′(xk−1)+ f ′(xk)− 3
f (xk−1)− f (xk)

xk−1 − xk

u2 = [u2
1 − f ′(xk−1)f

′(xk)]1/2,

which is easily implementable for computations.
It can be shown (see Exercise 1) that the order of convergence of the cubic fit

method is 2.0. Thus, although the method is exact for cubic functions indicating
that its order might be three, its order is actually only two.

2nd-Order Method: Newton’s Method

Suppose that the function f of a single variable x is to be minimized, and suppose
that at a point xk where a measurement is made it is possible to evaluate the three
numbers f (xk), f ′(xk), f ′′(xk). It is then possible to construct a quadratic function
q which at xk agrees with f up to second derivatives, that is

q(x) = f (xk)+ f ′(xk)(x − xk)+ 1

2
f ′′(xk)(x − xk)

2. (8.12)

We may then calculate an estimate xk+1 of the minimum point of f by finding the
point where the derivative of q vanishes. Thus setting

0 = q ′(xk+1) = f ′(xk)+ f ′′(xk)(xk+1 − xk),

we find

xk+1 = xk − f ′(xk)

f ′′(xk)
. (8.13)

This process, which is illustrated in Fig. 8.5, can then be repeated at xk+1.
We note immediately that the new point xk+1 resulting from Newton’s method

does not depend on the value f (xk). The method can more simply be viewed as a
technique for iteratively solving equations of the form

g(x) = 0,

244 8 Basic Descent Methods

Fig. 8.5 Newton’s method
for minimization

Fig. 8.6 Newton’s method
for solving equations

where, when applied to minimization, we put g(x) ≡ f ′(x). In this notation
Newton’s method takes the form

xk+1 = xk − g(xk)

g′(xk)
. (8.14)

This form is illustrated in Fig. 8.6.
We now show that Newton’s method has order two convergence:

Proposition Let the function g have a continuous second derivative, and let x∗ satisfy
g(x∗) = 0, g′(x∗) �= 0. Then, provided x0 is sufficiently close to x∗, the sequence {xk}∞k=0
generated by Newton’s method (8.14) converges to x∗ with an order of convergence at least
two.

8.1 Line Search Algorithms 245

Proof For points ξ in a region near x∗ there is a k1 such that |g′′(ξ)| < k1 and a k2
such that |g′(ξ)| > k2. Then since g(x∗) = 0 we can write

xk+1 − x∗ = xk − x∗ − g(xk)− g(x∗)
g′(xk)

= −[g(xk)− g(x∗)+ g′(xk)(x
∗ − xk)]/g′(xk).

The term in brackets is, by Taylor’s theorem, zero to first-order. In fact, using the
remainder term in a Taylor series expansion about xk, we obtain

xk+1 − x∗ = 1

2

g′′(ξ)

g′(xk)
(xk − x∗)2

for some ξ between x∗ and xk. Thus in the region near x∗,

|xk+1 − x∗| � k1

2k2
|xk − x∗|2.

We see that if |xk − x∗|k1/2k2 < 1, then |xk+1 − x∗| < |xk − x∗| and thus we
conclude that if started close enough to the solution, the method will converge to x∗
with an order of convergence at least two.

Newton’s method possesses superb local convergence, but it lacks a global
convergence guarantee: it may diverge when the starting solution is far from the
root. Therefore, special care needs to be taken to apply the method, typically
combining with globally convergent methods. The following theorem gives a
sufficient condition for when to start Newton’s method.

Theorem (Condition for Applying Newton’s Method) Let g(x) be an analytic function
in E++ = {x : x > 0}, convex, and monotonically decreasing. Furthermore, for all x > 0
and integer k > 1, let

∣∣∣∣∣
g(k)(x)

k!g′(x)

∣∣∣∣∣
1/(k−1)

≤ α

8
· 1

x
(8.15)

for some constant α > 0, where g(k) represents the k-th order derivative. Then, if the root
x∗ ∈ [x̂, (1+ 1/α)x̂] ⊂ E++, Newton’s method, starting from x̂, is guaranteed to converge
with order at least two.

The intervals described in the theorem become wider and wider at a geometric
rate as x̂ increases, which implies that, if x∗ is farther from 0, the starting point of
Newton’s method could be in a wider range to guarantee quadratic convergence.
Thus, suppose the root is between [0, R], and for any small accuracy ε > 0, we can
(symbolically) construct a sequence of increasing points

x̂0 = ε, x̂1 = (1+ 1/α)ε, . . . , x̂N = (1+ 1/α)Nε

246 8 Basic Descent Methods

until (1 + 1/α)Nε ≥ R. Hence, N = O(log(R/ε)), and if the root of g(x) is in
any one of these intervals [x̂j , x̂j+1], the interval left-point x̂j is a qualified starting
point for quadratic convergence. Therefore, we may apply the (discrete) bisection
method to locate which of these intervals contains the root. Each bisection step will
remove half of the intervals, either left or right, from consideration. In no more than
O(log log(R/ε)) steps, the bisection will stop having found an interval that contains
the root. Then we start Newton’s method to compute an approximate root x such that
|x−x∗| ≤ ε in O(log log(1/ε)) steps. Note that the total number of combined steps
remains O(log log(R/ε)).

Global Convergence of Curve Fitting

Above, we analyzed the convergence of various curve fitting procedures in the
neighborhood of the solution point. If, however, any of these procedures were
applied in pure form to search a line for a minimum, there is the danger—
alas, the most likely possibility—that the process would diverge or wander about
meaninglessly. In other words, the process may never get close enough to the
solution for our detailed local convergence analysis to be applicable. It is therefore
important to artfully combine our knowledge of the local behavior with conditions
guaranteeing global convergence to yield a workable and effective procedure.

The key to guaranteeing global convergence is the Global Convergence Theorem
of Chap. 7. Application of this theorem in turn hinges on the construction of a
suitable descent function and minor modifications of a pure curve fitting algorithm.
We offer below a particular blend of this kind of construction and analysis, taking
as departure point the quadratic fit procedure discussed in Sect. 8.1 above.

Let us assume that the function f that we wish to minimize is strictly unimodal
and has continuous second partial derivatives. We initiate our search procedure by
searching along the line until we find three points x1, x2, x3 with x1 < x2 < x3
such that f (x1) � f (x2) � f (x3). In other words, the value at the middle of
these three points is less than that at either end. Such a sequence of points can be
determined in a number of ways—see Exercise 4.

The main reason for using points having this pattern is that a quadratic fit to these
points will have a minimum (rather than a maximum) and the minimum point will
lie in the interval [x1, x3]. See Fig. 8.7. We modify the pure quadratic fit algorithm
so that it always works with points in this basic three-point pattern.

The point x4 is calculated from the quadratic fit in the standard way and f (x4)

is measured. Assuming (as in the figure) that x2 < x4 < x3, and accounting for the
unimodal nature of f , there are but two possibilities:

1. f (x4) � f (x2).
2. f (x2) < f (x4) � f (x3).

8.1 Line Search Algorithms 247

Fig. 8.7 Three-point pattern

In either case a new three-point pattern, x̄1, x̄2, x̄3, involving x4 and two of the old
points, can be determined: In case (8.1) it is

(x̄1, x̄2, x̄3) = (x2, x4, x3),

while in case (8.2) it is

(x̄1, x̄2, x̄3) = (x1, x2, x4).

We then use this three-point pattern to fit another quadratic and continue. The pure
quadratic fit procedure determines the next point from the current point and the
previous two points. In the modification above, the next point is determined from
the current point and the two out of three last points that form a three-point pattern
with it. This simple modification leads to global convergence.

To prove convergence, we note that each three-point pattern can be thought of
as defining a vector x in E3. Corresponding to an x = (x1, x2, x3) such that
(x1, x2, x3) form a three-point pattern with respect to f , we define A(x) =
(x̄1, x̄2, x̄3) as discussed above. For completeness we must consider the case where
two or more of the xi, i = 1, 2, 3 are equal, since this may occur. The appropriate
definitions are simply limiting cases of the earlier ones. For example, if x1 = x2,
then (x1, x2, x3) form a three-point pattern if f (x2) � f (x3) and f ′(x2) < 0
(which is the limiting case of f (x2) < f (x1)). A quadratic is fit in this case by
using the values at the two distinct points and the derivative at the duplicated point.
In case x1 = x2 = x3, (x1, x2, x3) forms a three-point pattern if f ′(x2) = 0 and
f ′′(x2) � 0. With these definitions, the map A is well defined. It is also continuous,
since curve fitting depends continuously on the data.

We next define the solution set � ⊂ E3 as the points x∗ = (x∗, x∗, x∗) where
f ′(x∗) = 0.

Finally, we let Z(x) = f (x1)+f (x2)+f (x3). It is easy to see that Z is a descent
function for A. After application of A one of the values f (x1), f (x2), f (x3) will

248 8 Basic Descent Methods

be replaced by f (x4), and by construction, and the assumption that f is unimodal,
it will replace a strictly larger value. Of course, at x∗ = (x∗, x∗, x∗) we have
A(x∗) = x∗ and hence Z(A(x∗)) = Z(x∗).

Since all points are contained in the initial interval, we have all the requirements
for the Global Convergence Theorem. Thus the process converges to the solution.
The order of convergence may not be destroyed by this modification, if near the
solution the three-point pattern is always formed from the previous three points. In
this case we would still have convergence of order 1.3. This cannot be guaranteed,
however.

It has often been implicitly suggested, and accepted, that when using the
quadratic fit technique one should require

f (xk+1) < f (xk)

so as to guarantee convergence. If the inequality is not satisfied at some cycle, then a
special local search is used to find a better xk+1 that does satisfy it. This philosophy
amounts to taking Z(x) = f (x3) in our general framework and, unfortunately, this
is not a descent function even for unimodal functions, and hence the special local
search is likely to be necessary several times. It is true, of course, that a similar
special local search may, occasionally, be required for the technique we suggest in
regions of multiple minima, but it is never required in a unimodal region.

The above construction, based on the pure quadratic fit technique, can be
emulated to produce effective procedures based on other curve fitting techniques.
For application to smooth functions these techniques seem to be the best available in
terms of flexibility to accommodate as much derivative information as is available,
fast convergence, and a guarantee of global convergence.

∗Closedness of Line Search Algorithms

Since searching along a line for a minimum point is a component part of most
nonlinear programming algorithms, it is desirable to establish at once that this
procedure is closed; that is, that the end product of the iterative procedures outlined
above, when viewed as a single algorithmic step finding a minimum along a line,
define closed algorithms. That is the objective of this section.

To initiate a line search with respect to a function f , two vectors must be
specified: the initial point x and the direction d in which the search is to be made.
The result of the search is a new point. Thus we define the search algorithm S as a
mapping from E2n to En.

We assume that the search is to be made over the semi-infinite line emanating
from x in the direction d. We also assume, for simplicity, that the search is not made
in vain; that is, we assume that there is a minimum point along the line. This will
be the case, for instance, if f is continuous and increases without bound as x tends
toward infinity.

8.1 Line Search Algorithms 249

Definition The mapping S : E2n → En is defined by

S(x, d) = {y : y = x+ αd for some α � 0, f (y) = min
0�α<∞f (x+ αd)}. (8.16)

In some cases there may be many vectors y yielding the minimum, so S is a
set-valued mapping. We must verify that S is closed.

Theorem Let f be continuous on En. Then the mapping defined by (8.16) is closed at
(x, d) if d �= 0.

Proof Suppose {xk} and {dk} are sequences with xk → x, dk → d �= 0. Suppose
also that yk ∈ S(xk, dk) and that yk → y. We must show that y ∈ S(x, d).

For each k we have yk = xk + αkdk for some αk . From this we may write

αk = |yk − xk|
|dk| .

Taking the limit of the right-hand side of the above, we see that

αk → α ≡ |y− x|
|d| .

It then follows that y = x+ αd. It still remains to be shown that y ∈ S(x, d).
For each k and each α, 0 � α < ∞,

f (yk) � f (xk + αdk).

Letting k →∞ we obtain

f (y) � f (x+ αd).

Thus

f (y) � min
0�α<∞ f (x+ αd),

and hence y ∈ S(x, d).

The requirement that d �= 0 is natural both theoretically and practically. From
a practical point of view this condition implies that, when constructing algorithms,
the choice d = 0 had better occur only in the solution set; but it is clear that if d = 0,
no search will be made. Theoretically, the map S can fail to be closed at d = 0, as
illustrated below.

Example On E1 define f (x) = (x−1)2. Then S(x, d) is not closed at x = 0, d =
0. To see this we note that for any d > 0

min
0�α<∞ f (αd) = f (1),

250 8 Basic Descent Methods

and hence

S(0, d) = 1;

but

min
0�α<∞ f (α · 0) = f (0)

so that

S(0, 0) = 0.

Thus as d → 0, S(0, d) � S(0, 0).

Inaccurate Line Search

In practice, of course, it is impossible to obtain the exact minimum point called for
by the ideal line search algorithm S described above. As a matter of fact, it is often
desirable to sacrifice accuracy in the line search routine in order to conserve overall
computation time. Because of these factors we must, to be realistic, be certain, at
every stage of development, that our theory does not crumble if inaccurate line
searches are introduced.

Inaccuracy generally is introduced in a line search algorithm by simply ter-
minating the search procedure before it has converged. The exact nature of the
inaccuracy introduced may therefore depend on the particular search technique
employed and the criterion used for terminating the search. We cannot develop a
theory that simultaneously covers every important version of inaccuracy without
seriously detracting from the underlying simplicity of the algorithms discussed
later. For this reason our general approach, which is admittedly more free-wheeling
in spirit than necessary but thereby more transparent and less encumbered than a
detailed account of inaccuracy, will be to analyze algorithms as if an accurate line
search were made at every step, and then point out in side remarks and exercises the
effect of inaccuracy.

Armijo’s Rule

A practical and popular criterion for terminating a line search is Armijo’s rule. The
essential idea is that the rule should first guarantee that the selected α is not too
large, and next it should not be too small. Let us define the function

φ(α) = f (xk + αdk).

8.1 Line Search Algorithms 251

Fig. 8.8 Stopping rules. (a)
Armijo rule. (b) Golden test.
(c) Wolfe test

Armijo’s rule is implemented by consideration of the function φ(0) + εφ′(0)α for
fixed ε, 0 < ε < 1. This function is shown in Fig. 8.8a as the dashed line. A value
of α is considered to be not too large if the corresponding function value lies below
the dashed line; that is, if

φ(α) � φ(0)+ εφ′(0)α. (8.17)

252 8 Basic Descent Methods

To insure that α is not too small, a value η > 1 is selected, and α is then considered
to be not too small if

φ(ηα) > φ(0)+ εφ′(0)ηα.

This means that if α is increased by the factor η, it will fail to meet the test (8.17).
The acceptable region defined by the Armijo rule is shown in Fig. 8.8a when η = 2
(there are also other rules can be adapted).

Sometimes in practice, the Armijo test is used to define a simplified line
search technique that does not employ curve fitting methods. One begins with
an arbitrary α. If it satisfies (8.17), it is repeatedly increased by η(η = 2 or η = 10
and ε = .2 are often used) until (8.17) is not satisfied, and then the penultimate α is
selected. If, on the other hand, the original α does not satisfy (8.17), it is repeatedly
divided by η until the resulting α does satisfy (8.17).

8.2 The Method of Steepest Descent: First-Order

One of the oldest and most widely known methods for minimizing a function
of several variables is the method of steepest descent (often referred to as the
gradient method). The method is extremely important from a theoretical viewpoint,
since it is one of the simplest for which a satisfactory analysis exists. More
advanced algorithms are often motivated by an attempt to modify the basic
steepest descent technique in such a way that the new algorithm will have superior
convergence properties. The method of steepest descent remains, therefore, not only
the technique most often first tried on a new problem but also the standard of
reference against which other techniques are measured. The principles used for its
analysis will be used throughout this book.

The Method

Let f have continuous first partial derivatives on En. We will frequently have
need for the gradient vector of f and therefore we introduce some simplifying
notation. The gradient ∇f (x) is, according to our conventions, defined as a n-
dimensional row vector. For convenience we define the n-dimensional column vector
g(x) = ∇f (x)T . When there is no chance for ambiguity, we sometimes suppress
the argument x and, for example, write gk for g(xk) = ∇f (xk)

T .
The method of steepest descent (SDM) is defined by the iterative algorithm

xk+1 = xk − αkgk,

8.2 The Method of Steepest Descent: First-Order 253

where stepsize αk is a nonnegative scalar possibly minimizing f (xk − αgk). In
words, from the point xk we search along the direction of the negative gradient
−gk to a minimum point on this line; this minimum point is taken to be xk+1.

In formal terms, the overall algorithm A : En → En which gives xk+1 ∈ A(xk)

can be decomposed in the form A = SG. Here G : En → E2n is defined by
G(x) = (x, −g(x)), giving the initial point and direction of a line search. This is
followed by the line search S : E2n → En defined in Sect. 8.1.

Global Convergence and Convergence Speed

It was shown in Sect. 8.1 that S is closed if ∇f (x) �= 0, and it is clear that G is
continuous. Therefore, by Corollary 2 in Sect. 7.6 A is closed.

We define the solution set to be the points x where ∇f (x) = 0. Then Z(x) =
f (x) is a descent function for A, since for ∇f (x) �= 0

min
0�α<∞ f (x− αg(x)) < f (x).

Thus by the Global Convergence Theorem, if the sequence {xk} is bounded, it will
have limit points and each of these is a solution. What about the convergence speed?
Assume that f (x) is convex and differentiable everywhere, admits a minimizer x∗,
and satisfies the (first-order) β-Lipschitz condition, that is, meets the definition

Definition (First-order β-Lipschitz Function) For any two points x and y

|∇f (y) − ∇f (x)| ≤ β|y− x|

for a positive real number β.

Then, starting from any point x0, we consider the method of steepest descent
with a fixed stepsize αk = 1

β
for all k:

xk+1 = xk − 1

β
gk = xk − 1

β
∇f (xk)

T . (8.18)

We first present a lemma.

Lemma 1 Let f (x) be differentiable everywhere and satisfy the (first-order) β-Lipschitz
condition. Then, for any two points x and y

f (y) − f (x) − ∇f (x)(y − x) ≤ β

2
|y − x|2.

Now we prove that the method converges to a first-order stationary solution.

254 8 Basic Descent Methods

Theorem 1 (Steepest Descent—Lipschitz Case) Let f (x) be differentiable everywhere,
satisfy the (first-order) β-Lipschitz condition, and admit a minimum value f ∗. Then, the
method of steepest descent (8.18) generates a sequence of solutions xk such that the smallest
gradient vector

min
0≤t≤k

|∇f (xt)| ≤
√

2β√
k + 1

√
f (x0)− f ∗ ≤ β√

k + 1
|x0 − x∗|.

Proof The proof of the theorem is straightforward from Lemma 1 by letting x = xk

and y = xk+1 and noting the stepsize selection, which leads to

f (xk+1)− f (xk) ≤ −1

2β
|∇f (xk)|2 or |∇f (xk)|2 ≤ 2β · (f (xk)− f (xk+1)).

(8.19)

Thus,

k∑
t=0

|∇f (xk)|2 ≤ 2β · (f (x0)− f (xk+1)) ≤ 2β · (f (x0)− f ∗).

Consequently, we must have

min
0≤t≤k

|∇f (xt)|2 ≤ 1

k + 1

(
k∑

t=0

|∇f (xk)|2
)
≤ 2β

k + 1
(f (x0)− f ∗).

Finally, the second inequality in the theorem follows from Lemma 1 by letting x =
x∗ and y = x0 and noting ∇f (x∗) = 0.

If, in addition, f (x) is a convex function, the convergence rate can be further
improved.

Theorem 2 (Steepest Descent—Lipschitz Convex Case) Let f (x) be convex and dif-
ferentiable everywhere, satisfy the (first-order) β-Lipschitz condition, and admit a mini-
mizer x∗. Then, the method of steepest descent (8.18) generates a sequence of solutions xk

such that

|∇f (xk)| ≤ β√
k(k + 1)

|x0 − x∗|,

and

f (xk)− f ∗ ≤ β

2(k + 1)
|x0 − x∗|2.

Proof Consider the function gx(y) = f (y)−∇f (x)y for any given x. Note that gx

is also convex and satisfies the β-Lipschitz condition. Moreover, x is the minimizer
of gx(y) and ∇gx(y) = ∇f (y)−∇f (x).

8.2 The Method of Steepest Descent: First-Order 255

Applying Lemma 1 to gx and noting the relations of gx and f (x), we have

f (x)− f (y)−∇f (x)(x− y) = gx(x)− gx(y)

≤ gx(y− 1
β
∇gx(y))− gx(y)

≤ ∇gx(y)(− 1
β
∇gx(y)T)+ β

2
1
β2 |∇gx(y)|2

= − 1
2β
|∇gx(y)|2

= − 1
2β
|∇f (x)−∇f (y)|2.

(8.20)

Similarly, we have

f (y)− f (x)−∇f (y)(y− x) ≤ − 1

2β
|∇f (x)−∇f (y)|2.

Adding the above two derived inequalities, we have for any x and y:

(∇f (x)−∇f (y))(x− y) ≥ 1

β
|∇f (x)−∇f (y)|2. (8.21)

For simplification, in what follows let dk = xk − x∗ and δk = [f (xk)− f (x∗)] ≥ 0.
Now let x = xk+1 and y = xk in (8.21). Then

− 1

β
(gk)

T (gk+1 − gk) = (xk+1 − xk)
T (gk+1 − gk) ≥ 1

β
|gk+1 − gk|2,

which leads to

|gk+1|2 ≤ (gk+1)
T gk ≤ |gk+1||gk|, that is |gk+1| ≤ |gk|. (8.22)

Inequality (8.22) implies that |gk| = |∇f (xk)| is monotonically decreasing.
Applying inequality (8.20) for x = xk and y = x∗ and noting g∗ = 0 we have

δk ≤ (gk)
T dk − 1

2β
|gk|2

= −β(xk+1 − xk)dk − β
2 |xk+1 − xk|2

= −β
2 (|xk+1 − xk|2 + 2(xk+1 − xk)

T dk)

= −β
2 (|dk+1 − dk|2 + 2(dk+1 − dk)

T dk)

= β
2 (|dk|2 − |dk+1|2).

(8.23)

Summing up (8.23) from 0 to k, we have

k∑
l=0

δl ≤ β

2
(|d0|2 − |dk+1|2) ≤ β

2
|d0|2. (8.24)

256 8 Basic Descent Methods

Using (8.20) again for x = xk+1 and y = xk and noting (8.18) we have

δk+1 − δk = f (xk+1)− f (xk)

≤ gT
k+1(− 1

β
gk)− 1

2β
|gk+1 − gk|2

= − 1
2β

(|gk+1|2 + |gk|2).
(8.25)

Noting (8.25) holds for all k, we have

∑k
l=0 δl =∑k

l=0 δl(l + 1− l)

=∑k
l=0 δl(l + 1)−∑k

l=0 δll

=∑k+1
l=1 δl−1l −∑k

l=1 δll

= δk(k + 1)+∑k
l=1(δl−1 − δl)l

≥ δk(k + 1)+∑k
l=1

l
2β

(|gl|2 + |gl−1|2)
≥ δk(k + 1)+ k(k+1)

2β
|gk|2,

where the last inequality comes |gk| = |∇f (xk)| is monotonically decreasing.
Using (8.24) we finally have

(k + 1)δk + k(k + 1)

2β
|gk|2 ≤ β

2
|d0|2. (8.26)

Inequality (8.26), from δk = f (xk) − f (x∗) ≥ 0 and d0 = x0 − x∗, proves the
desired bounds.

Theorems 1 and 2 imply that the convergence speed of the steepest descent
method is arithmetic. In practice, one may not know 1

β
so that a popular backtrack-

ing line search adaptive scheme is used, where one could apply different stepsizes
at different iterations to fully exploit the gradient information.

Definition (Power-2 Backtracking Line Search) Start from a guess of positive β, if
sufficient objective reduction is achieved given by (8.19), halve β (double the stepsize),
and continue; otherwise, double β (halve the stepsize) and continue. Stop when the process
is reversed and return the best preceding stepsize.

The Quadratic Case

When f (x) is strongly convex, the convergence speed can be increased from arith-
metic to geometric or linear convergence. Since all of the important convergence
characteristics of the method of steepest descent are revealed by an investigation of
the method when applied to quadratic problems, we focus here on

f (x) = 1

2
xT Qx− xT b, (8.27)

8.2 The Method of Steepest Descent: First-Order 257

where Q is a positive definite symmetric n × n matrix. Since Q is positive definite,
all of its eigenvalues are positive. We assume that these eigenvalues are ordered:
0 < a = λ1 � λ2 . . . � λn = A. With Q positive definite, it follows (from
Proposition 5, Sect. 7.4) that f is strictly convex.

The unique minimum point of f can be found directly, by setting the gradient to
zero, as the vector x∗ satisfying

Qx∗ = b. (8.28)

Moreover, introducing the function

E(x) = 1

2
(x− x∗)T Q(x− x∗), (8.29)

we have E(x) = f (x)+(1/2)x∗T Qx∗, which shows that the function E differs from
f only by a constant. For many purposes then, it will be convenient to consider that
we are minimizing E rather than f .

The gradient (of both f and E) is given explicitly by

g(x) = Qx− b. (8.30)

Thus the method of steepest descent can be expressed as

xk+1 = xk − αkgk, (8.31)

where gk = Qxk − b and where αk minimizes f (xk − αgk). We can, however, in
this special case, determine the value of αk explicitly. We have, by definition (8.27),

f (xk − αgk) = 1

2
(xk − αgk)

T Q(xk − αgk)− (xk − αgk)
T b,

which (as can be found by differentiating with respect to α) is minimized at

αk = gT
k gk

gT
k Qgk

. (8.32)

Hence the method of steepest descent (8.31) takes the explicit form

xk+1 = xk −
(

gT
k gk

gT
k Qgk

)
gk, (8.33)

where gk = Qxk − b.
The function f and the steepest descent process can be illustrated as in Fig. 8.9 by

showing contours of constant values of f and a typical sequence developed by the
process. The contours of f are n-dimensional ellipsoids with axes in the directions

258 8 Basic Descent Methods

Fig. 8.9 Steepest descent

of the n-mutually orthogonal eigenvectors of Q. The axis corresponding to the ith
eigenvector has length proportional to 1/λi . We now analyze this process and show
that the rate of convergence depends on the ratio of the lengths of the axes of the
elliptical contours of f , that is, on the eccentricity of the ellipsoids.

Lemma 2 The iterative process (8.33) satisfies

E(xk+1) =
{

1− (gT
k gk)

2

(gT
k Qgk)(g

T
k Q−1gk)

}
E(xk). (8.34)

Proof The proof is by direct computation. We have, setting yk = xk − x∗,

E(xk)− E(xk+1)

E(xk)
= 2αkgT

k Qyk − α2
k gT

k Qgk

yT
k Qyk

.

Using gk = Qyk , together with (8.32), we have

E(xk)− E(xk+1)

E(xk)
=

2(gT
k gk)

2

(gT
k Qgk)

− (gT
k gk)

2

(gT
k Qgk)

gT
k Q−1gk

= (gT
k gk)

2

(gT
k Qgk)(gT

k Q−lgk)
.

In order to obtain a bound on the rate of convergence, we need a bound on the right-
hand side of (8.34). The best bound is due to Kantorovich and his lemma, stated
below, is a useful general tool in convergence analysis.

8.2 The Method of Steepest Descent: First-Order 259

Kantorovich inequality Let Q be a positive definite symmetric n×n matrix. For any vector
x there holds

(xT x)2

(xT Qx)(xT Q−1x)
� 4aA

(a + A)2
, (8.35)

where a and A are, respectively, the smallest and largest eigenvalues of Q.

Proof Let the eigenvalues λ1, λ2, . . . , λn of Q satisfy

0 < a = λ1 � λ2 . . . � λn = A.

By an appropriate change of coordinates the matrix Q becomes diagonal with
diagonal (λ1, λ2, . . . , λn). In this coordinate system we have

(xT x)2

(xT Qx)(xT Q−1x)
= (

∑n
i=1 x2

i)2

(
∑n

i=1 λix
2
i)(
∑n

i=1(x
2
i /λi))

,

which can be written as

(xT x)2

(xT Qx)(xT Q−1x)
= 1/

∑n
i=1 ξiλi∑n

i=1(ξi/λi)
≡ φ(ξ)

ψ(ξ)
,

where ξi = x2
i /
∑n

i=1 x2
i . We have converted the expression to the ratio of two

functions involving convex combinations; one a combination of λi ’s; the other a
combination of 1/λi’s. The situation is shown pictorially in Fig. 8.10. The curve
in the figure represents the function 1/λ. Since

∑n
i=1 ξiλi is a point between λ1

and λn, the value of φ(ξ) is a point on the curve. On the other hand, the value of
ψ(ξ) is a convex combination of points on the curve and its value corresponds to
a point in the shaded region. For the same vector ξ both functions are represented

Fig. 8.10 Kantorovich inequality

260 8 Basic Descent Methods

by points on the same vertical line. The minimum value of this ratio is achieved for
some λ = ξ1λ1 + ξnλn, with ξ1 + ξn = 1. Using the relation ξ1/λ1 + ξn/λn =
(λ1 + λn − ξ1λ1 − ξnλn)/λ1λn, an appropriate bound is

φ(ξ)

ψ(ξ)
� lim

λ1�λ�λn

(1/λ)

(λ1 + λn − λ)/(λ1λn)
.

The minimum is achieved at λ = (λ1 + λn)/2, yielding

φ(ξ)

ψ(ξ)
� 4λ1λn

(λ1 + λn)2 .

Combining the above two lemmas, we obtain the central result on the convergence
of the method of steepest descent.

Theorem 3 (Steepest Descent—Quadratic Case) For any x0 ∈ En the method of
steepest descent (8.33) converges to the unique minimum point x∗ of f . Furthermore, with
E(x) = 1

2 (x− x∗)T Q(x− x∗), there holds at every step k

E(xk+1) �
(

A− a

A+ a

)2

E(xk). (8.36)

Proof By Lemma 2 and the Kantorovich inequality

E(xk+1) �
{

1− 4aA

(A+ a)2

}
E(xk) =

(
A− a

A+ a

)2

E(xk).

It follows immediately that E(xk) → 0 and hence, since Q is positive definite,
that xk → x∗.

Roughly speaking, the above theorem says that the convergence rate of steepest
descent is slowed as the contours of f become more eccentric. If a = A,
corresponding to circular contours, convergence occurs in a single step. Note,
however, that even if n − 1 of the n eigenvalues are equal and the remaining one is
a great distance from these, convergence will be slow, and hence a single abnormal
eigenvalue can destroy the effectiveness of steepest descent.

In the terminology introduced in Sect. 7.7, the above theorem states that with
respect to the error function E (or equivalently f) the method of steepest descent
converges linearly with a ratio no greater than [(A − a)/(A + a)]2. The actual
rate depends on the initial point x0. However, for some initial points the bound
is actually achieved. Furthermore, it has been shown by Akaike that, if the ratio is
unfavorable, the process is very likely to converge at a rate close to the bound. Thus,
somewhat loosely but with reasonable justification, we say that the convergence
ratio of steepest descent is [(A− a)/(A+ a)]2.

8.2 The Method of Steepest Descent: First-Order 261

It should be noted that the convergence rate actually depends only on the ratio
r = A/a of the largest to the smallest eigenvalue. Thus the convergence ratio is

(
A− a

A+ a

)2

=
(

r − 1

r + 1

)2

,

which clearly shows that convergence is slowed as r increases. The ratio r , which
is the single number associated with the matrix Q that characterizes convergence, is
often called the condition number of the matrix.

Example Let us take

Q =

⎡
⎢⎢⎣

0.78 −0.02 −0.12 −0.14
−0.02 0.86 −0.04 0.06
−0.12 −0.04 0.72 −0.08
−0.14 0.06 −0.08 0.74

⎤
⎥⎥⎦

b = (0.76, 0.08, 1.12, 0.68).

For this matrix it can be calculated that a = 0.52, A = 0.94 and hence r = 1.8.
This is a very favorable condition number and leads to the convergence ratio [(A−
a)/(A+ a)]2 = 0.081. Thus each iteration will reduce the error in the objective by
more than a factor of ten; or, equivalently, each iteration will add about one more
digit of accuracy. Indeed, starting from the origin the sequence of values obtained
by steepest descent as shown in Table 8.1 is consistent with this estimate.

The Nonquadratic Case

For nonquadratic functions, we expect that steepest descent will also do reasonably
well if the condition number is modest. Fortunately, we are able to establish
estimates of the progress of the method when the Hessian matrix is always positive

Table 8.1 Solution to
example

Step k f (xk)

0 0

1 −2.1563625

2 −2.1744062

3 −2.1746440

4 −2.1746585

5 −2.1746595

6 −2.1746595

Solution point x∗ =
(1.534965, 0.1220097,
1.975156, 1.412954)

262 8 Basic Descent Methods

definite. Specifically, we assume that the Hessian matrix is bounded above and
below as aI � F(x̄) � AI. (Thus f is strongly convex.) We present three
analyses:

1. Exact Line Search. Given a point xk, we have for any α

f (xk − αg(xk)) � f (xk)− αg(xk)
T g(xk)+ Aα2

2
g(xk)

T g(xk). (8.37)

Minimizing both sides separately with respect to α the inequality will hold for the
two minima. The minimum of the left- hand side is f (xk+1). The minimum of the
right-hand side occurs at α = 1/A, yielding the result

f (xk+1) � f (xk)− 1

2A
|g(xk)|2,

where |g(xk)|2 ≡ g(xk)T g(xk). Subtracting the optimal value f ∗ = f (x∗) from
both sides produces

f (xk+1)− f∗ � f(xk)− f∗ − 1

2A
|g(xk)|2. (8.38)

In a similar way, for any x there holds

f (x) � f (xk)+ g(xk)
T (x− xk)+ a

2
|x− xk|2.

Again we can minimize both sides separately. The minimum of the left- hand side is
f ∗ the optimal solution value. Minimizing the right-hand side leads to the quadratic
optimization problem. The solution is x = xk − g(xk)/a. Substituting this x in the
right-hand side of the inequality gives

f ∗ � f (xk)− 1

2a
|g(xk)|2. (8.39)

From (8.39) we have

− |g(xk)|2 � 2a[f ∗ − f (xk)]. (8.40)

Substituting this in (8.38) gives

f (xk+1)− f ∗ � (1− a/A)[f (xk)− f ∗]. (8.41)

This shows that the method of steepest descent makes progress even when it is not
close to the solution.

8.2 The Method of Steepest Descent: First-Order 263

2. Other Stopping Criteria. As an example of how other stopping criteria can
be treated, we examine the rate of convergence when using Amijo’s rule with
ε < 0.5 and η > 1. Note first that the inequality t � t2 for 0 � t � 1 implies by
a change of variable that

−α + α2A

2
≤ −α/2

for 0 � α � 1/A. Then using (8.37) we have that for α < 1/A

f (xk − αg(xk)) ≤ f (xk)− α|g(xk)|2 + 0.5α2A|g(xk)|2
≤ f (xk)− 0.5α|g(xk)|2
< f (xk)− εα|g(xk)|2

since ε < 0.5. This means that the first part of the stopping criterion is satisfied
for α < 1/A.

The second part of the stopping criterion states that ηα does not satisfy the first
criterion and thus the final α must satisfy α ≥ 1/(ηA). Therefore the inequality of
the first part of the criterion implies

f (xk+1) ≤ f (xk)− ε

ηA
|g(xk)|2.

Subtracting f ∗ from both sides,

f (xk+1)− f ∗ ≤ f (xk)− f ∗ − ε

ηA
|g(xk)|2.

Finally, using (8.40) we obtain

f (xk+1)− f ∗ ≤ [1− (2εa/ηA)](f (xk)− f ∗).

Clearly 2εa/ηA < 1 and hence there is linear convergence. Notice if that in fact ε is
chosen very close to 0.5 and η is chosen very close to 1, then the stopping condition
demands that the α be restricted to a very small range, and the estimated rate of
convergence is very close to the estimate obtained above for exact line search.

3. Asymptotic Convergence. We expect that as the points generated by steepest
descent approach the solution point, the convergence characteristics will be close
to those inherent for quadratic functions. This is indeed the case.

The general procedure for proving such a result, which is applicable to most
methods having unity order of convergence, is to use the Hessian of the objective at
the solution point as if it were the Q matrix of a quadratic problem. The particular

264 8 Basic Descent Methods

theorem stated below is a special case of a theorem in Sect. 12.4 so we do not prove
it here; but it illustrates the generalizability of an analysis of quadratic problems.

Theorem Suppose f is defined on En, has continuous second partial derivatives, and
has a relative minimum at x∗. Suppose further that the Hessian matrix of f, F(x∗), has
smallest eigenvalue a > 0 and largest eigenvalue A > 0. If {xk} is a sequence generated by
the method of steepest descent that converges to x∗, then the sequence of objective values
{f (xk)} converges to f (x∗) linearly with a convergence ratio no greater than [(A−a)/(A+
a)]2 .

8.3 Applications of the Convergence Theory
and Preconditioning

Now that the basic convergence theory, as represented by the formula (8.36) for the
rate of convergence, has been developed and demonstrated to actually characterize
the behavior of steepest descent, it is appropriate to illustrate how the theory can
be used. Generally, we do not suggest that one computes the numerical value of the
formula—since it involves eigenvalues, or ratios of eigenvalues, that are not easily
determined. Nevertheless, the formula itself is of immense practical importance,
since it allows one to theoretically compare various situations. Without such a
theory, one would be forced to rely completely on experimental comparisons.

Application 1 (Solution of Gradient Equation) One approach to the minimiza-
tion of a function f is to consider solving the equations ∇f (x) = 0 that represent
the necessary conditions. It has been proposed that these equations could be solved
by applying steepest descent to the function h(x) = |∇f (x)|2. One advantage of
this method is that the minimum value is known. We ask whether this method is
likely to be faster or slower than the application of steepest descent to the original
function f itself.

For simplicity we consider only the case where f is quadratic. Thus let f (x) =
(1/2)xT Qx− bT x. Then the gradient of f is g(x) = Qx− b, and h(x) = |g(x)|2 =
xT Q2x − 2xT Qb + bT b. Thus h(x) is itself a quadratic function. The rate of
convergence of steepest descent applied to h will be governed by the eigenvalues
of the matrix Q2. In particular the rate will be

(
r̄ − 1

r̄ + 1

)2

,

where r̄ is the condition number of the matrix Q2. However, the eigenvalues of Q2

are the squares of those of Q itself, so r̄ = r2, where r is the condition number of
Q, and it is clear that the convergence rate for the proposed method will be worse
than for steepest descent applied to the original function.

8.3 Applications of the Convergence Theory and Preconditioning 265

We can go further and actually estimate how much slower the proposed method
is likely to be. If r is large, we have

steepest descent rate =
(

r − 1

r + 1

)2

 (1− 1/r)4

proposed method rate =
(

r2 − 1

r2 + 1

)2

 (1− 1/r2)4.

Since (1 − 1/r2)r 1 − 1/r , it follows that it takes about r steps of the new
method to equal one step of ordinary steepest descent. We conclude that if the
original problem is difficult to solve with steepest descent, the proposed method
will be quite a bit worse.

Application 2 (Penalty Methods) Let us briefly consider a problem with a single
constraint:

minimize f (x) (8.42)

subject to h(x) = 0.

One method for approaching this problem is to convert it (at least approximately) to
the unconstrained problem

minimize f (x)+ 1

2
μh(x)2, (8.43)

where μ is a (large) penalty coefficient. Because of the penalty, the solution to (8.43)
will tend to have a small h(x). Problem (8.43) can be solved as an unconstrained
problem by the method of steepest descent. How will this behave?

For simplicity let us consider the case where f is quadratic and h is linear.
Specifically, we consider the problem

minimize
1

2
xT Qx− bT x (8.44)

subject to cT x = 0.

The objective of the associated penalty problem is (1/2){xT Qx+μxT ccT x}−bT x.
The quadratic form associated with this objective is defined by the matrix Q +
μccT and, accordingly, the convergence rate of steepest descent will be governed
by the condition number of this matrix. This matrix is the original matrix Q with a
large rank one matrix added. It should be fairly clear† that this addition will cause

†See the Interlocking Eigenvalues Lemma in Sect. 10.6 for a proof that only one eigenvalue
becomes large.

266 8 Basic Descent Methods

one eigenvalue of the matrix to be large (on the order of μ). Thus the condition
number is roughly proportional to μ. Therefore, as one increases μ in order to get
an accurate solution to the original constrained problem, the rate of convergence
becomes extremely poor. We conclude that the penalty function method used in this
simplistic way with steepest descent will not be very effective. (Penalty functions,
and how to minimize them more rapidly, are considered in detail in Chap. 11.)

Scaling as Preconditioning

The performance of the method of steepest descent is dependent on the particular
choice of variables x used to define the problem. A new choice may substantially
alter the convergence characteristics.

Suppose that T is an invertible n× n matrix. We can then represent points in En

either by the standard vector x or by y where Ty = x. The problem of finding x to
minimize f (x) is equivalent to that of finding y to minimize h(y) = f (Ty). Using
y as the underlying set of variables, we then have

∇h = ∇f T, (8.45)

where ∇f is the gradient of f with respect to x. Thus, using steepest descent, the
direction of search will be

∇y = −TT ∇f T , (8.46)

which in the original variables is

�x = −TTT ∇f T . (8.47)

Thus we see that the change of variables changes the direction of search.
The rate of convergence of steepest descent with respect to y will be determined

by the eigenvalues of the Hessian of the objective, taken with respect to y. That
Hessian is

∇2h(y) ≡ H(y) = TT F(Ty)T.

Thus, if x∗ = Ty∗ is the solution point, the rate of convergence is governed by the
matrix

H(y∗) = TT F(x∗)T. (8.48)

8.3 Applications of the Convergence Theory and Preconditioning 267

Very little can be said in comparison of the convergence ratio associated with H
and that of F. If T is an orthonormal matrix, corresponding to y being defined from
x by a simple rotation of coordinates, then TT T = I, and we see from (8.42) that the
directions remain unchanged and the eigenvalues of H are the same as those of F.

In general, before attacking a problem with steepest descent, it is desirable, if
it is feasible, to introduce a change of variables that leads to a more favorable or
conditioned eigenvalue structure. Usually the only kind of transformation that is
at all practical is one having T equal to a diagonal matrix, corresponding to the
introduction of scale factors on each of the variables. One should strive, in doing
this, to make the second derivatives with respect to each variable roughly the same.
Although appropriate scaling can potentially lead to substantial payoff in terms of
enhanced convergence rate, we largely ignore this possibility in our discussions of
steepest descent. However, see the next application for a situation that frequently
occurs.

Application 3 (Program Design) In applied work it is extremely rare that one
solves just a single optimization problem of a given type. It is far more usual that
once a problem is coded for computer solution, it will be solved repeatedly for
various parameter values. Thus, for example, if one is seeking to find the optimal
production plan (as in Example 2 of Sect. 7.2), the problem will be solved for the
different values of the input prices. Similarly, other optimization problems will
be solved under various assumptions and constraint values. It is for this reason
that speed of convergence and convergence analysis is so important. One wants a
program that can be used efficiently. In many such situations, the effort devoted to
proper scaling repays itself, not with the first execution, but in the long run.

As a simple illustration consider the problem of minimizing the function

f (x) = x2 − 5xy + y4 − ax − by.

It is desirable to obtain solutions quickly for different values of the parameters a

and b. We begin with the values a = 25, b = 8.
The result of steepest descent applied to this problem directly is shown in

Table 8.2, column (a). It requires eighty iterations for convergence, which could
be regarded as disappointing.

The reason for this poor performance is revealed by examining the Hessian
matrix

F =
[

2 −5
−5 12y2

]
.

Using the results of our first experiment, we know that y = 3. Hence the diagonal
elements of the Hessian, at the solution, differ by a factor of 54. (In fact, the
condition number is about 61.) As a simple remedy we scale the problem by
replacing the variable y by z = ty. The new lower right-corner term of the Hessian
then becomes 12z2/t4, which has magnitude 12 × t2 × 32/t4 = 108/t2. Thus we

268 8 Basic Descent Methods

Table 8.2 Solution to
scaling application

Value of f

Iteration no. (a) Unscaled (b) Scaled

0 0.0000 0.0000

1 −230.9958 −162.2000

2 −256.4042 −289.3124

4 −293.1705 −341.9802

6 −313.3619 −342.9865

8 −324.9978 −342.9998

9 −329.0408 −343.0000

15 −339.6124

20 −341.9022

25 −342.6004

30 −342.8372

35 −342.9275

40 −342.9650

45 −342.9825

50 −342.9909

55 −342.9951

60 −342.9971 Solution

65 −342.9883 x = 20.0

70 −342.9990 y = 3.0

75 −342.9994

80 −342.9997

might put t = 7 in order to make the two diagonal terms approximately equal.
The result of applying steepest descent to the problem scaled this way is shown in
Table 8.2, column (b). (This superior performance is in accordance with our general
theory, since the condition number of the scaled problem is about two.) For other
nearby values of a and b, similar speeds will be attained.

8.4 Accelerated Steepest Descent

There is an accelerated steepest descent method that works as follows:

λ0 = 0, λk+1 = 1+
√

1+4(λk)2

2 , αk = 1− λk

λk+1
, (8.49)

x̃k+1 = xk − 1
β
∇f (xk)

T , xk+1 = (1− αk)x̃k+1 + αk x̃k. (8.50)

8.4 Accelerated Steepest Descent 269

Note that (λk)
2 = λk+1(λk+1 − 1), λk > k/2 and αk ≤ 0. One can prove:

Theorem (Accelerated Steepest Descent) Let f (x) be convex and differentiable every-
where, satisfies the (first-order) β-Lipschitz condition, and admits a minimizer x∗. Then, the
method of accelerated steepest descent generates a sequence of solutions such that

f (x̃k+1)− f (x∗) ≤ 2β

k2
|x0 − x∗|2, ∀k ≥ 1.

Proof We now let dk = λkxk − (λk − 1)x̃k − x∗, and δk = f (x̃k)− f (x∗)(≥ 0).
Applying Lemma 1 for y = x̃k+1 and x = x̃k, convexity of f and (8.50), we have

δk+1 − δk = f (x̃k+1)− f (xk)+ f (xk)− f (x̃k)

≤ −β
2 |x̃k+1 − xk|2 + f (xk)− f (x̃k)

≤ −β
2 |x̃k+1 − xk|2 + (gk)

T (xk − x̃k)

= −β
2 |x̃k+1 − xk|2 − β(x̃k+1 − xk)

T (xk − x̃k).

(8.51)

Applying Lemma 1 for y = x̃k+1 and x = x∗, convexity of f and (8.50), we have

δk+1 = f (x̃k+1)− f (xk)+ f (xk)− f (x∗)
≤ −β

2 |x̃k+1 − xk|2 + f (xk)− f (x∗)
≤ −β

2 |x̃k+1 − xk|2 + (gk)
T (xk − x∗)

= −β
2 |x̃k+1 − xk|2 − β(x̃k+1 − xk)

T (xk − x∗).

(8.52)

Multiplying (8.51) by λk(λk − 1) and (8.52) by λk respectively, and summing the
two, we have

(λk)
2δk+1 − (λk−1)

2δk

≤ −(λk)
2 β

2 |x̃k+1 − xk|2 − λkβ(x̃k+1 − xk)
T dk

= −β
2 ((λk)

2|x̃k+1 − xk|2 + 2λk(x̃k+1 − xk)
T dk)

= −β
2 (|λk x̃k+1 − (λk − 1)x̃k − x∗|2 − |dk|2)

= β
2 (|dk|2 − |λk x̃k+1 − (λk − 1)x̃k − x∗|2).

Using (8.49) and (8.50) we derive

λk x̃k+1 − (λk − 1)x̃k = λk+1xk+1 − (λk+1 − 1)x̃k+1.

Thus,

(λk)
2δk+1 − (λk−1)

2δk ≤ β

2
(|dk|2 − |dk+1|2). (8.53)

270 8 Basic Descent Methods

Summing up (8.53) from 1 to k we have

δk+1 ≤ β

2(λk)2 |d1|2 ≤ 2β

k2 |d0|2,

where we used facts λk ≥ k/2 and |d1| ≤ |d0|.

The Heavy Ball Method

Prior to the development of the accelerated steepest descent method, there is a so-
called heavy ball method. We illustrate the method by considering the quadratic case
(8.27), in which the iteration process becomes

xk+1 = xk − 4(√
A+√a

)2∇f (xk)+
(√

A−√a√
A+√a

)
(xk − xk−1),

where a and A are, again respectively, the smallest and largest eigenvalues of the
convex Hessian matrix Q.

The last term in the formula is called “acceleration” or “momentum” factor. The
convergence ratio of the method can be improved from the ratio in (8.36) of the

original steepest descent method to
(√

A−√a√
A+√a

)2
. The implementation of the method

depends on the knowledge of the two extreme eigenvalues. As this information is not
typically available, the accelerated steepest descent can be viewed as an important
advance.

The Method of False Position

Yet there is another steepest descent method, commonly called the BB method, that
works as follows:

Δx
k = xk − xk−1 and Δ

g
k = ∇f (xk)− ∇f (xk−1), (8.54)

αk = (Δx
k)T Δ

g
k

(Δ
g
k)T Δ

g
k

or αk = (Δx
k)T Δx

k

(Δx
k)T Δ

g
k

.

Then

xk+1 = xk − αkgk = xk − αk∇f (xk)
T . (8.55)

8.5 Multiplicative Steepest Descent 271

The stepsize of the BB method resembles the one used in quadratic curve fitting
discussed for line search. There, the stepsize of (8.10) is given as xk−1−xk

f ′(xk−1)−f ′(xk)
. If

we let δx
k = xk − xk−1 and δ

g

k = f ′(xk)− f ′(xk−1), this quantity can be written as
δx
k δ

g
k

(δ
g
k)2 or

(δx
k)2

δx
k δ

g
k

. In the vector case, multiplication is replaced by inner product.

There was another explanation on the stepsize of the BB method. Consider
convex quadratic minimization, and let the distinct positive eigenvalues of the
Hessian Q be λ1, λ2, . . . λK . Then, if we let the stepsize in the method of steepest
descent be αk = 1

λk
, k = 1, . . . ,K , the method terminates in K iterations (which

we leave as an exercise). In the BB method, αk minimizes

|Δx
k − αΔ

g
k | = |Δx

k − αQΔx
k |.

If the error becomes 0 plus |Δx
k | �= 0, 1

αk
will be a positive eigenvalue of Q.

Notice that the objective values of the iterates generated by the BB method is
not monotonically decreasing; the method may overshoot in order to have a better
position in the long run.

8.5 Multiplicative Steepest Descent

The descent methods introduced earlier are additive in nature. However, for some
types of optimization problems, it may be better to iterate in a multiplicative fashion,
such as minimizing a function subject to simple variable-nonnegative or conic
constraints

minimize f (x) (8.56)

subject to x ≥ 0 or x ∈ K,

where K is a convex cone discussed in Chap. 6.

Example 1 (Nonnegative Least Squares) There are parameter regression or estima-
tion problems where the parameters are subject to be nonnegative. The simplest one
is f (x) = |Ax−b|2 where A is an m×n data matrix and b is an observed m vector.
In many applications, the parameters need to be nonnegative in order to make sense.

Example 2 (PSD Least Squares) The anchor-free sensor network localization prob-
lem is in Example 3 of Sect. 6.2, where f (Y) = |AY − b|2. There A is a data
tensor defined in (6.2) and b is an observed vector. In this application, Y needs to
be positive semidefinite.

272 8 Basic Descent Methods

Affine-Scaling Method

At an initial solution x > 0, let scaling matrix D be a diagonal matrix such that
Djj = min{1, xj }, ∀j . Then the new iterate x+ would be

x+ = x− αD2∇f (x),

where stepsize α can be chosen based on line search but keeping x+ > 0. If f is
β-Lipschitz, one simple choice of stepsize is

α = min

{
1

β
,

1

2|D∇f (x)|∞
}

,

where the first term guarantees the objective decreasing and the second term is
to ensure the new iterate stays positive (more precisely,

xj

2 ≤ x+j ≤ 2xj for all
variables). If, in addition, x ≤ 1, the process becomes multiplicative

x+ = x. ∗ (1− α(x. ∗ ∇f (x))) ,

where operator (·). ∗ (·) represents the vector of component-wise product of two
vectors.

Consider the linear objective function f (x1, x2) = 10x1 + x2. Starting from
initial solution (1; 1), the original steepest descent would get to a boundary solution
(0; 0.9) and stall there. However, the affine-scaling method would generate the
sequence

(
1

1

)
,

(
0.5

0.95

)
,

(
0.25

0.8598

)
,

(
0.125

0.7119

)
,

(
0.0625

0.5092

)
,

(
0.0313

0.3018

)
,

(
0.0156

0.1561

)
, . . .

Theorem (Affine-Scaling Reduction) Let f (x) be differentiable everywhere and β-
Lipschitz. Then the affine-scaling step would make

f (x+)− f (x) ≤ min

{
− 1

2β
‖D∇f (x)‖2∞, −1

4
‖D∇f (x)‖∞

}
.

Proof From the β-Lipschitz condition

f (x+) ≤ f (x)− (αD2∇f (x))T∇f (x)+ β

2
(α)2‖D2∇f (x)‖2

2

= f (x)− α‖D∇f (x)‖2
2 +

β

2
(α)2‖D2∇f (x)‖2

2.

8.5 Multiplicative Steepest Descent 273

Since Djj ≤ 1 we have ‖D2∇f (x)‖2
2 ≤ ‖D∇f (x)‖2

2, and therefore

f (x+) ≤ f (x)− α‖D∇f (x)‖2
2 +

β

2
(α)2‖D∇f (x)‖2

2

= f (x)−
(

α − β

2
(α)2

)
‖D∇f (x)‖2

2.

Note that ‖D∇f (x)‖2
2 ≥ ‖D∇f (x)‖2∞.

According to the α selection above, the inequality 0 ≤ α ≤ 1
β

always holds,

which implies α − β
2 (α)2 ∈ [0, 1

2β
]. Therefore

f (x+) ≤ f (x)−
(

α − β

2
(α)2

)
‖D∇f (x)‖2∞. (8.57)

Furthermore, there are two cases depending on α:

• Case I: α = 1
β
≤ 1

2‖D∇f (x)‖∞ . In this case, according to (8.57),

f (x+) ≤ f (x)− 1

2β
‖D∇f (x)‖2∞.

• Case II: α = 1
2‖D∇f (x)‖∞ ≤ 1

β
. In this case, according to (8.57),

f (x+) ≤ f (x)−
(

1− β

2
α

)
1

2‖D∇f (x)‖∞‖D∇f (x)‖2∞

= f (x)− 1

2

(
1− β

2
α

)
‖D∇f (x)‖∞

≤ f (x)− 1

4
‖D∇f (x)‖∞,

where in the last inequality we used the fact that α ≤ 1
β

.

Combining the two cases in the theorem immediately implies that the method will

identify an x such that ‖D∇f (x)‖∞ ≤ ε within max
{

4(f (x0)−f ∗)
ε

,
2β(f (x0)−f ∗)

ε2

}

steps. This also implies that, at the limit, either xj = 0 or ∇f (x)j = 0 for every j ,
a complementary slackness condition that will be explored in more detail later.

The affine-scaling method can be generalized to the semidefinite cone: from the
current symmetric positive definite matrix solution X, the new solution would be
updated from

X+ = X− αX∇f (X)X = X1/2
(

I− αX1/2∇f (X)X1/2
)

X1/2,

274 8 Basic Descent Methods

where stepsize α is similarly chosen to guarantee the positive definiteness of the
new iterate. We leave its convergence as an exercise.

Mirror-Descent Method

Again, let solution x > 0, a particular “mirror-descent” multiplicative iteration
formula would be

x+ = x. ∗ exp(− 1

β
∇f (x)), (8.58)

where exp(·) is the component-wise exponential vector function. Below is an
explanation of the formula.

The standard additive SDM update can be viewed as

x+ = arg min
y
∇f (x)T y+ β

2
|y− x|2.

One can choose any strongly convex function h(·) and define

Dh(y, x) = h(y)− h(x)−∇h(x)T (y− x)

and define the new update as

x+ = arg min
y
∇f (x)T y+ β ·Dh(y, x).

The update of the mirror descent is the result of choosing (negative) entropy function
h(x) = ∑j xj log(xj), while the one for the standard steepest descent is choosing

h(x) = 1
2 |x|2.

Strongly convex function h plays a “mirror” role between x and its mirror (or
dual) space ∇h. One can verify that, from the updating formula,

∇h(x+) = ∇h(x)− 1

β
∇f (x),

that is, the update is the steepest descent step in the mirror space ∇h. For
h(x) = 1

2 |x|2, the x space is identical to its mirror space. For the choice of the
negative entropy function, they are not identical and the mirror space becomes the
logarithmic space of x, so that the mirror descent can be interpreted as updating
log(x) as in (8.58) (or the exponents of x) along the standard steepest descent
direction.

8.6 Newton’s Method: Second-Order 275

8.6 Newton’s Method: Second-Order

The idea behind Newton’s method is that the function f being minimized is
approximated locally by a quadratic function, and this approximate function is
minimized exactly. Thus near xk we can approximate f by the truncated Taylor
series

f (x) f (xk)+ ∇f (xk)(x− xk)+ 1

2
(x− xk)

T F(xk)(x− xk).

The right-hand side is minimized at

xk+1 = xk − [F(xk)]−1∇f (xk)
T , (8.59)

and this equation is the pure form of Newton’s method.
In view of the second-order sufficiency conditions for a minimum point, we

assume that at a relative minimum point, x∗, the Hessian matrix, F(x∗), is positive
definite. We can then argue that if f has continuous second partial derivatives, F(x)

is positive definite near x∗ and hence the method is well defined near the solution.

Order Two Convergence

Newton’s method has very desirable properties if started sufficiently close to the
solution point. Its order of convergence is two.

Theorem (Newton’s Method) Let f ∈ C3 on En, and assume that at the local minimum
point x∗, the Hessian F(x∗) is positive definite. Then if started sufficiently close to x∗, the
points generated by Newton’s method converge to x∗. The order of convergence is at least
two.

Proof There are ρ > 0, β1 > 0, β2 > 0 such that for all x with |x−x∗| < ρ, there
holds |F(x)−1| < β1 (see Appendix A for the definition of the norm of a matrix) and
|∇f (x∗)T − ∇f (x)T − F(x)(x∗ − x)| � β2|x − x∗|2. Now suppose xk is selected
with β1β2|xk − x∗| < 1 and |xk − x∗| < ρ. Then

|xk+1 − x∗| = |xk − x∗ − F(xk)
−1∇f (xk)

T |
= |F(xk)

−1[∇f (x∗)T −∇f (xk)
T − F(xk)(x∗ − xk)]|

� |F(xk)
−1|β2|xk − x∗|2

� β1β2|xk − x∗|2 < |xk − x∗|.

The final inequality shows that the new point is closer to x∗ than the old point, and
hence all conditions apply again to xk+1. The previous inequality establishes that
convergence is second order.

276 8 Basic Descent Methods

Modifications

Although Newton’s method is very attractive in terms of its convergence properties
near the solution, it requires modification before it can be used at points that are
remote from the solution. The general nature of these modifications is discussed in
the remainder of this section.

1. Damping. The first modification is that usually a search parameter α is intro-
duced so that the method takes the form

xk+1 = xk − αk[F(xk)]−1∇f (xk)
T ,

where αk is selected to minimize f . Near the solution we expect, on the basis of
how Newton’s method was derived, that αk 1. Introducing the parameter for
general points, however, guards against the possibility that the objective might
increase with αk = 1, due to nonquadratic terms in the objective function.

2. Positive Definiteness and Scaling. A basic consideration for Newton’s method
can be seen most clearly by a brief examination of the general class of algorithms

xk+1 = xk − αMkgk, (8.60)

where Mk is an n×n matrix, α is a positive search parameter, and gk = ∇f (xk)
T .

We note that both steepest descent (Mk = I) and Newton’s method (Mk =
[F(xk)]−1) belong to this class. The direction vector dk = −Mkgk obtained in
this way is a direction of descent if for small α the value of f decreases as α

increases from zero. For small α we can say

f (xk+1) = f (xk)+∇f (xk)(xk+1 − xk)+O(|xk+1 − xk|2).

Employing (8.45) this can be written as

f (xk+1) = f (xk)− αgT
k Mkgk +O(α2).

As α → 0, the second term on the right dominates the third. Hence if one is to
guarantee a decrease in f for small α, we must have gT

k Mkgk > 0. The simplest
way to insure this is to require that Mk be positive definite.

The best circumstance is that where F(x) is itself positive definite throughout
the search region. The objective function of many important optimization prob-
lems has this property, including for example interior-point approaches to linear
programming using the logarithm as a barrier function. Indeed, it can be argued that
convexity is an inherent property of the majority of well-formulated optimization
problems.

Therefore, assume that the Hessian matrix F(x) is positive definite throughout
the search region and that f has continuous third derivatives. At a given xk define

8.6 Newton’s Method: Second-Order 277

the symmetric matrix T = F(xk)
−1/2. As in Sect. 8.3 introduce the change of

variable Ty = x. Then according to (8.42) a steepest descent direction with respect
to y is equivalent to a direction with respect to x of d = −TTT g(xk), where g(xk)

is the gradient of f with respect to x at xk. Thus, d = F−1g(xk). In other words, a
steepest descent direction in y is equivalent to a Newton direction in x.

We can turn this relation around to analyze Newton steps in x as equivalent to
gradient steps in y. We know that convergence properties in y depend on the bounds
on the Hessian matrix given by (8.43) as

H(y) = TT F(x)T = F−1/2F(x)F−1/2. (8.61)

Recall that F = F(xk) which is fixed, whereas F(x) denotes the general Hessian
matrix with respect to x near xk. The product (8.61) is the identity matrix at yk

but the rate of convergence of steepest descent in y depends on the bounds of the
smallest and largest eigenvalues of H(y) in a region near yk .

These observations tell us that the damped method of Newton’s method will
converge at a linear rate at least as fast as c = (1 − a/A) where a and A are lower
and upper bounds on the eigenvalues of F(x0)

−1/2F(x0)F(x0)
−1/2, where x0 and

x0 are arbitrary points in the local search region. These bounds depend, in turn, on
the bounds of the third-order derivatives of f . It is clear, however, by continuity of
F(x) and its derivatives, that the rate becomes very fast near the solution, becoming
superlinear, and in fact, as we know, quadratic.

3. Backtracking. The backtracking method of line search, using α = 1 as the
initial guess, is an attractive procedure for use with Newton’s method. Using
this method the overall progress of Newton’s method divides naturally into two
phases: first a damping phase where backtracking may require α < 1, and second
a quadratic phase where α = 1 satisfies the backtracking criterion at every step.
The damping phase was discussed above.

Let us now examine the situation when close to the solution. We assume that all
derivatives of f through the third are continuous and uniformly bounded. We also
assume that in the region close to the solution, F(x) is positive definite with a > 0
and A > 0 being, respectively, uniform lower and upper bounds on the eigenvalues
of F(x). Using α = 1 and ε < 0.5 we have for dk = −F(xk)

−1g(xk)

f (xk + dk) = f (xk)− g(xk)
T F(xk)

−1g(xk)+ 1

2
g(xk)

T F(xk)
−1g(xk)+ o(|g(xk)|2)

= f (xk)− 1

2
g(xk)

T F(xk)
−1g(xk)+ o(|g(xk)|2)

< f (xk)− εg(xk)
T F(xk)

−1g(xk)+ o(|g(xk)|2),

where the o bound is uniform for all xk . Since |g(xk)| → 0 (uniformly) as xk → x∗,
it follows that once xk is sufficiently close to x∗, then f (xk + dk) < f (xk) −

278 8 Basic Descent Methods

εg(xk)
T dk and hence the backtracking test (the first part of Amijo’s rule) is satisfied.

This means that α = 1 will be used throughout the final phase.

4. General Problems. In practice, Newton’s method must be modified to accom-
modate the possible nonpositive definiteness at regions remote from the solution.

A common approach is to take Mk = [μkI + F(xk)]−1 for some nonnegative
value of μk . This can be regarded as a kind of compromise between steepest descent
(μk very large) and Newton’s method (μk = 0). There is always an μk that makes
Mk positive definite. We shall present one modification of this type.

Let Fk ≡ F(xk) and let μk be a parameter for which the matrix μkI + Fk is
positive definite. Then define

dk = −(μkI+ Fk)
−1gk (8.62)

and iterate according to

xk+1 = xk + αkdk, (8.63)

where stepsize αk minimizes f (xk + αdk), α � 0.
The utility of the above algorithm is hampered by the necessity to calculate the

smallest eigenvalue of F(xk), and in practice an alternate procedure is used. In one
class of methods (Levenberg–Marquardt type methods), for a given value of μk ,
Cholesky factorization of the form μkI+F(xk) = GGT (see Exercise 3 of Chap. 7)
is employed to check for positive definiteness. If the factorization breaks down, μk is
increased. The factorization then also provides the direction vector through solution
of the equations GGT dk = gk , which are easily solved, since G is triangular. Then
the value f (xk + dk) is examined. If it is sufficiently below f (xk), then xk+1 is
accepted and a new μk+1 is determined. Essentially, μ serves as a search parameter
in these methods. We will return to this approach in the next section.

It should be clear from the discussion that the superb local convergence of
Newton’s method needs to be carefully handled in practice in order to guarantee
global convergence. We next provide detailed global convergence analyses to show
how this can be done.

Newton’s Method and Logarithms

Interior-point methods of linear and nonlinear programming use barrier functions,
which usually are based on the logarithm. For linear programming especially, this
means that the only nonlinear terms are logarithms. Newton’s method enjoys some
special properties in this case.

8.6 Newton’s Method: Second-Order 279

To illustrate, let us apply Newton’s method to the one-dimensional problem

min
x
[tx − ln x], (8.64)

where t is a positive parameter. The derivative at x is

f ′(x) = t − 1

x
,

and of course the solution is x∗ = 1/t , or equivalently 1 − tx∗ = 0. The second
derivative is f ′′(x) = 1/x2. Denoting by x+ the result of one step of a pure
Newton’s method (with step length equal to 1) applied to the point x, we find

x+ = x − [f ′′(x)]−1f ′(x) = x − x2
(

t − 1

x

)
= x − tx2 + x

= 2x − tx2.

Thus

1− tx+ = 1− 2tx + x2t2 = (1− tx)2. (8.65)

Therefore, rather surprisingly, the quadratic nature of convergence of (1− tx)→ 0
is directly evident and exact. Expression (8.65) represents a reduction in the error
magnitude only if |1 − tx| < 1, or equivalently, 0 < x < 2/t . If x is too large,
then Newton’s method must be used with damping until the region 0 < x < 2/t is
reached. From then on, a stepsize of 1 will exhibit pure quadratic error reduction.

The situation is shown in Fig. 8.11. The graph is that of f ′(x) = t − 1/x. The
root-finding form of Newton’s method (Sect. 8.1) is then applied to this function.
At each point, the tangent line is followed to the x axis to find the new point.
The starting value marked x1 is far from the solution 1/t and hence following the
tangent would lead to a new point that was negative. Damping must be applied at
that starting point. Once a point x is reached with 0 < x < 1/t , all further points
will remain to the left of 1/t and move toward it quadratically.

In interior-point methods for linear programming, a logarithmic barrier function
is applied separately to the variables that must remain positive. The convergence
analysis in these situations is an extension of that for the simple case given here,
allowing for estimates of the rate of convergence that do not require knowledge of
bounds of third-order derivatives.

280 8 Basic Descent Methods

Fig. 8.11 Newton’s method applied to minimization of tx − ln x

Self-concordant Functions

The special properties exhibited above for the logarithm have been extended to the
general class of self-concordant functions of which the logarithm is the primary
example. A function f defined on the real line is self-concordant if it satisfies

|f ′′′(x)| ≤ 2f ′′(x)3/2, (8.66)

throughout its domain. It is easily verified that f (x) = − ln x satisfies this inequality
with equality for x > 0.

Self-concordancy is preserved by the addition of an affine term since such a term
does not affect the second or third derivatives.

A function defined on En is said to be self-concordant if it is self-concordant in
every direction: that is if f (x+ αd) is self-concordant with respect to α for every d
throughout the domain of f .

Self-concordant functions can be combined by addition and even by composition
with affine functions to yield other self-concordant functions. (See Exercise 23.) For
example the function

f (x) = −
m∑

i=1

ln(bj − aT
i x),

often used in interior-point methods for linear programming, is self-concordant.

8.7 Sequential Quadratic Optimization Methods 281

When a self-concordant function is subjected to Newton’s method, the quadratic
convergence of final phase can be measured in terms of the function

λ(x) = [∇f (x)F(x)−1∇f (x)T]1/2,

where as usual F(x) is the Hessian matrix of f at x. Then it can be shown that close
to the solution

2λ(xk+1) ≤ [2λ(xk)]2. (8.67)

Furthermore, in a backtracking procedure, estimates of both the stepwise progress
in the damping phase and the point at which the quadratic phase begins can be
expressed in terms of parameters that depend only on the backtracking parameters.
Although, this knowledge does not generally influence practice, it is theoretically
quite interesting.

Example 1 (The Logarithmic Case) Consider the earlier example of f (x) = tx −
ln x. There

λ(x) = [f ′(x)2/f ′′(x)] 1
2 = |(t − 1/x)x| = |1− tx|.

Then (8.67) gives

(1− tx+) ≤ 2(1− tx)2.

Actually, for this example, as we found in (8.65), the factor of 2 is not required.

There is a relation between the analysis of self-concordant functions and our
earlier convergence analysis.

Recall that one way to analyze Newton’s method is to change variables from x to
y according to ỹ = [F(x)]−(1/2)x̃, where here x is a reference point and x̃ is variable.
The gradient with respect to y at ỹ is then F(x)−(1/2)∇f (x̃), and hence the norm of
the gradient at y is [∇f (x)F(x)−1∇f (x)T](1/2) ≡ λ(x). Hence it is perhaps not
surprising that λ(x) plays a role analogous to the role played by the norm of the
gradient in the analysis of steepest descent.

8.7 Sequential Quadratic Optimization Methods

We present two second-order methods in this section to address global convergence.

Trust Region Method

As in Newton’s method, the idea is also based on sequential second-order Taylor’s
expansion, or quadratic approximation, of the objective function at the current

282 8 Basic Descent Methods

solution. However, the minimization of the quadratic function is constrained to a
local or “trust” region such as a ball around the current solution:

minimizey
1
2 (y− xk)

T Fk(y− xk)+ gT
k (y− xk)

subject to |y− xk|2 ≤ (δk)
2,

where Fk and (column vector) gk represent, respectively, the Hessian matrix and
gradient vector of the objective function, at the current solution xk , and parameter
δk(> 0) denotes the radius of the ball. We let xk+1 be the global minimizer and
continue the iterative process.

Let d = y− xk; we have the following (sub)problem:

minimized
1
2 dT Fkd+ gT

k d
subject to |d|2 ≤ (δk)

2.
(8.68)

Although the quadratic objective function may be nonconvex, problem (8.68)
(see proof of Sect. 6.5 of Chap. 6) can actually be solved as a (hidden) convex
optimization problem and the following lemma characterizes a global minimizer
of the problem.

Lemma 1 The necessary and sufficient conditions for d being a global minimizer of
problem (8.68) are, there exists a scalar μ ≥ 0,

(Fk + μI)d = −gk, (Fk + μI) � 0, μ ·
(
|d|2 − (δk)

2
)
= 0.

If Fk has a negative eigenvalue λk(< 0), the lemma implies that μ ≥ |λk| > 0 so
that |d|2 = (δk)

2. Then, from the lemma, we see the global minimal objective value
satisfies

1

2
dT Fkd+gT

k d = −1

2
dT (Fk+μI)d−μ

2
|d|2 ≤ −μ(δk)

2

2
≤ −|λk|(δk)

2

2
. (8.69)

A more specialized algorithm can be designed for solving (8.68). First, we
compute the minimum eigenvalue λk of Fk, which can be done much faster than
computing all eigenvalues. We first check if μ = 0, together with a d, satisfies the
conditions in Lemma 1 when λk ≥ 0 (convex case); otherwise, we must have μ > 0
and |d|2 = (δk)

2. Now we check if μ = −λk > 0, together with a d, satisfies
the conditions in Lemma 1, in which case gk must be orthogonal to the eigenvector
associated with λk . Finally, we must have μ > −λk > 0 so that matrix Fk + μI is
positive definite. Denote by d(μ) the solution of the system of linear equations in
Lemma 1, the problem becomes finding a root of g(μ) = |d(μ)|2 − (δk)

2. One can
verify this one-variable function g(μ), μ > 0 is analytic, with α = 12, presented
in (8.15) of Sect. 8.1. It is also easy to verify that its root μ ≤ |λk | + |gk|/δk .

Proposition 1 An ε-global minimizer of subproblem (8.68) can be computed in
O(log log(1/ε)) time.

8.7 Sequential Quadratic Optimization Methods 283

Let us now define the second-order β-Lipschitz function as:

Definition (Second-order β-Lipschitz Function) For any two points x and y

|∇f (x) − ∇f (y)− ∇2f (y)(x − y)| ≤ β|x− y|2

for a positive real number β.

Similarly, we have:

Lemma 2 Let f (x) be differentiable everywhere and satisfy the second-order β-Lipschitz
condition. Then, for any two points x and y

f (y) − f (x)− ∇f (x)(y − x)− 1

2
(y − x)T ∇2f (x)(y − x) ≤ β

3
|y− x|3.

Let the global minimizer of problem (8.68) be dk with μ = μk and update
xk+1 = xk + dk . Then from inequality (8.69) and Lemma 2

f (xk+1)− f (xk) ≤ −μk(δk)
2

2
+ β(δk)

3

3
.

Therefore, if we set the radius δk =
√

ε
β

for a fixed tolerance 0 ≤ ε < 1, the objective
reduction would be

f (xk+1)− f (xk) ≤ −μkε

2β2 +
ε1.5

3β2 .

In addition, upon setting δk =
√

ε

β
,

|∇f (xk+1)| = |∇f (xk+1)− (gk + Fkdk)+ (gk + Fkdk)|
≤ |∇f (xk+1)− (gk + Fkdk)| + |gk + Fkdk |
≤ β|dk|2 + |gk + Fkdk| (from second-order Lipshcitz condition)

= β|dk|2 + μk|dk| (from Lemma qptrustconds)

≤ β(δk)
2 + μkδk = ε

β
+ μk

√
ε

β
.

Consequently, if we terminate the iterative process as soon as μk ≤ √ε, then

f (xk+1)− f (xk) ≤ − ε1.5

6β2 and |∇f (xk+1)| ≤ 2ε

β
.

More importantly, since the absolute eigenvalue of Hessian ∇2f (xk), if negative, is
less than or equal to μk , upon termination,∇2f (xk)+√ε ·I is positive semidefinite.
This implies that, at the limit, xk is a solution that meets the second-order necessary
condition in addition to the first-order necessary condition.

Theorem 4 (Sequential BQP—Lipschitz Case) Let f (x) be differentiable everywhere,
satisfy the second-order β-Lipschitz condition, and admit a minimum value f ∗. Then, the

284 8 Basic Descent Methods

method of sequential quadratic optimization, xk+1 = xk + dk where dk is the minimizer of

hidden convex optimization problem (8.68) with δk =
√

ε

β
, will terminate in O(β2(f (x0)−f ∗))

ε1.5

iterations with an ε approximate second-order stationary solution x such that

|∇f (x)| ≤ 2ε

β
and ∇2f (x) +√ε · I � 0.

In practice, one should adaptively choose δk , and, consequently μk , to decrease
the function value as much as possible in each iteration. Experimentation and
familiarity with a given class of problems are often required to find the best δk .

Example 1 Consider a one-variable function f (x) = (x+1)2(x−1)2, where there are two
global minimizers x∗ = −1 and x∗ = 1 and one local maximizer x̄ = 0. If we start from
x0 = 0 and set radius δ0 = 1

4 , then the next solution x1 of model (8.68) would be

g0 = 0, F0 = −4, λ0 = −4, μ0 = 4, x1 = −1

4
or x1 = 1

4
,

that is, there are two global minimums for the subproblem. We can choose any one of them
and continue to the next iteration.

A Homotopy or Path-Following Method

For solving general problems, the selection of an appropriate μ is somewhat of an
art. A small μ means that nearly singular matrices must be inverted, while a large
μ means small stepsizes and slow convergence. Here, we give a more definitive
selection of μ if the objective function is known to be convex (but not necessarily
strongly).

One can interpret the sequential ball-constrained quadratic programming method
as Newton’s method applied to the regulated minimization problem for parameter
μ > 0

minimize f (x)+ μ

2
· |x|2.

This regulated objective is strongly convex so that its minimizer is unique, and is
denoted by x(μ). The solutions form a path, as μ continuously decreases, from
the origin down to x(0). For any given μ, the optimizer must satisfy the first-order
condition:

∇f (x)+ μx = 0. (8.70)

Proposition 2 Consider a convex function f (x) ∈ C2, that is, twice continuously
differentiable. Assume that its value is bounded from below and that it has a minimizer.
Then the following properties hold.

(i) The minimizer, denoted by x(μ), of (8.70) is unique for any given μ > 0, and it forms
a continuous path as μ varies.

8.7 Sequential Quadratic Optimization Methods 285

(ii) f (x(μ)) is an increasing function of μ (i.e., f (x(μ)) ≥ f (x(μ′)) if μ ≥ μ′ > 0),
and |x(μ)| is a decreasing function of μ.

(iii) As μ→ 0+ (i.e., μ decreases to 0), x(μ) converges to the minimizer of f (x) with the
minimal Euclidean norm.

Thus, one can design a sequence of decreasing μk’s, like a sequence of
intermediate milestone targets, and then apply Newton’s method such that the
solution for the current target is near that of the next target so that the faster
convergence promise of the method is realized. We provide a specific design when
f (·) is convex and meets the self-concordant Lipschitz condition:

Definition (Second-order Self-Concordant β-Lipschitz Function) For any solution and
a positive β

|∇f (x+ d)− ∇f (x) − ∇2f (x)d| ≤ βdT∇2f (x)d, whenever |d| ≤ O(|x|).

This condition can be verified using the condition |d| ≤ O(|x|) and Taylor’s
expansion series; basically, the third derivative of the function is bounded by its
second derivative as described in (8.66) of the last section. We list few such
functions:

• All quadratic functions are self-concordant Lipschitz with β = O(1).
• Convex functions log(1+ex), log(x), x log(x) are self-concordant Lipschitz with

β = O(1), but they may not be regular Lipschitz.
• Composite function f (x) := φ(Ax − b) is self-concordant Lipschitz, if φ(·) is

self-concordant Lipschitz, with same β.

In what follows in this section, we let g(·) denote ∇f (·). For simplicity, let
us start from a path solution x(μ) for some μ(> 0) and x(μ) is scaled such that
|x(μ)| = 1. Then we would like to set the next milestone solution x(μ+) for a
reduced μ+(< μ) such that, starting from x(μ), Newton’s method will compute a
sequence of new iterates converging quadratically to x(μ+). The question is what
specified reduction from μ would make this possible. If μ could be decreased at a
geometric rate, independent of final accuracy ε, then this would lead to a linearly or
geometrically convergent algorithm.

Let us give a try when f (·) is β-self-concordant Lipschitz. Then if μ is replaced
by μ+ = (1− η)μ for some η ∈ (0, 1), the system of equations becomes

g(x)+ (1− η)μx = 0,

where the initial residual error at solution x(μ) is ημ. Denoting x(μ) simply by x0,
the first Newton step would find the Newton direction vector d from

g(x0)+∇g(x0)d+ μ+(x0 + d) = 0, or
∇g(x0)d+ (1− η)μd = ημx0.

(8.71)

286 8 Basic Descent Methods

From the second expression of (8.71), we have

| ∇g(x0)d+ (1− η)μd | = ημ|x0| = ημ. (8.72)

On the other hand

| ∇g(x0)d+ (1−η)μd |2 = |∇g(x0)d|2+2(1−η)μdT∇g(x0)d+ ((1−η)μ)2|d|2.

From convexity, the cross term dT∇g(xk)d ≥ 0. Together with (8.72), this implies

|∇g(x0)d| ≤ ημ, |d| ≤ η
1−η

so that

dT∇g(x0)d ≤ |d||∇g(x0)d| ≤ η2

1−η
· μ = η2

(1−η)2 · μ+.
(8.73)

Let the new iterate be x1 = x + d. The inequality above and the β-self-concordant
Lipschitz definition (as long as |d| ≤ η

1−η
≤ 1) imply the new residual error at x1 is

| g(x1)+ μ+x1 |
= | g(x0 + d) + μ+(x0 + d) |
= | (g(x0 + d)− g(x0)− ∇g(x0)d) + (g(x0)+ ∇g(x0)d+ μ+(x0 + d)) | (add and subtract)
= |g(x0 + d)− g(x0)− ∇g(x0)d | (the last part equals zero from (8.71))
≤ βdT∇g(x0)d ≤ βη2

(1−η)2 μ+. (from the self-concordant Lipschitz and (8.73))

The initial residual error can be rearranged as

β

μ+
| g(x0)+ μ+x0 | = βη

1− η
,

and, after one Newton step, the new residual error becomes

β

μ+
| g(x1)+ μ+x1 | ≤

(
βη

1− η

)2

.

Therefore, quadratic convergence, or convergence with order two, occurs, if, say
βη

1−η
= 1

2 . This choice leads to η = 1
2β+1 , which is independent of ε.

Therefore, on the outer loop, we choose μ+ = (1 − 1
2β+1) in each iteration

establishing a linear convergence rate. In practice, there is no need to compute the
path solution accurately within an outer iteration. That is, very few Newton steps
(maybe just one) are needed within each outer iteration. Furthermore, the reduction
of μ could be more aggressive. In particular, if the original objective is strongly
convex, then for x sufficiently close to x∗ we will set μ = 0, and the method reduces
to Newton’s method. Thus this method also has order of local convergence equal to
two.

8.8 Coordinate and Stochastic Gradient Descent Methods 287

This method can be combined with the first-order methods. Precisely, after each
reduction of μ, one can apply the first-order methods for the underlying quadratic
minimization, where the introduction of μ serves as “conditioning” to improve the
canonical convergence rate. It can also be extended to solving more general systems
of equations, as long as g : En → En is a monotone function/operator; see
Chap. 15.

8.8 Coordinate and Stochastic Gradient Descent Methods

The algorithms discussed in this section are sometimes attractive because of their
easy implementation. Generally, however, their convergence properties are poorer
than steepest descent.

Let f be a function on En having continuous first partial derivatives. Given a
point x = (x1, x2, . . . , xn), descent with respect to the coordinate xi (i fixed)
means that one solves

minimize
xi

f (x1, x2, . . . , xn).

Thus only changes in the single component xi are allowed in seeking a new and
better vector x (one can also consider xi the ith block of variables, called the block-
coordinate method). In our general terminology, each such descent can be regarded
as a descent in the direction ei (or−ei) where ei is the ith unit vector. By sequentially
minimizing with respect to different components, a relative minimum of f might
ultimately be determined.

There are a number of ways that this concept can be developed into a full algo-
rithm. The cyclic coordinate descent algorithm minimizes f cyclically with respect
to the coordinate variables. Thus x1 is changed first, then x2 and so forth through xn.
The process is then repeated starting with x1 again. A variation of this is the Aitken
double sweep method. In this procedure one searches over x1, x2, . . . , xn, in that
order, and then comes back in the order xn−1, xn−2, . . . , x1. These cyclic methods
have the advantage of not requiring any information about ∇f to determine the
descent directions.

If the gradient of f is available, then it is possible to select the order of descent
coordinates on the basis of the gradient. A popular technique is the Gauss–Southwell
Method where at each stage the coordinate corresponding to the largest (in absolute
value) component of the gradient vector is selected for descent. A randomized
strategy can be also adapted in which one randomly chooses a coordinate to
optimize in each step; see more discussions later.

288 8 Basic Descent Methods

Global Convergence

It is simple to prove global convergence for cyclic coordinate descent. The
algorithmic map A is the composition of 2n maps

A = SCnSCn−1 . . . SC1,

where Ci (x) = (x, ei) with ei equal to the ith unit vector, and S is the usual
line search algorithm but over the doubly infinite line rather than the semi-infinite
line. The map Ci is obviously continuous and S is closed. If we assume that points
are restricted to a compact set, then A is closed by Corollary 1, Sect. 7.6. We define
the solution set � = {x : ∇f (x) = 0}. If we impose the mild assumption on f that
a search along any coordinate direction yields a unique minimum point, then the
function Z(x) ≡ f (x) serves as a continuous descent function for A with respect
to �. This is because a search along any coordinate direction either must yield a
decrease or, by the uniqueness assumption, it cannot change position. Therefore,
if at a point x we have ∇f (x) �= 0, then at least one component of ∇f (x) does
not vanish and a search along the corresponding coordinate direction must yield a
decrease.

Local Convergence Rate

It is difficult to compare the rates of convergence of these algorithms with the rates
of others that we analyze. This is partly because coordinate descent algorithms are
from an entirely different general class of algorithms than, for example, steepest
descent and Newton’s method, since coordinate descent algorithms are unaffected
by (diagonal) scale factor changes but are affected by rotation of coordinates—the
opposite being true for steepest descent. Nevertheless, some comparison is possible.

It can be shown (see Exercise 16) that for the same quadratic problem as treated
in Sect. 8.2, there holds for the Gauss–Southwell method

E(xk+1) �
(

1− a

A(n− 1)

)
E(xk), (8.74)

where a, A are as in Sect. 8.2 and n is the dimension of the problem. Since

(
A− a

A+ a

)2

�
(

1− a

A

)
�
(

1− a

A(n− 1)

)n−1

, (8.75)

we see that the bound we have for steepest descent is better than the bound we
have for n− 1 applications of the Gauss–Southwell scheme. Hence we might argue
that it takes essentially n − 1 coordinate searches to be as effective as a single

8.8 Coordinate and Stochastic Gradient Descent Methods 289

gradient search. This is admittedly a crude guess, since (8.48) is generally not a tight
bound, but the overall conclusion is consistent with the results of many experiments.
Indeed, unless the variables of a problem are essentially uncoupled from each other
(corresponding to a nearly diagonal Hessian matrix) coordinate descent methods
seem to require about n line searches to equal the effect of one step of steepest
descent.

The above discussion again illustrates the general objective that we seek in
convergence analysis. By comparing the formula giving the rate of convergence
for steepest descent with a bound for coordinate descent, we are able to draw
some general conclusions on the relative performance of the two methods that are
not dependent on specific values of a and A. Our analyses of local convergence
properties, which usually involve specific formulae, are always guided by this
objective of obtaining general qualitative comparisons.

Example The quadratic problem considered in Sect. 8.2 with

Q =

⎡
⎢⎢⎣

0.78 −0.02 −0.12 −0.14
−0.02 0.86 −0.04 0.06
−0.12 −0.04 0.72 −0.08
−0.14 0.06 −0.08 0.74

⎤
⎥⎥⎦

b = (0.76, 0.08, 1.12, 0.68)

was solved by the various coordinate search methods. The corresponding values of
the objective function are shown in Table 8.3. Observe that the convergence rates
of the three coordinate search methods are approximately equal but that they all
converge about three times slower than steepest descent. This is in accord with the
estimate given above for the Gauss–Southwell method, since in this case n− 1 = 3.

Convergence Speed of a Randomized Coordinate Descent
Method

We now describe a randomized strategy in selecting xi in each step of the coordinate
descent method for f that is differentiable and Lipschitz continuous; that is, there
exist some constants βi > 0, i = 1, . . . , n, such that

|∇if (x+ hei)−∇if (x)| ≤ βi |h|, ∀h ∈ E, x ∈ En, (8.76)

where∇if (x) denotes the ith partial derivative of f at x, and ei is the ith unit vector
with the ith entry equal 1 and everywhere else equal 0.

290 8 Basic Descent Methods

Table 8.3 Solutions to
example

Value of f for various methods

Iteration no. Gauss–Southwell Cyclic Double sweep

0 0.0 0.0 0.0

1 −0.871111 −0.370256 −0.370256

2 −1.445584 −0.376011 −0.376011

3 −2.087054 −1.446460 −1.446460

4 −2.130796 −2.052949 −2.052949

5 −2.163586 −2.149690 −2.060234

6 −2.170272 −2.149693 −2.060237

7 −2.172786 −2.167983 −2.165641

8 −2.174279 −2.173169 −2.165704

9 −2.174583 −2.174392 −2.168440

10 −2.174638 −2.174397 −2.173981

11 −2.174651 −2.174582 −2.174048

12 −2.174655 −2.174643 −2.174054

13 −2.174658 −2.174656 −2.174608

14 −2.174659 −2.174656 −2.174608

15 −2.174659 −2.174658 −2.174622

16 −2.174659 −2.174655

17 −2.174659 −2.174656

18 −2.174656

19 −2.174659

20 −2.174659

Randomized coordinate decent method. Given an initial point x0; repeat for k =
0, 1, 2, . . .

1. Choose ik ∈ {1, . . . , n} randomly with a uniform distribution.
2. Update xk+1 = xk − 1

βik

∇ik f (xk)eik .

Note that after k iterations, the randomized coordinate descent method generates
a random sequence of xk, which depends on the observed realization of the random
variable

ξk−1 = {i0, i1, . . . , ik−1}.
Theorem 5 (Randomized Coordinate Descent—Lipschitz Convex Case) Let f (x) be
convex and differentiable everywhere, satisfy the Lipschitz condition (8.76), and admit a
minimizer x∗. Then, the randomized coordinate decent method generates a sequence of
solutions xk such that for any k ≥ 1, the iterate xk satisfies

Eξk−1[f (xk)] − f (x∗) ≤ n

n+ k

(
1

2
|x0 − x∗|2β + f (x0)− f (x∗)

)
,

where |x|β =
(∑

i

βix
2
i

)1/2

for all x ∈ En.

8.8 Coordinate and Stochastic Gradient Descent Methods 291

Proof Let r2
k = |xk − x∗|2β =

∑n
i=1 βi((xk)i − x∗i)2 for any k ≥ 0. Since xk+1 =

xk − 1
βik
∇ik f (xk)eik , we have

r2
k+1 = r2

k − 2∇ik f (xk)((xk)ik − x∗ik)+
1

βik

(∇ik f (xk))
2.

It follows from (8.76), Lemma 1, and xk+1 = xk − 1
βik
∇ik f (xk)eik that

f (xk+1) ≤ f (xk)+∇ik f (xk)((xk+1)ik − (xk)ik)+
βik

2
((xk+1)ik − (xk)ik)

2

= f (xk)− 1

2βik

(∇ik f (xk))
2. (8.77)

Combining the above two relations, one has

r2
k+1 ≤ r2

k − 2∇ik f (xk)((xk)ik − x∗ik)+ 2(f (xk)− f (xk+1)).

Multiplying both sides by 1/2 and taking expectation with respect to ik yields

Eik

[
1

2
r2
k+1

]
≤ 1

2
r2
k −

1

n
∇f (xk)(xk − x∗)+ f (xk)− Eik [f (xk+1)] ,

which together with the fact that ∇f (xk)(x∗ − xk) ≤ f (x∗)− f (xk) yields

Eik

[
1

2
r2
k+1

]
≤ 1

2
r2
k +

1

n
f (x∗)+ n− 1

n
f (xk)− Eik [f (xk+1)] .

By rearranging terms, we obtain that for each k ≥ 0,

Eik

[
1

2
r2
k+1 + f (xk+1)− f (x∗)

]
≤
(

1

2
r2
k + f (xk)− f (x∗)

)
− 1

n

(
f (xk)− f (x∗)

)
.

Let f ∗ = f (x∗). Then, taking expectation with respect to ξk−1 on both sides of the
above relation, we have

Eξk

[
1

2
r2
k+1 + f (xk+1)− f ∗

]
≤ Eξk−1

[
1

2
r2
k + f (xk)− f ∗

]
− Eξk−1

[
f (xk)− f ∗

]

n
.

(8.78)

292 8 Basic Descent Methods

In addition, it follows from (8.77) that Eξj [f (xj+1)] ≤ Eξj−1 [f (xj)] for all j ≥ 0.
Using this relation and applying the inequality (8.78) recursively, we further obtain
that

Eξk [f (xk+1)]− f ∗ ≤ Eξk

[
1

2
r2
k+1 + f (xk+1)− f ∗

]

≤ 1

2
r2

0 + f (x0)− f ∗ − 1

n

k∑
j=0

(
Eξj−1

[
f (xj)

]− f ∗
)

≤ 1

2
r2

0 + f (x0)− f ∗ − k + 1

n

(
Eξk [f (xk+1)]− f ∗

)
.

This leads to the desired result by moving the last term on the right to the left side.

If f is a strongly convex quadratic function, the randomized coordinate decent
method would have an expected average convergence rate (1− a

An
). However, each

step of the method does 1
n

amount of work of the full steepest descent update; see
an exercise.

Stochastic Gradient Descent (SGD) Method

Imagine we are solving a stochastic optimization problem or its simple average
approximation

f (x) = E [φ(x, ξ)] or f (x) = 1

M

M∑
i=1

φ(x, ξ i),

where ξ is a random parameter and ξ i is a randomly chosen sample. If we simply
apply the steepest descent method, the evaluation of gradient vector would be
costly, involving a large sum computation. The SGD method would, at the current
iterate xk, randomly select a sample point ξk and compute its (sub)gradient vector
gk := g(xk, ξk), which satisfies, in expectation, E [gk|xk] ∈ ∂f (xk). Then the
method would update, starting from an initial solution x0,

xk+1 = xk−αkgk, until k = (K−1) and return the average solution: x̄ = 1

K

K−1∑
k=0

xk.

Theorem 6 Let f (x) be a convex function and admit a minimizer x∗. Assume the following
two conditions hold:

1. The sample (sub)gradients at xk satisfy |gk | ≤ β(> 0) with probability 1 for all k =
0, . . . , K − 1.

2. The initial solution satisfies, for simplicity, |x0 − x∗| ≤ 1.

8.8 Coordinate and Stochastic Gradient Descent Methods 293

Then, with (fixed) stepsize αk = α = 1
β
√

K
, the returned solution x̄ satisfies

E
[
f (x̄)− f (x∗)

] ≤ β√
K

.

Proof First, we have the following equalities and inequalities:

E
[
f (x̄)− f (x∗)

]

≤ 1

K

K−1∑
k=0

E
[(

f (xk)− f (x∗)
)]

(by Jensen’s inequality)

= 1

K

K−1∑
k=1

E
[
E
[(

f (xk)− f (x∗)
) | xk

]]
(Conditional Expectation definition)

≤ 1

K

K−1∑
k=1

E
[
E [gk | xk]# (xk − x∗)

]
((sub)gradient definition of convex functions)

= 1

K

K−1∑
k=1

E[g#k (xk − x∗)] = 1

K
E[

K−1∑
k=1

g#k (xk − x∗)]. (Conditional Expectation definition)

(8.79)

Moreover, we have, at every iteration k,

g#k (xk − x∗)

= 1

2α

(
|xk − x∗|22 − |xk+1 − x∗|22 + α2|gk|22

)
(rearranging terms and SGD formula)

≤ 1

2α

(
|xk − x∗|22 − |xk+1 − x∗|22 + α2β2

)
. (bounded assumption on gradients)

(8.80)

Finally, we have

E
[
f (x̄)− f (x∗)

]

≤ 1

2αK
E[

K−1∑
k=0

(
|xk − x∗|22 − |xk+1 − x∗|22 + α2β2

)
] (from (8.79) and (8.80))

= 1

2αK
E[|x0 − x∗|22 − |xK − x∗|22] +

αβ2

2
(cancellation in sum)

≤ 1

2αK
+ αβ2

2
= β√

K
. (bounded assumption and stepsize choice)

294 8 Basic Descent Methods

The SGD method can be applied to problems with simple constraints such as x ≥ 0,
where the update rule becomes

xk+1 = max{0, xk − αkgk}.

Furthermore, the iterates can be computed in an online or dynamic fashion as sample
gradients coming sequentially. Therefore, for example, the dual problem of linear
program (3.16) in Sect. 4.3 of Chap. 3 can be solved by the SGD method for online
decision making.

8.9 Summary

Most iterative algorithms for minimization require a line search at every stage of
the process. By employing any one of a variety of curve fitting techniques, however,
the order of convergence of the line search process can be made greater than unity,
which means that as compared to the linear convergence that accompanies most full
descent algorithms (such as steepest descent) the individual line searches are rapid.
Indeed, in common practice, only about three search points are required in any one
line search. If the first derivatives are available, then two search points are required
(method of false position); and if both first and second derivatives are available,
then one search point is required (Newton’s method). It was also shown in Sect. 8.1
and the exercises that line search algorithms of varying degrees of accuracy are all
closed. Thus line searching is not only rapid enough to be practical but also behaves
in such a way as to make analysis of global convergence simple.

The most important results of this chapter are the arithmetic convergence of the
method of steepest descent (additive or multiplicative) for solving convex and gen-
eral minimization, the improved arithmetic convergence of the accelerated steepest
descent method, and the geometric convergence of the method for solving strongly
convex minimization. The fact that the method of steepest descent converges
arithmetically depending on Lipschitz constant β or linearly with a convergence
ratio equal to [(A− a)/(A+ a)]2, where a and A are, respectively, the smallest and
largest eigenvalues of the Hessian of the objective function evaluated at the solution
point. These formulas, which arise frequently throughout the remainder of the book,
serve as fundamental reference points among algorithms. It is, however, important
to understand that it is the formulas and not their values that serve as the references.
We rarely advocate that the formulas be numerically evaluated, but to use them for
making significant comparisons of the effectiveness of steepest descent versus other
algorithms.

Newton’s method has order two convergence to a second-order stationary solu-
tion. However, as discussed, it must be modified to ensure global convergence. The
smallest eigenvalue evaluation of the Hessian at every point also needs to be carried
out efficiently for nonconvex optimization. Newton’s method provides another
valuable reference point in the study of algorithms, and is frequently employed

8.10 Exercises 295

in interior-point methods using a logarithmic barrier function, thanks to advanced
linear algebra techniques in dealing with sparse matrices and data structures.
Moreover, the computation work in each Newton step can be implemented via
iterative processes, rather than direct solvers, which will be discussed in the next
two chapters.

As optimization problem sizes become bigger and bigger, various coordinate
descent algorithms are extremely popular. They are valuable especially in situations
where the variables are essentially uncoupled or there is special structure that makes
searching in the coordinate directions particularly easy. Typically, steepest descent
can be expected to be faster. Even if the gradient is not directly available, it would
probably be better to evaluate a finite-difference approximation to the gradient, by
taking a single step in each coordinate direction, and use this approximation in a
steepest descent algorithm, rather than executing a full line search in each coordinate
direction.

8.10 Exercises

1. Show the convergence order of the quadratic fit, and argue using symmetry that
the error in the cubic fit method approximately satisfies an equation of the form

εk+1 =M(ε2
kεk−1 + εkε

2
k−1)

and then find the order of convergence of the cubic fit.
2. Using a symmetry argument, find the order of convergence for a line search

method that fits a cubic to xk−3, xk−2, xk−1, xk in order to find xk+1.
3. Consider the iterative process

xk+1 = 1

2

(
xk + a

xk

)
,

where a > 0. Assuming the process converges, to what does it converge? What
is the order of convergence?

4. Suppose the continuous real-valued function f of a single variable satisfies

min
x�0

f (x) < f (0).

Starting at any x > 0 show that, through a series of halvings and doublings
of x and evaluation of the corresponding f (x)’s, a three-point pattern can be
determined.

5. For δ > 0 define the map Sδ by

Sδ(x, d) = {y : y = x+ αd, 0 � α � δ; f (y) = min
0�β�δ

f (x+ βd)}.

296 8 Basic Descent Methods

Thus Sδ searches the interval [0, δ] for a minimum of f (x+ αd), representing
a “limited range” line search. Show that if f is continuous, Sδ is closed at all
(x, d).

6. For ε > 0 define the map εS by

εS(x, d) = {y : y = x+ αd, α � 0, f (y) � min
0�β

f (x+ βd)+ ε}.

Show that if f is continuous, εS is closed at (x, d) if d �= 0. This map
corresponds to an “inaccurate” line search.

7. Referring to the previous two exercises, define and prove a result for εSδ .
8. Define S̄ as the line search algorithm that finds the first relative minimum of

f (x+ αd) for α � 0. If f is continuous and d �= 0, is S̄ closed?
9. Consider the problem

minimize 5x2 + 5y2 − xy − 11x + 11y + 11.

(a) Find a point satisfying the first-order necessary conditions for a solution.
(b) Show that this point is a global minimum.
(c) What would be the rate of convergence of steepest descent for this problem?
(d) Starting at x = y = 0, how many steepest descent iterations would it take

(at most) to reduce the function value to 10−11?

10. Define the search mapping F that determines the parameter α to within a given
fraction c, 0 � c � 1, by

F(x, d) = {y : y = x+αd, 0 ≤ α < ∞, |α| � cα, where
d

dα
f (x+αd) = 0}.

Show that if d �= 0 and (d/dα)f (x + αd) is continuous, then F is closed at
(x, d).

11. Let e1, e2, . . . , en denote the eigenvectors of the symmetric positive definite
n × n matrix Q. For the quadratic problem considered in Sect. 8.2, suppose x0
is chosen so that g0 belongs to a subspace M spanned by a subset of the ei’s.
Show that for the method of steepest descent gk ∈ M for all k. Find the rate of
convergence in this case.

12. Suppose we use the method of steepest descent to minimize the quadratic
function f (x) = 1

2 (x− x∗)T Q(x− x∗) but we allow a tolerance±δαk (δ � 0)
in the line search, that is xk+1 = xk − αkgk, where

(1− δ)αk � αk � (1+ δ)αk

and αk minimizes f (xk − αgk) over α.

8.10 Exercises 297

(a) Find the convergence rate of the algorithm in terms of a and A, the smallest
and largest eigenvalues of Q, and the tolerance δ.
Hint: Assume the extreme case αk = (1+ δ)αk .

(b) What is the largest δ that guarantees convergence of the algorithm? Explain
this result geometrically.

(c) Does the sign of δ make any difference?

13. Show that for a quadratic objective function the percentage test and the
Goldstein test are equivalent.

14. Suppose an iterative algorithm of the form xk+1 = xk + αkdk is applied to the
quadratic problem with matrix Q, where αk as usual is chosen as the minimum
point of the line search and where dk is a vector satisfying dT

k gk < 0 and
(dT

k gk)
2 � β(dT

k Qdk)(g
T
k Q−1gk), where 0 < β � 1. This corresponds to a

steepest descent algorithm with “sloppy” choice of direction. Estimate the rate
of convergence of this algorithm.

15. Repeat Exercise 14 with the condition on (dT
k gk)

2 replaced by

(dT
k gk)

2 � β(dT
k dk)(gT

k gk), 0 < β � 1.

16. Use the result of Exercise 15 to derive (8.74) for the Gauss–Southwell method.
17. Let f (x, y) = x2 + y2 + xy − 3x.

(a) Find an unconstrained local minimum point of f .
(b) Why is the solution to (a) actually a global minimum point?
(c) Find the minimum point of f subject to x � 0, y � 0.
(d) If the method of steepest descent were applied to (a), what would be the

rate of convergence of the objective function?

18. Find an estimate for the rate of convergence for the modified Newton method

xk+1 = xk − αk(εkI+ Fk)
−1gk

given by (8.62) and (8.63) when δ is larger than the smallest eigenvalue of
F(x∗).

19. Prove global convergence of the Gauss–Southwell method.
20. Consider a problem of the form

minimize f (x)

subject to x � 0,

298 8 Basic Descent Methods

where x ∈ En. A gradient-type procedure has been suggested for this kind of
problem that accounts for the constraint. At a given point x = (x1, x2, . . . , xn),
the direction d = (d1, d2, . . . , dn) is determined from the gradient ∇f (x)T =
g = (g1, g2, . . . , gn) by

di =
{−gi if xi > 0 or gi < 0

0 if xi = 0 and gi � 0.

This direction is then used as a direction of search in the usual manner.

(a) What are the first-order necessary conditions for a minimum point of this
problem?

(b) Show that d, as determined by the algorithm, is zero only at a point
satisfying the first-order conditions.

(c) Show that if d �= 0, it is possible to decrease the value of f by movement
along d.

(d) If restricted to a compact region, does the Global Convergence Theorem
apply? Why?

21. Consider the quadratic problem and suppose Q has unity diagonal. Consider
a coordinate descent procedure in which the coordinate to be searched is at
every stage selected randomly, each coordinate being equally likely. Let εk =
xk − x∗. Assuming εk is known, show that εT

k+1Qεk+1, the expected value of
εT

k+1Qεk+1, satisfies

εT
k+1Qεk+1 =

(
1− εT

k Q2εk

nεT
k Qεk

)
εT

k Qεk �
(

1− a2

nA

)
εT

k Qεk.

22. Stopping criterion. A question that arises in using an algorithm such as steepest
descent to minimize an objective function f is when to stop the iterative
process, or, in other words, how can one tell when the current point is close
to a solution. If, as with steepest descent, it is known that convergence is linear,
this knowledge can be used to develop a stopping criterion. Let {fk}∞k=0 be
the sequence of values obtained by the algorithm. We assume that fk → f ∗
linearly, but both f ∗ and the convergence ratio β are unknown. However we
know that, at least approximately,

fk+1 − f ∗ = β(fk − f ∗)

and

fk − f ∗ = β(fk−1 − f ∗).

These two equations can be solved for β and f ∗.

8.10 Exercises 299

(a) Show that

f ∗ = f 2
k − fk−1fk+1

2fk − fk−1 − fk+1
, β = fk+1 − fk

fk − fk−1
.

(b) Motivated by the above we form the sequence {f ∗k } defined by

f ∗k =
f 2

k − fk−1fk+1

2fk − fk−1 − fk+1

as the original sequence is generated. (This procedure of generating {f ∗k }
from {fk} is called the Aitken δ2-process.) If |fk−f ∗| = βk+o(βk) show
that |f ∗k − f ∗| = o(βk) which means that {f ∗k } converges to f ∗ faster than
{fk} does. The iterative search for the minimum of f can then be terminated
when fk − f ∗k is smaller than some prescribed tolerance.

23. Assume f (x) and g(x) are self-concordant. Show that the following functions
are also self-concordant.

(a) af (x) for a > 1
(b) ax + b + f (x)

(c) f (ax + b)

(d) f (x)+ g(x)

24. Prove Lemma 1 of Sect. 8.2.
25. Consider convex quadratic minimization with matrix Q, and let its distinct

positive eigenvalues be λ1, λ2, . . . λK . Then, if we let the stepsize in the method
of steepest descent be αk = 1

λk
, k = 1, . . . ,K , the method terminates in K

iterations.
26. Show that the limit of ∇f (xk) is nonnegative for the affine-scaling method in

Sect. 8.5.
27. Derive the convergence property of the affine-scaling method when it is applied

over the positive definite cone (see the end of Sect. 8.5).
28. Prove the path properties listed in Proposition 2.
29. Show that the randomized coordinate descent method has the expected average

convergence rate (1 − a
An

) for solving strongly convex quadratic programs
where a and A are the smallest and largest eigenvalues of the Hessian matrix.

30. Implement the stochastic sub-gradient method on any computation platform
for solving the dual problem of linear program (3.16) of Sect. 4.3 of Chap. 3 in
an online fashion, that is, each decision variable and corresponding data arrive
randomly.

300 8 Basic Descent Methods

References

8.2 For a detailed exposition of Fibonacci search techniques, see Wilde and
Beightler [W1]. For an introductory discussion of difference equations, see
Lanczos [L1]. Many of these techniques are standard among numerical ana-
lysts. See, for example, Kowalik and Osborne [K9], or Traub [T9]. Also see
Tamir [T1] for an analysis of high-order fit methods. The use of symmetry
arguments to shortcut the analysis is new. The closedness of line search
algorithms was established by Zangwill [Z2]. For the line search stopping
criteria, see Armijo [A8], Goldstein [G12], and Wolfe [W6]. The theorem
on Newton’s method is due to Smale [Smale] and the hybrid bisection and
Newton’s method was introduced in Ye [Y5].

8.3 For an alternate exposition of this well-known method, see Antosiewicz and
Rheinboldt [A7] or Luenberger [L8]. For a proof that the estimate (8.36) is
essentially exact, see Akaike [A2]. For early work on the nonquadratic case, see
Curry [C10]. For recent work reports in this section see Boyd and Vandenberghe
[B23]. The numerical problem considered in the example is a standard one. See
Faddeev and Faddeeva [F1].

8.4 The accelerated method of steepest descent is due to Nesterov [215], also see
Beck and Teboulle [BET]. The BB method is due to Barzilai and Borwein [19],
also see Dai and Fletcher [66]. The heavy ball method goes back to Polyak in
1964 [Polyak]; see Carmon et al. [CDHS] on recent acceleration methods for
nonconvex optimization.

8.5 The affine-scaling method was introduced by Dikin [Dikin] (but the analysis
here is new). The mirror-descent method was developed by Nemirovskii and
Yudin [NY].

8.6 For good reviews of modern Newton methods, see Fletcher [F9], Dembo et
al. [D14], Gill, Murray, and Wright [G7], and Tone [T6]. The theory of self-
concordant functions was developed by Nesterov and Nemirovskri, see [N2,
N4], there is a nice reformulation by Renegar [R2] and an introduction in Boyd
and Vandenberghe [B23].

8.7 The trust region method can be traced back to Levenberg–Marquardt, also see,
e.g., Goldfeld et al. [GQT], Moré [More] and Yuan [Y6], but the analyses
presented here are new (including the path-following part).

8.8 A detailed analysis of coordinate algorithms can be found in Fox [F17] and
Isaacson and Keller [I1]. For a discussion of the Gauss–Southwell method, see
Forsythe and Wasow [F16]. The proof of convergence speed of the randomized
coordinate descent method is essentially due to Nesterov [213] and Lu and
Lin [181]. The SGD method is due to Robbins and Monro [RM] and has
become standard. More recent developments and references can be found in
Hazan [HA].

Chapter 9
Conjugate Direction Methods

Conjugate direction methods can be regarded as being somewhat intermediate
between the method of steepest descent and Newton’s method. They are motivated
by the desire to accelerate the typically slow convergence associated with steepest
descent while avoiding the information requirements associated with the evaluation,
storage, and inversion of the Hessian (or at least solution of a corresponding system
of equations) as required by Newton’s method.

Conjugate direction methods invariably are invented and analyzed for the purely
quadratic problem

minimize
1

2
xT Qx − bT x,

where Q is an n×n symmetric positive definite matrix. The techniques once worked
out for this problem are then extended, by approximation, to more general problems;
it being argued that, since near the solution point every problem is approximately
quadratic, convergence behavior is similar to that for the pure quadratic situation.

The area of conjugate direction algorithms has been one of great creativity in the
nonlinear programming field, illustrating that detailed analysis of the pure quadratic
problem can lead to significant practical advances. Indeed, conjugate direction
methods, especially the method of conjugate gradients, have proved to be extremely
effective in dealing with general objective functions and are considered among the
best general purpose methods.

9.1 Conjugate Directions

Definition Given a symmetric matrix Q, two vectors d1 and d2 are said to be Q-orthogonal,
or conjugate with respect to Q, if dT

1 Qd2 = 0.

© Springer Nature Switzerland AG 2021
D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
https://doi.org/10.1007/978-3-030-85450-8_9

301

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85450-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-85450-8_9

302 9 Conjugate Direction Methods

In the applications that we consider, the matrix Q will be positive definite but this
is not inherent in the basic definition. Thus if Q = 0, any two vectors are conjugate,
while if Q = I, conjugacy is equivalent to the usual notion of orthogonality. A finite
set of vectors d0, d1, . . . , dk is said to be a Q-orthogonal set if dT

i Qdj = 0 for all
i �= j .

Proposition If Q is positive definite and the set of nonzero vectors d0, d1, d2, . . . , dk are
Q-orthogonal, then these vectors are linearly independent.

Proof Suppose there are constants αi, i = 0, 1, 2, . . . , k such that

α0d0 + · · · + αkdk = 0.

Multiplying by Q and taking the scalar product with di yields

αidT
i Qdi = 0.

Or, since dT
i Qdi > 0 in view of the positive definiteness of Q, we have αi = 0.

Before discussing the general conjugate direction algorithm, let us investigate
just why the notion of Q-orthogonality is useful in the solution of the quadratic
problem

minimize
1

2
xT Qx− bT x, (9.1)

when Q is positive definite. Recall that the unique solution to this problem is also
the unique solution to the linear equation

Qx = b, (9.2)

and hence that the quadratic minimization problem is equivalent to a linear equation
problem.

Corresponding to the n × n positive definite matrix Q let d0, d1, . . . , dn−1
be n nonzero Q-orthogonal vectors. By the above proposition they are linearly
independent, which implies that the solution x∗ of (9.1) or (9.2) can be expanded in
terms of them as

x∗ = α0d0 + · · · + αn−1dn−1 (9.3)

for some set of αi ’s. In fact, multiplying by Q and then taking the scalar product
with di yields directly

αi = dT
i Qx∗

dT
i Qdi

= dT
i b

dT
i Qdi

. (9.4)

9.1 Conjugate Directions 303

This shows that the αi’s and consequently the solution x∗ can be found by evaluation
of simple scalar products. The end result is

x∗ =
n−1∑
i=0

dT
i b

dT
i Qdi

di . (9.5)

There are two basic ideas imbedded in (9.5). The first is the idea of selecting
an orthogonal set of di’s so that by taking an appropriate scalar product, all terms
on the right side of (9.3), except the ith, vanish. This could, of course, have been
accomplished by making the di ’s orthogonal in the ordinary sense instead of making
them Q-orthogonal. The second basic observation, however, is that by using Q-
orthogonality the resulting equation for αi can be expressed in terms of the known
vector b rather than the unknown vector x∗; hence the coefficients can be evaluated
without knowing x∗.

The expansion for x∗ can be considered to be the result of an iterative process
of n steps where at the ith step αidi is added. Viewing the procedure this way, and
allowing for an arbitrary initial point for the iteration, the basic conjugate direction
method is obtained.

Conjugate Direction Theorem Let {di}n−1
i=0 be a set of nonzero Q-orthogonal vectors. For

any x0 ∈ En the sequence {xk} generated according to

xk+1 = xk + αkdk, k � 0 (9.6)

with

αk = − gT
k dk

dT
k Qdk

(9.7)

and

gk = Qxk − b,

converges to the unique solution, x∗, of Qx = b after n steps, that is, xn = x∗.

Proof Since the dk’s are linearly independent, we can write

x∗ − x0 = α0d0 + α1d1 + · · · + αn−1dn−1

for some set of αk’s. As we did to get (9.4), we multiply by Q and take the scalar
product with dk to find

αk = dT
k Q(x∗ − x0)

dT
k Qdk

. (9.8)

Now following the iterative process (9.6) from x0 up to xk gives

xk − x0 = α0d0 + α1d1 + · · · + αk−1dk−1, (9.9)

304 9 Conjugate Direction Methods

and hence by the Q-orthogonality of the dk’s it follows that

dT
k Q(xk − x0) = 0. (9.10)

Substituting (9.10) into (9.8) produces

αk = dT
k Q(x∗ − xk)

dT
k Qdk

= − gT
k dk

dT
k Qdk

,

which is identical with (9.7).

To this point the conjugate direction method has been derived essentially through
the observation that solving (9.1) is equivalent to solving (9.2). The conjugate
direction method has been viewed simply as a somewhat special, but nevertheless
straightforward, orthogonal expansion for the solution to (9.2). This viewpoint,
although important because of its underlying simplicity, ignores some of the most
important aspects of the algorithm; especially those aspects that are important when
extending the method to nonquadratic problems. These additional properties are
discussed in the next section.

Also, methods for selecting or generating sequences of conjugate directions
have not yet been presented. Some methods for doing this are discussed in the
exercises; while the most important method, that of conjugate gradients, is discussed
in Sect. 9.3.

9.2 Descent Properties of the Conjugate Direction Method

We define Bk as the subspace of En spanned by {d0, d1, . . . , dk−1}. We shall
show that as the method of conjugate directions progresses each xk minimizes the
objective over the k-dimensional linear variety x0 + Bk.

Expanding Subspace Theorem Let gk = Qxk − b, {di}n−1
i=0 be a sequence of nonzero Q-

orthogonal vectors in En. Then for any x0 ∈ En the sequence {xk} generated according
to

xk+1 = xk + αkdk (9.11)

αk = − gT
k dk

dT
k Qdk

(9.12)

has the property that xk minimizes f (x) = 1
2 xT Qx − bT x on the line x = xk−1 +

αdk−1,−∞ < α <∞, as well as on the linear variety x0 +Bk .

Proof It need only be shown that xk minimizes f on the linear variety x0 + Bk ,
since it contains the line x = xk−1 + αdk−1. Since f is a strictly convex function,
the conclusion will hold if it can be shown that gk is orthogonal to Bk (that is, the

9.2 Descent Properties of the Conjugate Direction Method 305

Fig. 9.1 Conjugate direction
method

gradient of f at xk is orthogonal to the subspace Bk). The situation is illustrated in
Fig. 9.1. (Compare Theorem 2, Sect. 7.5.)

We prove gk ⊥ Bk by induction. Since B0 is empty that hypothesis is true for
k = 0. Assuming that it is true for k, that is, assuming gk ⊥ Bk , we show that
gk+1 ⊥ Bk+1. We have

gk+1 = gk + αkQdk, (9.13)

and hence

dT
k gk+1 = dT

k gk + αkdT
k Qdk = 0 (9.14)

by definition of αk . Also for i < k

dT
i gk+1 = dT

i gk + αkdT
i Qdk. (9.15)

The first term on the right-hand side of (9.15) vanishes because of the induction
hypothesis, while the second vanishes by the Q-orthogonality of the di’s. Thus
gk+1 ⊥ Bk+1.

Corollary In the method of conjugate directions the gradients gk, k = 0, 1, . . . , n satisfy

gT
k di = 0 for i < k.

306 9 Conjugate Direction Methods

The above theorem is referred to as the Expanding Subspace Theorem, since the
Bk’s form a sequence of subspaces with Bk+1 ⊃ Bk . Since xk minimizes f over
x0 + Bk, it is clear that xn must be the overall minimum of f .

To obtain another interpretation of this result we again introduce the function

E(x) = 1

2
(x− x∗)T Q(x− x∗) (9.16)

as a measure of how close the vector x is to the solution x∗. Since E(x) =
f (x) + (1/2)x∗T Qx∗ the function E can be regarded as the objective that we seek
to minimize.

By considering the minimization of E we can regard the original problem as one
of minimizing a generalized distance from the point x∗. Indeed, if we had Q = I,
the generalized notion of distance would correspond (within a factor of two) to
the usual Euclidean distance. For an arbitrary positive definite Q we say E is a
generalized Euclidean metric or distance function. Vectors di , i = 0, 1, . . . , n− 1
that are Q-orthogonal may be regarded as orthogonal in this generalized Euclidean
space and this leads to the simple interpretation of the Expanding Subspace Theorem
illustrated in Fig. 9.2. For simplicity we assume x0 = 0. In the figure dk is shown
as being orthogonal to Bk with respect to the generalized metric. The point xk

minimizes E over Bk while xk+1 minimizes E over Bk+1. The basic property is
that, since dk is orthogonal to Bk , the point xk+1 can be found by minimizing E

along dk and adding the result to xk .

Fig. 9.2 Interpretation of expanding subspace theorem

9.3 The Conjugate Gradient Method 307

9.3 The Conjugate Gradient Method

The conjugate gradient method is the conjugate direction method that is obtained by
selecting the successive direction vectors as a conjugate version of the successive
gradients obtained as the method progresses. Thus, the directions are not specified
beforehand, but rather are determined sequentially at each step of the iteration. At
step k one evaluates the current negative gradient vector and adds to it a linear
combination of the previous direction vectors to obtain a new conjugate direction
vector along which to move.

There are three primary advantages to this method of direction selection. First,
unless the solution is attained in less than n steps, the gradient is always nonzero
and linearly independent of all previous direction vectors. Indeed, the gradient gk is
orthogonal to the subspace Bk generated by d0, d1, . . . , dk−1. If the solution is
reached before n steps are taken, the gradient vanishes and the process terminates—
it being unnecessary, in this case, to find additional directions.

Second, a more important advantage of the conjugate gradient method is the
especially simple formula that is used to determine the new direction vector. This
simplicity makes the method only slightly more complicated than steepest descent.

Third, because the directions are based on the gradients, the process makes good
uniform progress toward the solution at every step. This is in contrast to the situation
for arbitrary sequences of conjugate directions in which progress may be slight until
the final few steps. Although for the pure quadratic problem uniform progress is of
no great importance, it is important for generalizations to nonquadratic problems.

Conjugate Gradient Algorithm

Starting at any x0 ∈ En define d0 = −g0 = b−Qx0 and

xk+1 = xk + αkdk (9.17)

αk = − gT
k dk

dT
k Qdk

(9.18)

dk+1 = −gk+1 + βkdk (9.19)

βk =
gT
k+1Qdk

dT
k Qdk

, (9.20)

where gk = Qxk − b.
In the algorithm the first step is identical to a steepest descent step; each

succeeding step moves in a direction that is a linear combination of the current
gradient and the preceding direction vector. The attractive feature of the algorithm
is the simple formulae, (9.19) and (9.20), for updating the direction vector. The

308 9 Conjugate Direction Methods

method is only slightly more complicated to implement than the method of steepest
descent but converges in a finite number of steps.

Verification of the Algorithm

To verify that the algorithm is a conjugate direction algorithm, it is necessary
to verify that the vectors {dk} are Q-orthogonal. It is easiest to prove this by
simultaneously proving a number of other properties of the algorithm. This is done
in the theorem below where the notation [d0, d1, . . . , dk] is used to denote the
subspace spanned by the vectors d0, d1, . . . , dk .

Conjugate Gradient Theorem The conjugate gradient algorithm (9.17)–(9.20) is a con-
jugate direction method. If it does not terminate at xk , then:

a) [g0, g1, . . . , gk] = [g0, Qg0, . . . , Qkg0].
b) [d0, d1, . . . , dk] = [g0, Qg0, . . . , Qkg0].
c) dT

k Qdi = 0 for i � k − 1.
d) αk = gT

k gk/dT
k Qdk .

e) βk = gT
k+1gk+1/gT

k gk .

Proof We first prove (a), (b) and (c) simultaneously by induction. Clearly, they are
true for k = 0. Now suppose they are true for k, we show that they are true for k+1.
We have

gk+1 = gk + αkQdk.

By the induction hypothesis both gk and Qdk belong to [g0, Qg0, . . . , Qk+1g0],
the first by (a) and the second by (b). Thus gk+1 ∈ [g0, Qg0, . . . , Qk+1g0].
Furthermore gk+1 �∈ [g0, Qg0, . . . , Qkg0] = [d0, d1, . . . , dk] since otherwise
gk+1 = 0, because for any conjugate direction method gk+1 is orthogonal to
[d0, d1, . . . , dk]. (The induction hypothesis on (c) guarantees that the method
is a conjugate direction method up to xk+1.) Thus, finally we conclude that

[g0, g1, . . . , gk+1] = [g0, Qg0, . . . , Qk+1g0],

which proves (a).
To prove (b) we write

dk+1 = −gk+1 + βkdk,

and (b) immediately follows from (a) and the induction hypothesis on (b).
Next, to prove (c) we have

dT
k+1Qdi = −gT

k+1Qdi + βkdT
k Qdi .

9.4 The C–G Method as an Optimal Process 309

For i = k the right side is zero by definition of βk . For i < k both terms vanish.
The first term vanishes since Qdi ∈ [d1, d2, . . . , di+1], the induction hypothesis
which guarantees the method is a conjugate direction method up to xk+1, and
by the Expanding Subspace Theorem that guarantees that gk+1 is orthogonal to
[d0, d1, . . . , di+1]. The second term vanishes by the induction hypothesis on (c).
This proves (c), which also proves that the method is a conjugate direction method.

To prove (d) we have

−gT
k dk = gT

k gk − βk−1gT
k dk−1,

and the second term is zero by the Expanding Subspace Theorem.
Finally, to prove (e) we note that gT

k+1gk = 0, because gk ∈ [d0, . . . , dk] and
gk+1 is orthogonal to [d0, . . . , dk]. Thus since

Qdk = 1

αk

(gk+1 − gk),

we have

gT
k+1Qdk = 1

αk

gT
k+1gk+1.

Parts (a) and (b) of this theorem are a formal statement of the interrelation between
the direction vectors and the gradient vectors. Part (c) is the equation that verifies
that the method is a conjugate direction method. Parts (d) and (e) are identities
yielding alternative formulae for αk and βk that are often more convenient than the
original ones.

9.4 The C–G Method as an Optimal Process

We turn now to the description of a special viewpoint that leads quickly to some
very profound convergence results for the method of conjugate gradients. The basis
of the viewpoint is part (b) of the Conjugate Gradient Theorem. This result tells us
the spaces Bk over which we successively minimize are determined by the original
gradient g0 and multiplications of it by Q. Each step of the method brings into
consideration an additional power of Q times g0. It is this observation we exploit.

Let us consider a new general approach for solving the quadratic minimization
problem. Given an arbitrary starting point x0, let

xk+1 = x0 + Pk(Q)g0, (9.21)

310 9 Conjugate Direction Methods

where Pk is a polynomial of degree k. Selection of a set of coefficients for each of
the polynomials Pk determines a sequence of xk’s. We have

xk+1 − x∗ = x0 − x∗ + Pk(Q)Q(x0 − x∗)

= [I +QPk(Q)](x0 − x∗), (9.22)

and hence

E(xk+1) = 1

2
(xk+1 − x∗)T Q(xk+1 − x∗)

= 1

2
(x0 − x∗)T Q[I+QPk(Q)]2(x0 − x∗). (9.23)

We may now pose the problem of selecting the polynomial Pk in such a way as to
minimize E(xk+1) with respect to all possible polynomials of degree k. Expanding
(9.21), however, we obtain

xk+1 = x0 + γ0g0 + γ1Qg0 + · · · + γkQkg0, (9.24)

where the γi’s are the coefficients of Pk . In view of

Bk+1 = [d0, d1, . . . , dk] = [g0, Qg0, . . . , Qkg0],

the vector xk+1 = x0 + α0d0 + α1d1 + . . . + αkdk generated by the method of
conjugate gradients has precisely this form; moreover, according to the Expanding
Subspace Theorem, the coefficients γi determined by the conjugate gradient process
are such as to minimize E(xk+1). Therefore, the problem posed of selecting the
optimal Pk is solved by the conjugate gradient procedure.

The explicit relation between the optimal coefficients γi of Pk and the constants
αi, βi associated with the conjugate gradient method is, of course, somewhat
complicated, as is the relation between the coefficients of Pk and those of Pk+1.
The power of the conjugate gradient method is that as it progresses it successively
solves each of the optimal polynomial problems while updating only a small amount
of information.

We summarize the above development by the following very useful theorem.

Theorem 1 The point xk+1 generated by the conjugate gradient method satisfies

E(xk+1) = min
Pk

1

2
(x0 − x∗)T Q[I +QPk(Q)]2(x0 − x∗), (9.25)

where the minimum is taken with respect to all polynomials Pk of degree k.

9.4 The C–G Method as an Optimal Process 311

Bounds on Convergence

To use Theorem 1 most effectively it is convenient to recast it in terms of
eigenvectors and eigenvalues of the matrix Q. Suppose that the vector x0 − x∗ is
written in the eigenvector expansion

x0 − x∗ = ξ1e1 + ξ2e2 + · · · + ξnen,

where the ei ’s are normalized eigenvectors of Q. Then since Q(x0−x∗) = λ1ξ1e1+
λ2ξ2e2 + . . .+ λnξnen and since the eigenvectors are mutually orthogonal, we have

E(x0) = 1

2
(x0 − x∗)T Q(x0 − x∗) = 1

2

n∑
i=1

λiξ
2
i , (9.26)

where the λi ’s are the corresponding eigenvalues of Q. Applying the same manipu-
lations to (9.25), we find that for any polynomial Pk of degree k there holds

E(xk+1) �
1

2

n∑
i=1

[1+ λiPk(λi)]2λiξ
2
i .

It then follows that

E(xk+1) � max
λi

[1+ λiPk(λi)]2 1

2

n∑
i=1′

λiξ
2
i ,

and hence finally

E(xk+1) � max
λi

[1+ λiPk(λi)]2E(x0).

We summarize this result by the following theorem.

Theorem 2 In the method of conjugate gradients we have

E(xk+1) � max
λi

[1 + λiPk(λi)]2E(x0) (9.27)

for any polynomial Pk of degree k, where the maximum is taken over all eigenvalues λi

of Q.

This way of viewing the conjugate gradient method as an optimal process is
exploited in the next section. We note here that it implies the far from obvious fact
that every step of the conjugate gradient method is at least as good as a steepest
descent step would be from the same point. To see this, suppose xk has been
computed by the conjugate gradient method. From (9.24) we know xk has the form

xk = x0 + γ̄0g0 + γ̄1Qg0 + · · · + γ̄k−1Qk−1g0.

312 9 Conjugate Direction Methods

Now if xk+1 is computed from xk by steepest descent, then xk+1 = xk − αkgk for
some αk . In view of part (a) of the Conjugate Gradient Theorem xk+1 will have the
form (9.24). Since for the conjugate direction method E(xk+1) is lower than any
other xk+1 of the form (9.24), we obtain the desired conclusion.

Typically when some information about the eigenvalue structure of Q is known,
that information can be exploited by construction of a suitable polynomial Pk to
use in (9.27). Suppose, for example, it were known that Q had only m < n distinct
eigenvalues. Then it is clear that by suitable choice of Pm−1 it would be possible
to make the mth- degree polynomial 1 + λPm−1(λ) have its m zeros at the m

eigenvalues. Using that particular polynomial in (9.27) shows that E(xm) = 0.
Thus the optimal solution will be obtained in at most m, rather than n, steps. More
sophisticated examples of this type of reasoning are contained in the next section
and in the exercises at the end of the chapter.

9.5 The Partial Conjugate Gradient Method

A collection of procedures that are natural to consider at this point are those in
which the conjugate gradient procedure is carried out for m+ 1 < n steps and then,
rather than continuing, the process is restarted from the current point and m + 1
more conjugate gradient steps are taken. The special case of m = 0 corresponds
to the standard method of steepest descent, while m = n − 1 corresponds to the
full conjugate gradient method. These partial conjugate gradient methods are of
extreme theoretical and practical importance, and their analysis yields additional
insight into the method of conjugate gradients. The development of the last section
forms the basis of our analysis.

As before, given the problem

minimize
1

2
xT Qx− bT x, (9.28)

we define for any point xk the gradient gk = Qxk−b. We consider an iteration
scheme of the form

xk+1 = xk + Pk(Q)gk, (9.29)

where Pk is a polynomial of degree m. We select the coefficients of the polynomial
Pk so as to minimize

E(xk+1) = 1

2
(xk+1 − x∗)T Q(xk+1 − x∗), (9.30)

where x∗ is the solution to (9.28). In view of the development of the last section, it
is clear that xk+1 can be found by taking m+ 1 conjugate gradient steps rather than

9.5 The Partial Conjugate Gradient Method 313

Fig. 9.3 Eigenvalue distribution

explicitly determining the appropriate polynomial directly. (The sequence indexing
is slightly different here than in the previous section, since now we do not give
separate indices to the intermediate steps of this process. Going from xk to xk+1 by
the partial conjugate gradient method involves m other points.)

The results of the previous section provide a tool for convergence analysis
of this method. In this case, however, we develop a result that is of particular
interest for Q’s having a special eigenvalue structure that occurs frequently in
optimization problems, especially, as shown below and in Chap. 12, in the context
of penalty function methods for solving problems with constraints. We imagine that
the eigenvalues of Q are of two kinds: there are m large eigenvalues that may or
may not be located near each other, and n − m smaller eigenvalues located within
an interval [a, b]. Such a distribution of eigenvalues is shown in Fig. 9.3.

As an example, consider as in Sect. 8.3 the problem on En

minimize
1

2
xT Qx− bT x

subject to cT x = 0,

where Q is a symmetric positive definite matrix with eigenvalues in the interval
[a, A] and b and c are vectors in En. This is a constrained problem but it can be
approximated by the unconstrained problem

minimize
1

2
xT Qx− bT x+ 1

2
μ(cT x)2,

where μ is a large positive constant. The last term in the objective function is called
a penalty term; for large μ minimization with respect to x will tend to make cT x
small.

The total quadratic term in the objective is 1
2 xT (Q + μccT)x, and thus it is

appropriate to consider the eigenvalues of the matrix Q + μccT . As μ tends to
infinity it can be shown (see Chap. 13) that one eigenvalue of this matrix tends to
infinity and the other n− 1 eigenvalues remain bounded within the original interval
[a, A].

As noted before, if steepest descent were applied to a problem with such a
structure, convergence would be governed by the ratio of the smallest to largest
eigenvalue, which in this case would be quite unfavorable. In the theorem below it
is stated that by successively repeating m+ 1 conjugate gradient steps the effects of
the m largest eigenvalues are eliminated and the rate of convergence is determined as

314 9 Conjugate Direction Methods

if they were not present. A computational example of this phenomenon is presented
in Sect. 13.6. The reader may find it interesting to read that section right after this
one.

Theorem (Partial Conjugate Gradient Method) Suppose the symmetric positive definite
matrix Q has n − m eigenvalues in the interval [a, b], a > 0 and the remaining m

eigenvalues are greater than b. Then the method of partial conjugate gradients, restarted
every m+ 1 steps, satisfies

E(xk+1) �
(

b − a

b + a

)2

E(xk). (9.31)

(The point xk+1 is found from xk by taking m + 1 conjugate gradient steps so that each
increment in k is a composite of several simple steps.)

Proof Application of (9.27) yields

E(xk+1) � max
λi

[1+ λiP (λi)]2E(xk) (9.32)

for any mth-order polynomial P , where the λi ’s are the eigenvalues of Q. Let us
select P so that the (m + 1)th-degree polynomial q(λ) = 1 + λP(λ) vanishes at
(a+ b)/2 and at the m large eigenvalues of Q. This is illustrated in Fig. 9.4. For this
choice of P we may write (9.32) as

E(xk+1) � max
a�λi�b

[1+ λiP (λi)]2E(xk).

Since the polynomial q(λ) = 1+λP(λ) has m+1 real roots, q ′(λ) will have m real
roots which alternate between the roots of q(λ) on the real axis. Likewise, q ′′(λ)

will have m − 1 real roots which alternate between the roots of q ′(λ). Thus, since
q(λ) has no root in the interval (−∞, (a+b)/2), we see that q ′′(λ) does not change
sign in that interval; and since it is easily verified that q ′′(0) > 0 it follows that q(λ)

is convex for λ < (a + b)/2. Therefore, on [0, (a + b)/2], q(λ) lies below the line

Fig. 9.4 Construction for proof

9.6 Extension to Nonquadratic Problems 315

1− [2λ/(a + b)]. Thus we conclude that

q(λ) � 1− 2λ

a + b

on [0, (a + b)/2] and that

q ′
(

a + b

2

)
� − 2

a + b
.

We can see that on [(a + b)/2, b]

q(λ) � 1− 2λ

a + b
,

since for q(λ) to cross first the line 1 − [2λ/(a + b)] and then the λ-axis would
require at least two changes in sign of q ′′(λ), whereas, at most one root of q ′′(λ)

exists to the left of the second root of q(λ). We see then that the inequality

|1+ λP(λ)| � |1− 2λ

a + b
|

is valid on the interval [a, b]. The final result (9.31) follows immediately.

In view of this theorem, the method of partial conjugate gradients can be
regarded as a generalization of steepest descent, not only in its philosophy and
implementation, but also in its behavior. Its rate of convergence is bounded by
exactly the same formula as that of steepest descent but with the largest eigenvalues
removed from consideration. (It is worth noting that for m = 0 the above proof
provides a simple derivation of the Steepest Descent Theorem.)

9.6 Extension to Nonquadratic Problems

The general unconstrained minimization problem on En

minimize f (x)

can be attacked by making suitable approximations to the conjugate gradient
algorithm. There are a number of ways that this might be accomplished; the choice
depends partially on what properties of f are easily computable. We look at three
methods in this section and another in the following section.

316 9 Conjugate Direction Methods

Quadratic Approximation

In the quadratic approximation method we make the following associations at xk:

gk ↔ ∇f (xk)
T , Q ↔ F(xk),

and using these associations, reevaluated at each step, all quantities necessary to
implement the basic conjugate gradient algorithm can be evaluated. If f is quadratic,
these associations are identities, so that the general algorithm obtained by using
them is a generalization of the conjugate gradient scheme. This is similar to the
philosophy underlying Newton’s method where at each step the solution of a general
problem is approximated by the solution of a purely quadratic problem through these
same associations.

When applied to nonquadratic problems, conjugate gradient methods will not
usually terminate within n steps. It is possible therefore simply to continue finding
new directions according to the algorithm and terminate only when some termina-
tion criterion is met. Alternatively, the conjugate gradient process can be interrupted
after n or n + 1 steps and restarted with a pure gradient step. Since Q-conjugacy
of the direction vectors in the pure conjugate gradient algorithm is dependent on
the initial direction being the negative gradient, the restarting procedure seems to
be preferred. We always include this restarting procedure. The general conjugate
gradient algorithm is then defined as below:

Step 1. Starting at x0 compute g0 = ∇f (x0)
T and set d0 = −g0.

Step 2. For k = 0, 1, . . . , n− 1:

(a) Set xk+1 = xk + αkdk where αk = −gT
k dk

dT
k F(xk)dk

.

(b) Compute gk+1 = ∇f (xk+1)
T .

(c) Unless k = n− 1, set dk+1 = −gk+1 + βkdk where

βk =
gT
k+1F(xk)dk

dT
k F(xk)dk

and repeat (a).

Step 3. Replace x0 by xn and go back to Step 1.

An attractive feature of the algorithm is that, just as in the pure form of Newton’s
method, no line searching is required at any stage. Also, the algorithm converges
in a finite number of steps for a quadratic problem. The undesirable features are
that F(xk) must be evaluated at each point, which is often impractical, and that the
algorithm is not, in this form, globally convergent.

9.6 Extension to Nonquadratic Problems 317

Line Search Methods

It is possible to avoid the direct use of the association Q ↔ F(xk). First, instead
of using the formula for αk in Step 2(a) above, αk is found by a line search that
minimizes the objective. This agrees with the formula in the quadratic case. Second,
the formula for βk in Step 2(c) is replaced by a different formula, which is, however,
equivalent to the one in 2(c) in the quadratic case.

The first such method proposed was the Fletcher–Reeves method, in which Part
(e) of the Conjugate Gradient Theorem is employed; that is,

βk =
gT
k+1gk+1

gT
k gk

.

The complete algorithm (using restarts) is:

Step 1. Given x0 compute g0 = ∇f (x0)
T and set d0 = −g0.

Step 2. For k = 0, 1, . . . , n− 1:

(a) Set xk+1 = xk + αkdk where αk minimizes f (xk + αdk).
(b) Compute gk+1 = ∇f (xk+1)

T .
(c) Unless k = n− 1, set dk+1 = −gk+1 + βkdk where

βk =
gT
k+1gk+1

gT
k gk

.

Step 3. Replace x0 by xn and go back to Step 1.

Another important method of this type is the Polak–Ribiere method, where

βk = (gk+1 − gk)
T gk+1

gT
k gk

is used to determine βk. Again this leads to a value identical to the standard formula
in the quadratic case. Experimental evidence seems to favor the Polak–Ribiere
method over other methods of this general type.

Convergence

Global convergence of the line search methods is established by noting that a pure
steepest descent step is taken every n steps and serves as a spacer step. Since
the other steps do not increase the objective, and in fact hopefully they decrease
it, global convergence is assured. Thus the restarting aspect of the algorithm is

318 9 Conjugate Direction Methods

important for global convergence analysis, since in general one cannot guarantee
that the directions dk generated by the method are descent directions.

The local convergence properties of both of the above, and most other, non-
quadratic extensions of the conjugate gradient method can be inferred from the
quadratic analysis. Assuming that at the solution, x∗, the matrix F(x∗) is positive
definite, we expect the asymptotic convergence rate per step to be at least as good
as steepest descent, since this is true in the quadratic case. In addition to this bound
on the single step rate we expect that the method is of order two with respect to
each complete cycle of n steps. In other words, since one complete cycle solves a
quadratic problem exactly just as Newton’s method does in one step, we expect that
for general nonquadratic problems there will hold |xk+n−x∗| � c|xk−x∗|2 for some
c and k = 0, n, 2n, 3n, This can indeed be proved, and of course underlies the
original motivation for the method. For problems with large n, however, a result of
this type is in itself of little comfort, since we probably hope to terminate in fewer
than n steps. Further discussion on this general topic is contained in Sect. 10.4.

Preconditioning and Partial Methods

Convergence of the partial conjugate gradient method, restarted every m+ 1 steps,
will in general be linear. The rate will be determined by the eigenvalue structure
of the Hessian matrix F(x∗), and it may be possible to obtain fast convergence
by changing the eigenvalue structure through scaling procedures. If, for example,
the eigenvalues can be arranged to occur in m + 1 bunches, the rate of the partial
method will be relatively fast. Other structures can be analyzed by use of Theorem 2,
Sect. 9.4, by using F(x∗) rather than Q.

9.7 ∗Parallel Tangents

In early experiments with the method of steepest descent the path of descent was
noticed to be highly zig-zag in character, making slow indirect progress toward
the solution. (This phenomenon is now quite well understood and is predicted by
the convergence analysis of Sect. 8.2.) It was also noticed that in two dimensions
the solution point often lies close to the line that connects the zig-zag points, as
illustrated in Fig. 9.5. This observation motivated the heavy ball and accelerated
gradient methods in which a complete cycle consists of taking two steepest descent
steps and then searching along the line connecting the initial point and the point
obtained after the two gradient steps. The method of parallel tangents (PARTAN)
was developed through an attempt to extend this idea to an acceleration scheme
involving all previous steps. The original development was based largely on a
special geometric property of the tangents to the contours of a quadratic function,

9.7 ∗Parallel Tangents 319

Fig. 9.5 Path of gradient method

Fig. 9.6 PARTAN

but the method is now recognized as a particular implementation of the method of
conjugate gradients, and this is the context in which it is treated here.

The algorithm is defined by reference to Fig. 9.6. Starting at an arbitrary point x0
the point x1 is found by a standard steepest descent step. After that, from a point xk

the corresponding yk is first found by a standard steepest descent step from xk, and
then xk+1 is taken to be the minimum point on the line connecting xk−1 and yk. The
process is continued for n steps and then restarted with a standard steepest descent
step.

Notice that except for the first step, xk+1 is determined from xk, not by searching
along a single line, but by searching along two lines. The direction dk connecting
two successive points (indicated as dotted lines in the figure) is thus determined
only indirectly. We shall see, however, that, in the case where the objective function
is quadratic, the dk’s are the same directions, and the xk’s are the same points, as
would be generated by the method of conjugate gradients.

PARTAN Theorem For a quadratic function, PARTAN is equivalent to the method of
conjugate gradients.

Proof The proof is by induction. It is certainly true of the first step, since it is a
steepest descent step. Suppose that x0, x1, . . . , xk have been generated by the
conjugate gradient method and xk+1 is determined according to PARTAN. This
single step is shown in Fig. 9.7. We want to show that xk+1 is the same point as

320 9 Conjugate Direction Methods

Fig. 9.7 One step of
PARTAN

would be generated by another step of the conjugate gradient method. For this to
be true xk+1 must be that point which minimizes f over the plane defined by dk−1
and gk = ∇f (xk)

T . From the theory of conjugate gradients, this point will also
minimize f over the subspace determined by gk and all previous di’ s. Equivalently,
we must find the point x where ∇f (x) is orthogonal to both gk and dk−1. Since yk

minimizes f along gk, we see that ∇f (yk) is orthogonal to gk . Since ∇f (xk−1)

is contained in the subspace [d0, d1, . . . , dk−1] and because gk is orthogonal to
this subspace by the Expanding Subspace Theorem, we see that ∇f (xk−1) is also
orthogonal to gk . Since ∇f (x) is linear in x, it follows that at every point x on the
line through xk−1 and yk we have ∇f (x) orthogonal to gk. By minimizing f along
this line, a point xk+1 is obtained where in addition ∇f (xk+1) is orthogonal to the
line. Thus ∇f (xk+1) is orthogonal to both gk and the line joining xk−1 and yk . It
follows that ∇f (xk+1) is orthogonal to the plane.

There are advantages and disadvantages of PARTAN relative to other methods
when applied to nonquadratic problems. One attractive feature of the algorithm
is its simplicity and ease of implementation. Probably its most desirable property,
however, is its strong global convergence characteristics. Each step of the process
is at least as good as steepest descent; since going from xk to yk is exactly steepest
descent, and the additional move to xk+1 provides further decrease of the objective
function. Thus global convergence is not tied to the fact that the process is restarted
every n steps. It is suggested, however, that PARTAN should be restarted every n

steps (or n+ 1 steps) so that it will behave like the conjugate gradient method near
the solution.

An undesirable feature of the algorithm is that two line searches are required at
each step, except the first, rather than one as is required by, say, the Fletcher–Reeves
method. This is at least partially compensated by the fact that searches need not
be as accurate for PARTAN, for while inaccurate searches in the Fletcher–Reeves
method may yield nonsensical successive search directions, PARTAN will at least
do as well as steepest descent.

9.8 Exercises 321

9.8 Exercises

1. Let Q be a positive definite symmetric matrix and suppose p0, p1, . . . , pn−1
are linearly independent vectors in En. Show that a Gram–Schmidt procedure
can be used to generate a sequence of Q-conjugate directions from the pi’s.
Specifically, show that d0, d1, . . . , dn−1 defined recursively by

d0 = p0

dk+1 = pk+1 −
k∑

i=0

pT
k+1Qdi

dT
i Qdi

di

form a Q-conjugate set.
2. Suppose the pi ’s in Exercise 1 are generated as moments of Q, that is, suppose

pk = Qkp0, k = 1, 2, . . . , n − 1. Show that the corresponding dk’s can then
be generated by a (three-term) recursion formula where dk+1 is defined only in
terms of Qdk, dk and dk−1.

3. Suppose the pk’s in Exercise 1 are taken as pk = ek where ek is the kth unit
coordinate vector and the dk’s are constructed accordingly. Show that using dk’s
in a conjugate direction method to minimize (1/2)xT Qx− bT x is equivalent to
the application of Gaussian elimination to solve Qx = b.

4. Let f (x) = (1/2)xT Qx − bT x be defined on En with Q positive definite. Let
x1 be a minimum point of f over a subspace of En containing the vector d
and let x2 be the minimum of f over another subspace containing d. Suppose
f (x1) < f (x2). Show that x1 − x2 is Q-conjugate to d.

5. Let Q be a symmetric matrix. Show that any two eigenvectors of Q, correspond-
ing to distinct eigenvalues, are Q-conjugate.

6. Let Q be an n×n symmetric matrix and let d0, d1, . . . , dn−1 be Q-conjugate.
Show how to find an E such that ET QE is diagonal.

7. Show that in the conjugate gradient method Qdk−1 ∈ Bk+1.
8. Derive the rate of convergence of the method of steepest descent by viewing it

as a one-step optimal process.
9. Let Pk(Q) = c0 + c1Q + c2Q2 + · · · + cmQm be the optimal polynomial in

(9.29) minimizing (9.30). Show that the ci’s can be found explicitly by solving
the vector equation

−

⎡
⎢⎢⎢⎣

gT
k Qgk gT

k Q2gk · · · gT
k Qm+1gk

gT
k Q2gk gT

k Q3gk · · · gT
k Qm+2gk

...

gT
k Qm+1gk · · · gT

k Q2m+1gk

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

c0

c1
...

cm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

gT
k gk

gT
k Qgk

...

gT
k Qmgk

⎤
⎥⎥⎥⎦ .

Show that this reduces to steepest descent when m = 0.

322 9 Conjugate Direction Methods

10. Show that for the method of conjugate directions there holds

E(xk) � 4

(
1−√γ

1+√γ

)2k

E(x0),

where γ = a/A and a and A are the smallest and largest eigenvalues of Q.
Hint: In (9.27) select Pk−1(λ) so that

1+ λPk−1(λ) =
Tk

(
A+a−2λ

A−a

)

Tk

(
A+a
A−a

) ,

where Tk(λ) = cos(k arc cos λ) is the kth Chebyshev polynomial. This
choice gives the minimum maximum magnitude on [a, A]. Verify and use the
inequality

(1− γ)k

(1+√γ)2k + (1−√γ)2k
�
(

1−√γ

1+√γ

)k

.

11. Suppose it is known that each eigenvalue of Q lies either in the interval [a, A]
or in the interval [a+
, A+
] where a, A, and
 are all positive. Show that
the partial conjugate gradient method restarted every two steps will converge
with a ratio no greater than [(A− a)/(A+ a)]2 no matter how large
 is.

12. Modify the first method given in Sect. 9.6 so that it is globally convergent.
13. Show that in the purely quadratic form of the conjugate gradient method

dT
k Qdk = −dT

k Qgk . Using this show that to obtain xk+1 from xk it is necessary
to use Q only to evaluate gk and Qgk .

14. Show that in the quadratic problem Qgk can be evaluated by taking a unit step
from xk in the direction of the negative gradient and evaluating the gradient
there. Specifically, if yk = xk − gk and pk = ∇f (yk)

T , then Qgk = gk − pk .
15. Combine the results of Exercises 13 and 14 to derive a conjugate gradient

method for general problems much in the spirit of the first method of Sect. 9.6
but which does not require knowledge of F(xk) or a line search.

References

9.1–9.3 For the original development of conjugate direction methods, see Hestenes
and Stiefel [H10] and Hestenes [H7, H9]. For another introductory treat-
ment see Beckman [B8]. The method was extended to the case where Q is
not positive definite, which arises in constrained problems, by Luenberger
[L9, L11].

References 323

9.4 The idea of viewing the conjugate gradient method as an optimal process
was originated by Stiefel [S10]. Also see Daniel [D1] and Faddeev and
Faddeeva [F1].

9.5 The partial conjugate gradient method presented here is identical to the
so-called s-step gradient method. See Faddeev and Faddeeva [F1] and
Forsythe [F14]. The bound on the rate of convergence given in this section
in terms of the interval containing the n−m smallest eigenvalues was first
given in Luenberger [L13]. Although this bound cannot be expected to be
tight, it is a reasonable conjecture that it becomes tight as the m largest
eigenvalues tend to infinity with arbitrarily large separation.

9.6 For the first approximate method, see Daniel [D1]. For the line search
methods, see Fletcher and Reeves [F12], Polak and Ribiere [P5], and Polak
[P4]. For proof of the n-step, order two convergence, see Cohen [C4]. For
a survey of computational experience of these methods, see Fletcher [F9].

9.7 PARTAN is due to Shah, Buehler, and Kempthorne [S2]. Also see
Wolfe [W5].

9.8 The approach indicated in Exercises 1 and 2 can be used as a foundation for
the development of conjugate gradients; see Antosiewicz and Rheinboldt
[A7], Vorobyev [V6], Faddeev and Faddeeva [F1], and Luenberger [L8].
The result stated in Exercise 3 is due to Hestenes and Stiefel [H10].
Exercise 4 is due to Powell [P6]. For the solution to Exercise 10, see
Faddeev and Faddeeva [F1] or Daniel [D1].

Chapter 10
Quasi-Newton Methods

In this chapter we take another approach toward the development of methods lying
somewhere intermediate to steepest descent and Newton’s method. Again working
under the assumption that evaluation and use of the Hessian matrix is impractical
or costly, the idea underlying quasi-Newton methods is to use an approximation
to the inverse Hessian in place of the true inverse that is required in Newton’s
method. The form of the approximation varies among different methods—ranging
from the simplest where it remains fixed throughout the iterative process, to the more
advanced where improved approximations are built up on the basis of information
gathered during the descent process.

The quasi-Newton methods that build up an approximation to the inverse
Hessian are analytically the most sophisticated methods discussed in this book for
solving unconstrained problems and represent the culmination of the development
of algorithms through detailed analysis of the quadratic problem. As might be
expected, the convergence properties of these methods are somewhat more difficult
to discover than those of simpler methods. Nevertheless, we are able, by continuing
with the same basic techniques as before, to illuminate their most important features.

In the course of our analysis we develop two important generalizations of the
method of steepest descent and its corresponding convergence rate theorem. The
first, discussed in Sect. 10.1, modifies steepest descent by taking as the direction
vector a positive definite transformation of the negative gradient. The second,
discussed in Sect. 10.8, is a combination of steepest descent and Newton’s method.
Both of these fundamental methods have convergence properties analogous to those
of steepest descent.

© Springer Nature Switzerland AG 2021
D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
https://doi.org/10.1007/978-3-030-85450-8_10

325

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85450-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-85450-8_10

326 10 Quasi-Newton Methods

10.1 Modified Newton Method

A very basic iterative process for solving the problem

minimize f (x),

which includes as special cases most of our earlier ones is

xk+1 = xk − αkSk∇f (xk)
T , (10.1)

where Sk is a symmetric n×n matrix and where, as usual, αk is chosen to minimize
f (xk+1). If Sk is the inverse of the Hessian of f , we obtain Newton’s method, while
if Sk = I we have steepest descent. It would seem to be a good idea, in general,
to select Sk as an approximation to the inverse of the Hessian. We examine that
philosophy in this section.

First, we note, as in Sect. 8.6, that in order that the process (10.1) be guaranteed
to be a descent method for small values of α, it is necessary in general to require
that Sk be positive definite. We shall therefore always impose this as a requirement.

Because of the similarity of the algorithm (10.1) with steepest descent† it should
not be surprising that its convergence properties are similar in character to our
earlier results. We derive the actual rate of convergence by considering, as usual,
the standard quadratic problem with

f (x) = 1

2
xT Qx− bT x, (10.2)

where Q is symmetric and positive definite. For this case we can find an explicit
expression for αk in (10.1). The algorithm becomes

xk+1 = xk − αkSkgk, (10.3a)

where

gk = Qxk − b (10.3b)

αk = gT
k Skgk

gT
k SkQSkgk

. (10.3c)

We may then derive the convergence rate of this algorithm by slightly extending the
analysis carried out for the method of steepest descent.

† The algorithm (10.1) is sometimes referred to as the method of deflected gradients, since
the direction vector can be thought of as being determined by deflecting the gradient through
multiplication by Sk .

10.1 Modified Newton Method 327

Modified Newton Method Theorem (Quadratic Case) Let x∗ be the unique minimum
point of f , and define E(x) = 1

2 (x− x∗)T Q(x− x∗).
Then for the algorithm (10.3) there holds at every step k

E(xk+1) �
(

Bk − bk

Bk + bk

)2

E(xk), (10.4)

where bk and Bk are, respectively, the smallest and largest eigenvalues of thematrix SkQ.

Proof We have by direct substitution

E(xk)− E(xk+1)

E(xk)
= (gT

k Skgk)
2

(gT
k SkQSkgk)(gT

k Q−lgk)
.

Letting Tk = S1/2
k QS1/2

k and pk = S1/2
k gk we obtain

E(xk)− E(xk+1)

E(xk)
= (pT

k pk)
2

(pT
k Tkpk)(pT

k T−1
k pk)

.

From the Kantorovich inequality we obtain easily

E(xk+1) �
(

Bk − bk

Bk + bk

)2

E(xk),

where bk and Bk are the smallest and largest eigenvalues of Tk . Since
S1/2

k TkS−1/2
k = SkQ, we see that SkQ is similar to Tk and therefore has the

same eigenvalues.

This theorem supports the intuitive notion that for the quadratic problem one
should strive to make Sk close to Q−1 since then both bk and Bk would be close
to unity and convergence would be rapid. For a nonquadratic objective function f

the analog to Q is the Hessian F(x), and hence one should try to make Sk close
to F(xk)

−1.
Two remarks may help to put the above result in proper perspective. The first

remark is that both the algorithm (10.1) and the theorem stated above are only
simple, minor, and natural extensions of the work presented in Chap. 8 on steepest
descent. As such the result of this section can be regarded, correspondingly, not as
a new idea but as an extension of the basic result on steepest descent. The second
remark is that this one simple result when properly applied can quickly characterize
the convergence properties of some fairly complex algorithms. Thus, rather than
an isolated result concerned with a specific form of algorithm, the theorem above
should be regarded as a general tool for convergence analysis. It provides significant
insight into various quasi-Newton methods discussed in this chapter.

328 10 Quasi-Newton Methods

Other Modified Newton’s Methods

The ellipsoid method presented in Sect. 5.3 of Chap. 5 can be viewed as a modified
Newton’s method by iteratively constructing Sk when applied to minimizing
f (x), x ∈ Em. The updating formulas would be

xk+1 = xk − 1

(m+ 1)(gT
k Skgk)1/2

Skgk and Sk+1 = m2

m2 − 1

(
Sk − 2

m+ 1

BkgkgT
k Sk

gT
k Skgk

)
.

Here the cut would always be the gradient vector gk = ∇f (xk) at the current center
of the ellipsoid.

We conclude this section by also mentioning the classical modified Newton’s
method, a standard method for approximating Newton’s method without evaluating
F(xk)

−1 for each k. We set

xk+1 = xk − αk[F(x0)]−1∇f (xk)
T . (10.5)

In this method the Hessian at the initial point x0 is used throughout the process.
The effectiveness of this procedure is governed largely by how fast the Hessian is
changing—in other words, by the magnitude of the third derivatives of f .

10.2 Construction of the Inverse

The fundamental idea behind most quasi-Newton methods is to try to construct
the inverse Hessian, or an approximation of it, using information gathered as the
descent process progresses. The current approximation Hk is then used at each stage
to define the next descent direction by setting Sk = Hk in the modified Newton
method. Ideally, the approximations converge to the inverse of the Hessian at the
solution point and the overall method behaves somewhat like Newton’s method.
In this section we show how the inverse Hessian can be built up from gradient
information obtained at various points.

Let f be a function on En that has continuous second partial derivatives. If for
two points xk+1, xk we define gk+1 = ∇f (xk+1)

T , gk = ∇f (xk)
T and pk =

xk+1 − xk, then

gk+1 − gk
∼= F(xk)pk. (10.6)

If the Hessian, F, is constant, then we have

qk ≡ gk+1 − gk = Fpk, (10.7)

10.2 Construction of the Inverse 329

and we see that evaluation of the gradient at two points gives information about F. If
n linearly independent directions p0, p1, p2, . . . , pn−1 and the corresponding qk’s
are known, then F is uniquely determined. Indeed, letting P and Q be the n × n

matrices with columns pk and qk respectively, we have F = QP−1.
It is natural to attempt to construct successive approximations Hk to F−1 based

on data obtained from the first k steps of a descent process in such a way that if
F were constant the approximation would be consistent with (10.7) for these steps.
Specifically, if F were constant Hk+1 would satisfy

Hk+1qi = pi , 0 � i � k. (10.8)

After n linearly independent steps we would then have Hn = F−1.
For any k < n the problem of constructing a suitable Hk , with in general serves

as an approximation to the inverse Hessian and which in the case of constant F
satisfies (10.8), admits an infinity of solutions, since there are more degrees of
freedom than there are constraints. Thus a particular method can take into account
additional considerations. We discuss below one of the simplest schemes that has
been proposed.

Rank One Correction

Since F and F−1 are symmetric, it is natural to require that Hk , the approximation
to F−1, be symmetric. We investigate the possibility of defining a recursion of the
form

Hk+1 = Hk + akzkzT
k , (10.9)

which preserves symmetry. The vector zk and the constant ak define a matrix of (at
most) rank one, by which the approximation to the inverse is updated. We select
them so that (10.8) is satisfied. Setting i equal to k in (10.8) and substituting (10.9)
we obtain

pk = Hk+1qk = Hkqk + akzkzT
k qk. (10.10)

Taking the inner product with qk we have

qT
k pk − qT

k Hkqk = ak

(
zT
k qk

)2
. (10.11)

On the other hand, using (10.10) we may write (10.9) as

Hk+1 = Hk + (pk −Hkqk)(pk −Hkqk)
T

ak

(
zT
k qk

)2 ,

330 10 Quasi-Newton Methods

which in view of (10.11) leads finally to

Hk+1 = Hk + (pk −Hkqk)(pk −Hkqk)
T

qT
k (pk −Hkqk)

. (10.12)

We have determined what a rank one correction must be if it is to satisfy (10.8)
for i = k. It remains to be shown that, for the case where F is constant, (10.8) is also
satisfied for i < k. This in turn will imply that the rank one recursion converges to
F−1 after at most n steps.

Theorem Let F be a fixed symmetric matrix and suppose that p0, p1, p2, . . . , pk are given
vectors. Define the vectors qi = Fpi , i = 0, 1, 2, . . . , k.

Starting with any initial symmetric matrix H0 let

Hi+1 = Hi + (pi −Hiqi)(pi −Hiqi)
T

qT
i (pi −Hiqi)

. (10.13)

Then

pi = Hk+1qi f or i � k. (10.14)

Proof The proof is by induction. Suppose it is true for Hk , and i � k − 1. The
relation was shown above to be true for Hk+1 and i = k. For i < k

Hk+1qi = Hkqi + yk(pT
k qi − qT

k Hkqi), (10.15)

where

yk = (pk −Hkqk)

qT
k (pk −Hkqk)

.

By the induction hypothesis, (10.15) becomes

Hk+1qi = pi + yk

(
pT

k qi − qT
k pi

)
.

From the calculation

qT
k pi = pT

k Fpi = pT
k qi ,

it follows that the second term vanishes.

To incorporate the approximate inverse Hessian in a descent procedure while
simultaneously improving it, we calculate the direction dk from

dk = −Hkgk

10.3 Davidon–Fletcher–Powell Method 331

and then minimize f (xk + αdk) with respect to α � 0. This determines xk+1 =
xk+αkdk, pk = αkdk , and gk+1. Then Hk+1 can be calculated according to (10.12).

There are some difficulties with this simple rank one procedure. First, the
updating formula (10.12) preserves positive definiteness only if qT

k (pk−Hkqk) > 0,
which cannot be guaranteed (see Exercise 6). Also, even if qT

k (pk − Hkqk) is
positive, it may be small, which can lead to numerical difficulties. Thus, although an
excellent simple example of how information gathered during the descent process
can in principle be used to update an approximation to the inverse Hessian, the rank
one method possesses some limitations.

10.3 Davidon–Fletcher–Powell Method

The earliest, and certainly one of the most clever schemes for constructing the
inverse Hessian, was originally proposed by Davidon and later developed by
Fletcher and Powell. It has the fascinating and desirable property that, for a quadratic
objective, it simultaneously generates the directions of the conjugate gradient
method while constructing the inverse Hessian. At each step the inverse Hessian
is updated by the sum of two symmetric rank one matrices, and this scheme is
therefore often referred to as a rank two correction procedure. The method is also
often referred to as the variable metric method, the name originally suggested by
Davidon.

The procedure is this: Starting with any symmetric positive definite matrix H0,
any point x0, and with k = 0:

Step 1. Set dk = −Hkgk.
Step 2. Minimize f (xk + αdk) with respect to α � 0 to obtain xk+1, pk = αkdk ,

and gk+1.
Step 3. Set qk = gk+1 − gk and

Hk+1 = Hk + pkpT
k

pT
k qk

− HkqkqT
k Hk

qT
k Hkqk

. (10.16)

Update k and return to Step 1.

Positive Definiteness

We first demonstrate that if Hk is positive definite, then so is Hk+1. For any x ∈ En

we have

xT Hk+1x = xT Hkx+ (xT pk)
2

pT
k qk

− (xT Hkqk)
2

qT
k Hkqk

. (10.17)

332 10 Quasi-Newton Methods

Defining a = H1/2
k x, b = H1/2

k qk we may rewrite (10.17) as

xT Hk+1x = (aT a)(bT b)− (aT b)2

(bT b)
+ (xT pk)

2

pT
k qk

.

We also have

pT
k qk = pT

k gk+1 − pT
k gk = −pT

k gk, (10.18)

since

pT
k gk+1 = 0, (10.19)

because xk+1 is the minimum point of f along pk . Thus by definition of pk

pT
k qk = αkgT

k Hkgk, (10.20)

and hence

xT Hk+1x = (aT a)(bT b)− (aT b)2

(bT b)
+ (xT pk)

2

αkgT
k Hkgk

. (10.21)

Both terms on the right of (10.21) are nonnegative—the first by the Cauchy–
Schwarz inequality. We must only show they do not both vanish simultaneously.
The first term vanishes only if a and b are proportional. This in turn implies that x
and qk are proportional, say x = βqk . In that case, however,

pT
k x = βpT

k qk = βαkgT
k Hkgk �= 0

from (10.20). Thus xT Hk+1x > 0 for all nonzero x.
It is of interest to note that in the proof above the fact that αk is chosen as the

minimum point of the line search was used in (10.19), which led to the important
conclusion pT

k qk > 0. Actually any αk , whether the minimum point or not, that
gives pT

k qk > 0 can be used in the algorithm, and Hk+1 will be positive definite
(see Exercises 8 and 9).

Finite Step Convergence

We assume now that f is quadratic with (constant) Hessian F. We show in this case
that the Davidon–Fletcher–Powell method produces direction vectors pk that are
F-orthogonal and that if the method is carried n steps then Hn = F−1.

10.3 Davidon–Fletcher–Powell Method 333

Theorem If f is quadratic with positive definite Hessian F, then for the Davidon–
Fletcher–Powell method

pT
i Fpj = 0, 0 � i < j � k (10.22)

Hk+1Fpi = pi f or 0 � i � k. (10.23)

Proof We note that for the quadratic case

qk = gk+1 − gk = Fxk+1 − Fxk = Fpk. (10.24)

Also

Hk+1Fpk = Hk+1qk = pk (10.25)

from (10.16).
We now prove (10.22) and (10.23) by induction. From (10.25) we see that they

are true for k = 0. Assuming they are true for k − 1, we prove they are true for k.
We have

gk = gi+1 + F(pi+1 + · · · + pk−1).

Therefore from (10.22) and (10.19)

pT
i gk = pT

i gi+1 = 0 for 0 � i < k. (10.26)

Hence from (10.23)

pT
i FHkgk = 0. (10.27)

Thus since pk = −αkHkgk and since αk �= 0, we obtain

pT
i Fpk = 0 for i < k, (10.28)

which proves (10.22) for k.
Now since from (10.23) for k − 1, (10.24) and (10.28)

qT
k HkFpi = qT

k pi = pT
k Fpi = 0, 0 � i < k

we have

Hk+1Fpi = HkFpi = pi , 0 � i < k.

This together with (10.25) proves (10.23) for k.

334 10 Quasi-Newton Methods

Since the pk’s are F-orthogonal and since we minimize f successively in these
directions,we see that the method is a conjugate direction method. Furthermore,
if the initial approximation H0 is taken equal to the identity matrix, the method
becomes the conjugate gradient method. In any case the process obtains the overall
minimum point within n steps.

Finally, (10.23) shows that p0, p1, p2, . . . , pk are eigenvectors corresponding
to unity eigenvalue for the matrix Hk+1F. These eigenvectors are linearly indepen-
dent, since they are F-orthogonal, and therefore Hn = F−1.

10.4 The Broyden Family

The updating formulae for the inverse Hessian considered in the previous two
sections are based on satisfying

Hk+1qi = pi , 0 � i � k, (10.29)

which is derived from the relation

qi = Fpi , 0 � i � k, (10.30)

which would hold in the purely quadratic case. It is also possible to update
approximations to the Hessian F itself, rather than its inverse. Thus, denoting the
kth approximation of F by Bk , we would, analogously, seek to satisfy

qi = Bk+1pi , 0 � i � k. (10.31)

Equation (10.31) has exactly the same form as (10.29) except that qi and pi

are interchanged and H is replaced by B. It should be clear that this implies that
any update formula for H derived to satisfy (10.29) can be transformed into a
corresponding update formula for B. Specifically, given any update formula for H,
the complementary formula is found by interchanging the roles of B and H and of q
and p. Likewise, any updating formula for B that satisfies (10.31) can be converted
by the same process to a complementary formula for updating H. It is easily seen
that taking the complement of a complement restores the original formula.

To illustrate complementary formulae, consider the rank one update of Sect. 10.2,
which is

Hk+1 = Hk + (pk −Hkqk)(pk −Hkqk)
T

qT
k (pk −Hkqk)

. (10.32)

10.4 The Broyden Family 335

The corresponding complementary formula is

Bk+1 = Bk + (qk − Bkpk)(qk − Bkpk)
T

pT
k (qk − Bkpk)

. (10.33)

Likewise, the Davidon–Fletcher–Powell (or simply DFP) formula is

HDFP
k+1 = Hk + pkpT

k

pT
k qk

− HkqkqT
k Hk

qT
k Hkqk

, (10.34)

and its complement is

Bk+1 = Bk + qkqT
k

qT
k pk

− BkpkpT
k Bk

pT
k Bkpk

. (10.35)

This last update is known as the Broyden–Fletcher–Goldfarb–Shanno update of Bk ,
and it plays an important role in what follows.

Another way to convert an updating formula for H to one for B or vice versa is
to take the inverse. Clearly, if

Hk+1qi = pi , 0 � i � k, (10.36)

then

qi = H−1
k+1pi , 0 � i � k, (10.37)

which implies that H−1
k+1 satisfies (10.31), the criterion for an update of B. Also,

most importantly, the inverse of a rank two formula is itself a rank two formula.
The new formula can be found explicitly by two applications of the general

inversion identity (often referred to as the Sherman–Morrison formula)

[
A+ abT

]−1 = A−1 − A−1abT A−1

1+ bT A−1a
, (10.38)

where A is an n × n matrix, and a and b are n-vectors, which is valid provided the
inverses exist. (This is easily verified by multiplying through by A+ abT .)

The Broyden–Fletcher–Goldfarb–Shanno update for B produces, by taking the
inverse, a corresponding update for H of the form

HBFGS
k+1 = Hk +

(
1+ qT

k Hkqk

pT
k qk

)
pkpT

k

pT
k qk

− pkqT
k Hk +HkqkpT

k

pT
k qk

. (10.39)

336 10 Quasi-Newton Methods

This is an important update formula that can be used exactly like the DFP formula.
Numerical experiments have repeatedly indicated that its performance is superior to
that of the DFP formula, and for this reason it is now generally preferred.

It can be noted that both the DFP and the BFGS updates have symmetric rank
two corrections that are constructed from the vectors pk and Hkqk . Weighted
combinations of these formulae will therefore also be of this same type (symmetric,
rank two, and constructed from pk and Hkqk). This observation naturally leads
to consideration of a whole collection of updates, known as the Broyden family,
defined by

Hφ = (1− φ)HDFP + φHBFGS, (10.40)

where φ is a parameter that may take any real value. Clearly φ = 0 and φ = 1
yield the DFP and BFGS updates, respectively. The Broyden family also includes
the rank one update (see Exercise 12).

An explicit representation of the Broyden family can be found, after a fair amount
of algebra, to be

Hφ
k+1 = Hk + pkpT

k

pT
k qk

− HkqkqT
k Hk

qT
k Hkqk

+ φvkvT
k = HDFP

k+1 + φvkvT
k , (10.41)

where

vk = (qT
k Hkqk)

1/2

(
pk

pT
k qk

− Hkqk

qT
k Hkqk

)
.

This form will be useful in some later developments.
A Broyden method is defined as a quasi-Newton method in which at each iteration

a member of the Broyden family is used as the updating formula. The parameter φ

is, in general, allowed to vary from one iteration to another, so a particular Broyden
method is defined by a sequence φ1, φ2, . . ., of parameter values. A pure Broyden
method is one that uses a constant φ.

Since both HDFP and HBFGS satisfy the fundamental relation (10.29) for updates,
this relation is also satisfied by all members of the Broyden family. Thus it can be
expected that many properties that were found to hold for the DFP method will
also hold for any Broyden method, and indeed this is so. The following is a direct
extension of the theorem of Sect. 10.3.

Theorem If f is quadratic with positive definite Hessian F, then for a Broyden method

pT
i Fpj = 0, 0 � i < j � k

Hk+1Fpi = pi f or 0 � i � k.

Proof The proof parallels that of Sect. 10.3, since the results depend only on the
basic relation (10.29) and the orthogonality (10.19) because of exact line search.

10.5 Convergence Properties 337

The Broyden family does not necessarily preserve positive definiteness of Hφ

for all values of φ. However, we know that the DFP method does preserve positive
definiteness. Hence from (10.41) it follows that positive definiteness is preserved for
any φ � 0, since the sum of a positive definite matrix and a positive semidefinite
matrix is positive definite. For φ < 0 there is the possibility that Hφ may become
singular, and thus special precautions should be introduced. In practice φ � 0 is
usually imposed to avoid difficulties.

There has been considerable experimentation with Broyden methods to deter-
mine superior strategies for selecting the sequence of parameters φk .

The above theorem shows that the choice is irrelevant in the case of a quadratic
objective and accurate line search. More surprisingly, it has been shown that even for
the case of nonquadratic functions and accurate line searches, the points generated
by all Broyden methods will coincide (provided singularities are avoided and
multiple minima are resolved consistently). This means that differences in methods
are important only with inaccurate line search.

For general nonquadratic functions of modest dimension, Broyden methods seem
to offer a combination of advantages as attractive general procedures. First, they
require only that first-order (that is, gradient) information be available. Second,
the directions generated can always be guaranteed to be directions of descent by
arranging for Hk to be positive definite throughout the process. Third, since for a
quadratic problem the matrices Hk converge to the inverse Hessian in at most n

steps, it might be argued that in the general case Hk will converge to the inverse
Hessian at the solution, and hence convergence will be superlinear. Unfortunately,
while the methods are certainly excellent, their convergence characteristics require
more careful analysis, and this will lead us to an important additional modification.

Partial Quasi-Newton Methods

There is, of course, the option of restarting a Broyden method every m + 1 steps,
where m + 1 < n. This would yield a partial quasi-Newton method that, for small
values of m, would have modest storage requirements, since the approximate inverse
Hessian could be stored implicitly by storing only the vectors pi and qi , i � m +
1. In the quadratic case this method exactly corresponds to the partial conjugate
gradient method and hence it has similar convergence properties.

10.5 Convergence Properties

The various schemes for simultaneously generating and using an approximation to
the inverse Hessian are difficult to analyze definitively. One must therefore, to some
extent, resort to the use of analogy and approximate analyses to determine their
effectiveness. Nevertheless, the machinery we developed earlier provides a basis for
at least a preliminary analysis.

338 10 Quasi-Newton Methods

Global Convergence

In practice, quasi-Newton methods are usually executed in a continuing fashion,
starting with an initial approximation and successively improving it throughout the
iterative process. Under various and somewhat stringent conditions, it can be proved
that this procedure is globally convergent. If, on the other hand, the quasi-Newton
methods are restarted every n or n + 1 steps by resetting the approximate inverse
Hessian to its initial value, then global convergence is guaranteed by the presence
of the first descent step of each cycle (which acts as a spacer step).

Local Convergence

The local convergence properties of quasi-Newton methods in the pure form
discussed so far are not as good as might first be thought. Let us focus on the
local convergence properties of these methods when executed with the restarting
feature. Specifically, consider a Broyden method and for simplicity assume that at
the beginning of each cycle the approximate inverse Hessian is reset to the identity
matrix. Each cycle, if at least n steps in duration, will then contain one complete
cycle of an approximation to the conjugate gradient method. Asymptotically, in
the tail of the generated sequence, this approximation becomes arbitrarily accurate,
and hence we may conclude, as for any method that asymptotically approaches
the conjugate gradient method, that the method converges superlinearly (at least
if viewed at the end of each cycle). Although superlinear convergence is attractive,
the fact that in this case it hinges on repeated cycles of n steps in duration can
seriously detract from its practical significance for problems with large n, since we
might hope to terminate the procedure before completing even a single full cycle of
n steps.

To obtain insight into the defects of the method, let us consider a special situation.
Suppose that f is quadratic and that the eigenvalues of the Hessian, F, of f are close
together but all very large. If, starting with the identity matrix, an approximation to
the inverse Hessian is updated m times, the matrix HmF will have m eigenvalues
equal to unity and the rest will still be large. Thus, the ratio of smallest to largest
eigenvalue of HmF, the condition number, will be worse than for F itself. Therefore,
if the updating were discontinued and Hm were used as the approximation to F−1 in
future iterations according to the procedure of Sect. 10.1, we see that convergence
would be poorer than it would be for ordinary steepest descent. In other words, the
approximations to F−1 generated by the updating formulas, although accurate over
the subspace traveled, do not necessarily improve and, indeed, are likely to worsen
the eigenvalue structure of the iteration process.

In practice a poor eigenvalue structure arising in this manner will play a
dominating role whenever there are factors that tend to weaken its approximation
to the conjugate gradient method. Common factors of this type are round-off errors,

10.5 Convergence Properties 339

inaccurate line searches, and nonquadratic terms in the objective function. Indeed,
it has been frequently observed, empirically, that performance of the DFP method
is highly sensitive to the accuracy of the line search algorithm—to the point where
superior step-wise convergence properties can only be obtained through excessive
time expenditure in the line search phase.

Example To illustrate some of these conclusions we consider the six-dimensional
problem defined by

f (x) = 1

2
xT Qx,

where

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

40 0 0 0 0 0
0 38 0 0 0 0
0 0 36 0 0 0
0 0 0 34 0 0
0 0 0 0 32 0
0 0 0 0 0 30

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

This function was minimized iteratively (the solution is obviously x∗ = 0) starting
at x0 =(10, 10, 10, 10, 10, 10), with f (x0) = 10,500, by using, alternatively, the
method of steepest descent, the DFP method, the DFP method restarted every six
steps, and the self-scaling method described in the next section. For this quadratic
problem the appropriate stepsize to take at any stage can be calculated by a simple
formula. On different computer runs of a given method, different levels of error were
deliberately introduced into the stepsize in order to observe the effect of line search
accuracy. This error took the form of a fixed percentage increase over the optimal
value. The results are presented below:

CASE 1. No error in stepsize α

Function value

Iteration Steepest descent DFP DFP (with restart) Self-scaling

1 96.29630 96.29630 96.29630 96.29630

2 1.560669 6.900839 × 10−1 6.900839 × 10−1 6.900839 × 10−1

3 2.932559 × 10−2 3.988497 × 10−3 3.988497 × 10−3 3.988497 × 10−3

4 5.787315 × 10−4 1.683310 × 10−5 1.683310 × 10−5 1.683310 × 10−5

5 1.164595 × 10−5 3.878639 × 10−8 3.878639 × 10−8 3.878639 × 10−8

6 2.359563 × 10−7

340 10 Quasi-Newton Methods

CASE 2. 0.1% error in stepsize α

Function value

Iteration Steepest descent DFP DFP (with restart) Self-scaling

1 96.30669 96.30669 96.30669 96.30669

2 1.564971 6.994023 × 10−1 6.994023 × 10−1 6.902072 × 10−1

3 2.939804 × 10−2 1.225501 × 10−2 1.225501 × 10−2 3.989507 × 10−3

4 5.810123 × 10−4 7.301088 × 10−3 7.301088 × 10−3 1.684263 × 10−5

5 1.169205 × 10−5 2.636716 × 10−3 2.636716 × 10−3 3.881674 × 10−8

6 2.372385 × 10−7 1.031086 × 10−5 1.031086 × 10−5

7 3.633330 × 10−9 2.399278 × 10−8

CASE 3. 1% error in stepsize α

Function value

Iteration Steepest descent DFP DFP (with restart) Self-scaling

1 97.33665 97.33665 97.33665 97.33665

2 1.586251 1.621908 1.621908 0.7024872

3 2.989875 × 10−2 8.268893 × 10−1 8.268893 × 10−1 4.090350 × 10−3

4 5.908101 × 10−4 4.302943 × 10−1 4.302943 × 10−1 1.779424 × 10−5

5 1.194144 × 10−5 4.449852 × 10−3 4.449852 × 10−3 4.195668 × 10−8

6 2.422985 × 10−7 5.337835 × 10−5 5.337835 × 10−5

7 3.767830 × 10−5 4.493397 × 10−7

8 3.768097 × 10−9

CASE 4. 10% error in stepsize α

Function value

Iteration Steepest descent DFP DFP (with restart) Self-scaling

1 200.333 200.333 200.333 200.333

2 2.732789 93.65457 93.65457 2.811061

3 3.836899 × 10−2 56.92999 56.92999 3.562769 × 10−2

4 6.376461 × 10−4 1.620688 1.620688 4.200600 × 10−4

5 1.219515 × 10−5 5.251115 × 10−1 5.251115 × 10−1 4.726918 × 10−6

6 2.457944 × 10−7 3.323745 × 10−1 3.323745 × 10−1

7 6.150890 × 10−3 8.102700 × 10−3

8 3.025393 × 10−3 2.973021 × 10−3

9 3.025476 × 10−5 1.950152 × 10−3

10 3.025476 × 10−7 2.769299 × 10−5

11 1.760320 × 10−5

12 1.123844 × 10−6

We note first that the error introduced is reported as a percentage of the stepsize
itself. In terms of the change in function value, the quantity that is most often
monitored to determine when to terminate a line search, the fractional error is the
square of that in the stepsize. Thus, a one percent error in stepsize is equivalent to a
0.01% error in the change in function value.

10.6 Scaling 341

Next we note that the method of steepest descent is not radically affected by an
inaccurate line search while the DFP methods are. Thus for this example while DFP
is superior to steepest descent in the case of perfect accuracy, it becomes inferior at
an error of only 0.1% in stepsize.

10.6 Scaling

There is a general viewpoint about what makes up a desirable descent method that
underlies much of our earlier discussions and which we now summarize briefly in
order to motivate the presentation of scaling. A method that converges to the exact
solution after n steps when applied to a quadratic function on En has obvious appeal
especially if, as is usually the case, it can be inferred that for nonquadratic problems
repeated cycles of length n of the method will yield superlinear convergence. For
problems having large n, however, a more sophisticated criterion of performance
needs to be established, since for such problems one usually hopes to be able to
terminate the descent process before completing even a single full cycle of length
n. Thus, with these sorts of problems in mind, the finite-step convergence property
serves at best only as a sign post indicating that the algorithm might make rapid
progress in its early stages. It is essential to insure that in fact it will make rapid
progress at every stage. Furthermore, the rapid convergence at each step must not
be tied to an assumption on conjugate directions, a property easily destroyed by
inaccurate line search and nonquadratic objective functions. With this viewpoint it
is natural to look for quasi-Newton methods that simultaneously possess favorable
eigenvalue structure at each step (in the sense of Sect. 10.1) and reduce to the
conjugate gradient method if the objective function happens to be quadratic. Such
methods are developed in this section.

Improvement of Eigenvalue Ratio

Referring to the example presented in the last section where the Davidon–Fletcher–
Powell method performed poorly, we can trace the difficulty to the simple observa-
tion that the eigenvalues of H0Q are all much larger than unity. The DFP algorithm,
or any Broyden method, essentially moves these eigenvalues, one at a time, to unity
thereby producing an unfavorable eigenvalue ratio in each HkQ for 1 � k < n. This
phenomenon can be attributed to the fact that the methods are sensitive to simple
scale factors. In particular if H0 were multiplied by a constant, the whole process
would be different. In the example of the last section, if H0 were scaled by, for
instance, multiplying it by 1/35, the eigenvalues of H0Q would be spread above and
below unity, and in that case one might suspect that the poor performance would not
show up.

342 10 Quasi-Newton Methods

Motivated by the above considerations, we shall establish conditions under which
the eigenvalue ratio of Hk+1F is at least as favorable as that of HkF in a Broyden
method. These conditions will then be used as a basis for introducing appropriate
scale factors.

We use (but do not prove) the following matrix theoretic result due to Loewner.

Interlocking Eigenvalues Lemma Let the symmetric n × n matrix A have eigen-
values λ1 � λ2 � . . . � λn. Let a be any vector in En and denote the eigenvalues of
the matrix A+aaT by μ1 � μ2 . . . � μn. Then λ1 � μ1 � λ2 �μ2 . . . � λn � μn.

For convenience we introduce the following definitions:

Rk = F1/2HkF1/2

rk = F1/2pk.

Then using qk = F1/2rk , it can be readily verified that (10.41) is equivalent to

Rφ
k+1 = Rk − RkrkrT

k Rk

rT
k Rkrk

+ rkrT
k

rT
k rk

+ φzkzT
k , (10.42)

where

zk = F1/2Vk =
√

rT
k Rkrk

(
rk

rT
k rk

− Rkrk

rT
k Rkrk

)
.

Since Rk is similar to HkF (because HkF = F−1/2RkF1/2), both have the same
eigenvalues. It is most convenient, however, in view of (10.42) to study Rk ,
obtaining conclusions about HkF indirectly.

Before proving the general theorem we shall consider the case φ = 0 corre-
sponding to the DFP formula. Suppose the eigenvalues of Rk are λ1, λ2, . . . , λn

with 0 < λ1 � λ2 � . . . � λn. Suppose also that 1 ∈ [λ1, λn]. We will show that
the eigenvalues of Rk+1 are all contained in the interval [λ1, λn], which of course
implies that Rk+1 is no worse than Rk in terms of its condition number. Let us first
consider the matrix

P = Rk − RkrkrT
k Rk

rT
k Rkrk

.

We see that Prk = 0 so one eigenvalue of P is zero. If we denote the eigenvalues of
P by μ1 � μ2 � . . . � μn, we have from the above observation and the lemma on
interlocking eigenvalues that

0 = μ1 � λ1 � μ2 � . . . � μn � λn.

10.6 Scaling 343

Next we consider

Rk+1 = Rk − RkrkrT
k Rk

rT
k Rkrk

+ rkrT
k

rT
k rk

= P+ rkrT
k

rT
k rk

. (10.43)

Since rk is an eigenvector of P and since, by symmetry, all other eigenvectors of
P are therefore orthogonal to rk , it follows that the only eigenvalue different in
Rk+1 from in P is the one corresponding to rk—it now being unity. Thus Rk+1
has eigenvalues μ2, μ3, . . . , μn and unity. These are all contained in the interval
[λ1, λn]. Thus updating does not worsen the eigenvalue ratio. It should be noted
that this result in no way depends on αk being selected to minimize f .

We now extend the above to the Broyden class with 0 � φ � 1.

Theorem Let the n eigenvalues of HkF be λ1, λ2, . . . , λn with 0 < λ1 � λ2 � . . . � λn.
Suppose that 1 ∈ [λ1, λn]. Then for any φ, 0 � φ � 1, the eigenvalues of Hφ

k+1F, where

Hφ
k+1 is defined by (10.41), are all contained in [λ1, λn].

Proof The result shown above corresponds to φ = 0. Let us now consider φ = 1,
corresponding to the BFGS formula. By our original definition of the BFGS update,
H−1 is defined by the formula that is complementary to the DFP formula. Thus

H−1
k+1 = H−1

k + qkqT
k

qT
k pk

− H−1
k+1pkpT

k H−1
k

pT
k H−1

k pk

.

This is equivalent to

R−1
k+1 = R−1

k − R−1
k rkrT

k R−1
k

rT
k R−1

k rk

+ rkrT
k

rT
k rk

, (10.44)

which is identical to (10.43) except that Rk is replaced by R−1
k .

The eigenvalues of R−1
k are 1/λn � 1/λn−1 � . . . � 1/λ1. Clearly, 1 ∈

[1/λn, 1/λ1]. Thus by the preliminary result, if the eigenvalues of R−1
k+1 are denoted

1/μn < 1/μn−1 < . . . < 1/μ1, it follows that they are contained in the interval
[1/λn, 1/λ1]. Thus 1/λn < 1/μn and 1/λ1 > 1/μ1. When inverted this yields
μ1 > λ1 and μn < λn, which shows that the eigenvalues of Rk+1 are contained in
[λ1, λn]. This establishes the result for φ = 1.

For general φ the matrix Rφ
k+1 defined by (10.42) has eigenvalues that are all

monotonically increasing with φ (as can be seen from the interlocking eigenvalues
lemma). However, from above it is known that these eigenvalues are contained in
[λ1, λn] for φ = 0 and φ = 1. Hence, they must be contained in [λ1, λn] for all
φ, 0 � φ � 1.

344 10 Quasi-Newton Methods

Scale Factors

In view of the result derived above, it is clearly advantageous to scale the matrix Hk

so that the eigenvalues of HkF are spread both below and above unity. Of course
in the ideal case of a quadratic problem with perfect line search this is strictly only
necessary for H0, since unity is an eigenvalue of HkF for k > 0. But because of
the inescapable deviations from the ideal, it is useful to consider the possibility of
scaling every Hk.

A scale factor can be incorporated directly into the updating formula. We first
multiply Hk by the scale factor γk and then apply the usual updating formula. This
is equivalent to replacing Hk by γkHk in (10.42) and leads to

Hk+1 =
(

Hk − HkqkqT
k Hk

qT
k Hkqk

+ φkvkvT
k

)
γk + pkpT

k

pT
k qk

. (10.45)

This defines a two-parameter family of updates that reduces to the Broyden family
for γk = 1.

Using γ0, γ1, . . . as arbitrary positive scale factors, we consider the algorithm:
Start with any symmetric positive definite matrix H0 and any point x0, then starting
with k = 0,

Step 1. Set dk = −Hkgk.
Step 2. Minimize f (xk + αdk) with respect to α � 0 to obtain xk+1, Pk = αkdk ,

and gk+1.
Step 3. Set qk = gk+1 − gk and

Hk+1 =
(

Hk − HkqkqT
k Hk

qT
k Hkqk

+ φkvkvT
k

)
γk + pkpT

k

pT
k qk

vk = (qT
k Hqk)

1/2

(
pk

pT
k qk

− Hkqk

qT
k Hkqk

)
. (10.46)

The use of scale factors does destroy the property Hn = F−1 in the quadratic
case, but it does not destroy the conjugate direction property. The following
properties of this method can be proved as simple extensions of the results given
in Sect. 10.3:

1. If Hk is positive definite and pT
k qk > 0, (10.46) yields an Hk+1 that is positive

definite.
2. If f is quadratic with Hessian F, then the vectors P0, p1, . . . , pn−1 are mutually

F-orthogonal, and, for each k, the vectors P0, p1, . . . , pk are eigenvectors of
Hk+1F.

10.6 Scaling 345

We can conclude that scale factors do not destroy the underlying conjugate
behavior of the algorithm. Hence we can use scaling to ensure good single step
convergence properties.

A Self-Scaling Quasi-Newton Algorithm

The question that arises next is how to select appropriate scale factors. If λ1 �
λ2 � . . . � λn are the eigenvalues of HkF, we want to multiply Hk by γk where
λ1 � 1/γk � λn. This will ensure that the new eigenvalues contain unity in the
interval they span.

Note that in terms of our earlier notation

qT
k Hkqk

pT
k qk

= rT
k Rkrk

rT
k rk

.

Recalling that Rk has the same eigenvalues as HkF and noting that for any rk

λ1 �
rT
k Rkrk

rT
k rk

� λn,

we see that

γk = pT
k qk

qT
k Hkqk

(10.47)

serves as a suitable scale factor.
We now state a complete self-scaling, restarting, quasi-Newton method based on

the ideas above. For simplicity we take φ = 0 and thus obtain a modification of the
DFP method. Start at any point x0, k = 0.

Step 1. Set Hk = I.
Step 2. Set dk = −Hkgk.
Step 3. Minimize f (xk + αdk) with respect to α � 0 to obtain αk, xk+1, pk =

αkdk, gk+1 and qk = gk+1 − gk . (Select αk accurately enough to ensure
pT

k qk > 0.)
Step 4. If k is not an integer multiple of n, set

Hk+1 =
(

Hk − HkqkqT
k Hk

qT
k Hkqk

)
pT

k qk

qT
k Hkqk

+ pkpT
k

pT
k qk

. (10.48)

Add one to k and return to Step 2. If k is an integer multiple of n, return to Step 1.

346 10 Quasi-Newton Methods

This algorithm was run, with various amounts of inaccuracy introduced in the line
search, on the quadratic problem presented in Sect. 10.4. The results are presented
in that section.

10.7 Memoryless Quasi-Newton Methods

The preceding development of quasi-Newton methods can be used as a basis for
reconsideration of conjugate gradient methods. The result is an attractive class of
new procedures.

Consider a simplification of the BFGS quasi-Newton method where Hk+1 is
defined by a BFGS update applied to H = I, rather than to Hk . Thus Hk+1 is
determined without reference to the previous Hk , and hence the update procedure
is memoryless. This update procedure leads to the following algorithm: Start at any
point x0, k = 0.

Step 1.

Set Hk = I. (10.49)

Step 2.

Set dk = −Hkgk. (10.50)

Step 3. Minimize f (xk + αdk) with respect to α � 0 to obtain αk, xk+1, pk =
αkdk, gk+1, and qk = gk+1 − gk . (Select αk accurately enough to ensure
pT

k qk > 0.)
Step 4. If k is not an integer multiple of n, set

Hk+1 = I− qkpT
k + pkqT

k

pT
k qk

+
(

1+ qT
k qk

pT
k qk

)
pkpT

k

pT
k qk

. (10.51)

Add 1 to k and return to Step 2. If k is an integer multiple of n, return to Step 1.
Combining (10.50) and (10.51), it is easily seen that

dk+1 = −gk+1 + qkpT
k gk+1 + pkqT

k gk+1

pT
k qk

−
(

1+ qT
k qk

pT
k qk

)
pkpT

k gk−1

pT
k qk

. (10.52)

If the line search is exact, then pT
k gk+1 = 0 and hence pT

k qk = −pT
k gk . In this case

(10.52) is equivalent to

dk+1 = −gk+1 + qT
k gk+1

pT
k qk

pk = −gk+1 + βkdk, (10.53)

10.7 Memoryless Quasi-Newton Methods 347

where

βk =
qkqT

k+1

gT
k qk

.

This coincides exactly with the Polak–Ribiere form of the conjugate gradient
method. Thus use of the BFGS update in this way yields an algorithm that is of
the modified Newton type with positive definite coefficient matrix and which is
equivalent to a standard implementation of the conjugate gradient method when the
line search is exact.

The algorithm can be used without exact line search in a form that is similar
to that of the conjugate gradient method by using (10.52). This requires storage of
only the same vectors that are required of the conjugate gradient method. In light
of the theory of quasi-Newton methods, however, the new form can be expected
to be superior when inexact line searches are employed, and indeed experiments
confirm this.

The above idea can be easily extended to produce a memoryless quasi-Newton
method corresponding to any member of the Broyden family. The update formula
(10.51) would simply use the general Broyden update (10.41) with Hk set equal to
I. In the case of exact line search (with pT

k gk+1 = 0), the resulting formula for dk+1
reduces to

dk+1 = −gk+1 + (1− φ)
qT

k gk+1

qT
k qk

qk + φ
qT

k gk+1

pT
k qk

pk. (10.54)

We note that (10.54) is equivalent to the conjugate gradient direction (10.53) only
for φ = 1, corresponding to the BFGS update. For this reason the choice φ = 1 is
generally preferred for this type of method.

Scaling and Preconditioning

Since the conjugate gradient method implemented as a memoryless quasi-Newton
method is a modified Newton method, the fundamental convergence theory based
on condition number emphasized throughout this part of the book is applicable, as
are the procedures for improving convergence. It is clear that the function scaling
procedures discussed in the previous section can be incorporated.

According to the general theory of modified Newton methods, it is the eigen-
values of HkF(xk) that influence the convergence properties of these algorithms.
From the analysis of the last section, the memoryless BFGS update procedure will,
in the pure quadratic case, yield a matrix HkF that has a more favorable eigenvalue
ratio than F itself only if the function f is scaled so that unity is contained in the
interval spanned by the eigenvalues of F. Experimental evidence verifies that at least
an initial scaling of the function in this way can lead to significant improvement.

348 10 Quasi-Newton Methods

Scaling can be introduced at every step as well, and complete self-scaling can be
effective in some situations.

It is possible to extend the scaling procedure to a more general preconditioning
procedure. In this procedure the matrix governing convergence is changed from
F(xk) to HF(xk) for some H. If HF(xk) has its eigenvalues all close to unity,
then the memoryless quasi-Newton method can be expected to perform exceedingly
well, since it possesses simultaneously the advantages of being a conjugate gradient
method and being a well-conditioned modified Newton method.

Preconditioning can be conveniently expressed in the basic algorithm by simply
replacing Hk in the BFGS update formula by H instead of I and replacing I by H in
Step 1. Thus (10.51) becomes

Hk+1 = H− HqkpT
k + pkqT

k H

qT
k qk

+
(

1+ qT
k Hqk

pT
k qk

)
pkpT

k

pT
k pk

, (10.55)

and the explicit conjugate gradient version (10.52) is also modified accordingly.
Preconditioning can also be used in conjunction with an (m + 1)-cycle partial

conjugate gradient version of the memoryless quasi-Newton method. This is highly
effective if a simple H can be found (as it sometimes can in problems with structure)
so that the eigenvalues of HF(xk) are such that either all but m are equal to unity
or they are in m bunches. For large-scale problems, methods of this type seem to be
quite promising.

10.8 ∗Combination of Steepest Descent
and Newton’s Method

In this section we digress from the study of quasi-Newton methods, and again
expand our collection of basic principles. We present a combination of steepest
descent and Newton’s method which includes them both as specialcases. The
resulting combined method can be used to develop algorithms for problems having
special structure, as illustrated in Chap. 13. This method and its analysis comprises
a fundamental element of the modern theory of algorithms.

The method itself is quite simple. Suppose there is a subspace N of En on
which the inverse Hessian of the objective function f is known (we shall make
this statement more precise later). Then, in the quadratic case, the minimum of f

over any linear variety parallel to N (that is, any translation of N) can be found
in a single step. To minimize f over the whole space starting at any point xk , we
could minimize f over the linear variety parallel to N and containing xk to obtain
zk; and then take a steepest descent step from there. This procedure is illustrated in
Fig. 10.1. Since zk is the minimum point of f over a linear variety parallel to N ,
the gradient at zk will be orthogonal to N , and hence the gradient step is orthogonal
to N . If f is not quadratic we can, knowing the Hessian of f on N , approximate

10.8 ∗Combination of Steepest Descent and Newton’s Method 349

Fig. 10.1 Combined method

the minimum point of f over a linear variety parallel to N by one step of Newton’s
method. To implement this scheme, that we described in a geometric sense, it is
necessary to agree on a method for defining the subspace N and to determine what
information about the inverse Hessian is required so as to implement a Newton step
over N . We now turn to these questions.

Often, the most convenient way to describe a subspace, and the one we follow
in this development, is in terms of a set of vectors that generate it. Thus, if B is
an n × m matrix consisting of m column vectors that generate N , we may write N

as the set of all vectors of the form Bu where u ∈ Em. For simplicity we always
assume that the columns of B are linearly independent.

To see what information about the inverse Hessian is required, imagine that we
are at a point xk and wish to find the approximate minimum point zk of f with
respect to movement in N . Thus, we seek uk so that

zk = xk + Buk

approximately minimizes f . By “approximately minimizes” we mean that zk should
be the Newton approximation to the minimum over this subspace. We write

f (zk) ∼= f (xk)+∇f (xk)Buk + 1

2
uT

k BT F(xk)Buk

and solve for uk to obtain the Newton approximation. We find

uk = −(BT F(xk)B)−1BT∇f (xk)
T

zk = xk − B(BT F(xk)B)−1BT∇f (xk)
T .

We see by analogy with the formula for Newton’s method that the expression
B(BT F(xk)B)−1BT can be interpreted as the inverse of F(xk) restricted to the
subspace N .

350 10 Quasi-Newton Methods

Example Suppose

B =
[

I
0

]
,

where I is an m × m identity matrix. This corresponds to the case where N is the
subspace generated by the first m unit basis elements of En. Let us partition F =
∇2f (xk) as

F =
[

F11 F12

F21 F22

]
,

where F11 is m×m. Then, in this case

(BT FB)−1 = F−1
11 ,

and

B(BT FB)−1BT =
[

F−1
11 0
0 0

]
,

which shows explicitly that it is the inverse of F on N that is required. The general
case can be regarded as being obtained through partitioning in some skew coordinate
system.

Now that the Newton approximation over N has been derived, it is possible to
formalize the details of the algorithm suggested by Fig. 10.1. At a given point xk ,
the point xk+1 is determined through

(a) Set dk = −B(BT F(xk)B)−1BT∇f(xk)
T .

(b) zk = xk + βkdk, where βk minimizes f(xk + βdk). (10.56)

(c) Set pk = −∇f(zk)
T .

(d) xk+1 = zk + αkpk, where αk minimizes f(zk + αpk).

The scalar search parameter βk is introduced in the Newton part of the algorithm
simply to assure that the descent conditions required for global convergence are
met. Normally βk will be approximately equal to unity. (See Sect. 8.6.)

The combination of steepest descent and Newton’s method can be applied
usefully in a number of important situations. Suppose, for example, we are faced
with a problem of the form

minimize f (x, y),

10.9 Summary 351

where x ∈ En, y ∈ Em, and where the second partial derivatives with respect to
x are easily computable but those with respect to y are not. We may then employ
Newton steps with respect to x and steepest descent with respect to y.

Another instance where this idea can be greatly effective is when there are a few
vital variables in a problem which, being assigned high costs, tend to dominate the
value of the objective function; in other words, the partial second derivatives with
respect to these variables are large. The poor conditioning induced by these variables
can to some extent be reduced by proper scaling of variables, but more effectively,
by carrying out Newton’s method with respect to them and steepest descent with
respect to the others.

10.9 Summary

The basic motivation behind quasi-Newton methods is to try to obtain, at least on the
average, the rapid convergence associated with Newton’s method without explicitly
evaluating the Hessian at every step. This can be accomplished by constructing
approximations to the inverse Hessian based on information gathered during the
descent process, and results in methods which viewed in blocks of n steps (where n

is the dimension of the problem) generally possess superlinear convergence.
Good, or even superlinear, convergence measured in terms of large blocks,

however, is not always indicative of rapid convergence measured in terms of
individual steps. It is important, therefore, to design quasi-Newton methods so
that their single step convergence is rapid and relatively insensitive to line search
inaccuracies. We discussed two general principles for examining these aspects of
descent algorithms. The first of these is the modified Newton method in which
the direction of descent is taken as the result of multiplication of the negative
gradient by a positive definite matrix S. The single step convergence ratio of this
method is determined by the usual steepest descent formula, but with the condition
number of SF rather than just F used. This result was used to analyze some popular
quasi-Newton methods, to develop the self-scaling method having good single step
convergence properties, and to reexamine conjugate gradient methods.

The second principle method is the combined method in which Newton’s method
is executed over a subspace where the Hessian is known and steepest descent is
executed elsewhere. This method converges at least as fast as steepest descent, and
by incorporating the information gathered as the method progresses, the Newton
portion can be executed over larger and larger subspaces.

At this point, it is perhaps valuable to summarize some of the main themes
that have been developed throughout the four chapters comprising Part II. These
chapters contain several important and popular algorithms that illustrate the range
of possibilities available for minimizing a general nonlinear function. From a broad
perspective, however, these individual algorithms can be considered simply as
specific patterns on the analytical fabric that is woven through the chapters—the
fabric that will support new algorithms and future developments.

352 10 Quasi-Newton Methods

One unifying element, that has reproved its value several times, is the Global
Convergence Theorem. This result helped mold the final form of every algorithm
presented in Part II and has effectively resolved the major questions concerning
global convergence.

Another unifying element is the speed of convergence of an algorithm, which we
have defined in terms of the asymptotic properties of the sequences an algorithm
generates. Initially, it might have been argued that such measures, based on
properties of the tail of the sequence, are perhaps not truly indicative of the actual
time required to solve a problem—after all, a sequence generated in practice is a
truncated version of the potentially infinite sequence, and asymptotic properties
may not be representative of the finite version—a more complex measure of the
speed of convergence may be required. It is fair to demand that the validity
of the asymptotic measures we have proposed be judged in terms of how well
they predict the performance of algorithms applied to specific examples. On this
basis, as illustrated by the numerical examples presented in these chapters, and
on others, the asymptotic rates are extremely reliable predictors of performance—
provided that one carefully tempers one’s analysis with common sense (by, for
example, not concluding that superlinear convergence is necessarily superior to
linear convergence when the superlinear convergence is based on repeated cycles
of length n). A major conclusion, therefore, of the previous chapters is the essential
validity of the asymptotic approach to convergence analysis. This conclusion is a
major strand in the analytical fabric of nonlinear programming.

10.10 Exercises

1. Prove (10.4) directly for the modified Newton method by showing that each
step of the modified Newton method is simply the ordinary method of steepest
descent applied to a scaled version of the original problem.

2. Find the rate of convergence of the version of Newton’s method defined by
(10.50), (10.51) of Chap. 8. Show that convergence is only linear if δ is larger
than the smallest eigenvalue of F(x∗).

3. Consider the problem of minimizing a quadratic function

f (x) = 1

2
xT Qx− xT b,

where Q is symmetric and sparse (that is, there are relatively few nonzero
entries in Q). The matrix Q has the form

Q = I + V,

where I is the identity and V is a matrix with eigenvalues bounded by e < 1 in
magnitude.

10.10 Exercises 353

(a) With the given information, what is the best bound you can give for the rate
of convergence of steepest descent applied to this problem?

(b) In general it is difficult to invert Q but the inverse can be approximated by
I–V, which is easy to calculate. (The approximation is very good for small
e.) We are thus led to consider the iterative process

xk−l = xk − αk[I − V]gk,

where gk = Qxk−b and αk is chosen to minimize f in the usual way. With
the information given, what is the best bound on the rate of convergence of
this method?

(c) Show that for e < (
√

5 − 1)/2 the method in part (b) is always superior to
steepest descent.

4. This problem shows that the modified Newton’s method is globally convergent
under very weak assumptions.

Let a > 0 and b � a be given constants. Consider the collection P of all
n×n symmetric positive definite matrices P having all eigenvalues greater than
or equal to a and all elements bounded in absolute value by b. Define the point-
to-set mapping B : En → En+n2

by B(x) = {(x, P) : P ∈ P }. Show that B is
a closed mapping.

Now given an objective function f ∈ C1, consider the iterative algorithm

xk+1 = xk − αkPkgk,

where gk = g(xk) is the gradient of f at xk, Pk is any matrix from P and αk

is chosen to minimize f (xk+1). This algorithm can be represented by A which
can be decomposed as A = SCB where B is defined above, C is defined by
C(x, P) = (x, −Pg(x)), and S is the standard line search mapping. Show that
if restricted to a compact set in En, the mapping A is closed.

Assuming that a sequence {xk} generated by this algorithm is bounded, show
that the limit x∗ of any convergent subsequence satisfies g(x∗) = 0.

5. The following algorithm has been proposed for minimizing unconstrained
functions f (x), x ∈ En, without using gradients: Starting with some arbitrary
point x0, obtain a direction of search dk such that for each component of dk

f (xk = (dk)iei) = min
di

f (xk + diei),

where ej denotes the ith column of the identity matrix. In other words, the ith
component of dk is determined through a line search minimizing f (x) along
the ith component.

354 10 Quasi-Newton Methods

The next point xk+1 is then determined in the usual way through a line search
along dk ; that is,

xk+1 = xk + αkdk,

where dk minimizes f (xk+1).

(a) Obtain an explicit representation for the algorithm for the quadratic case
where

f (x) = 1

2
(x− x∗)T Q(x− x∗)+ f (x∗).

(b) What condition on f (x) or its derivatives will guarantee descent of this
algorithm for general f (x)?

(c) Derive the convergence rate of this algorithm (assuming a quadratic
objective). Express your answer in terms of the condition number of some
matrix.

6. Suppose that the rank one correction method of Sect. 10.2 is applied to the
quadratic problem (10.2) and suppose that the matrix R0 = F1/2H0F1/2 has
m < n eigenvalues less than unity and n − m eigenvalues greater than unity.
Show that the condition qT

k (pk − Hkqk) > 0 will be satisfied at most m times
during the course of the method and hence, if updating is performed only when
this condition holds, the sequence {Hk}will not converge to F−1. Infer from this
that, in using the rank one correction method, H0 should be taken very small;
but that, despite such a precaution, on nonquadratic problems the method is
subject to difficulty.

7. Show that if H0 = I the Davidon–Fletcher–Powell method is the conjugate
gradient method. What similar statement can be made when H0 is an arbitrary
symmetric positive definite matrix?

8. In the text it is shown that for the Davidon–Fletcher–Powell method Hk+1
is positive definite if Hk is. The proof assumed that αk is chosen to exactly
minimize f (xk + αdk). Show that any αk > 0 which leads to pT

k qk > 0 will
guarantee the positive definiteness of Hk+1. Show that for a quadratic problem
any αk �= 0 leads to a positive definite Hk+1.

9. Suppose along the line xk+αdk, α > 0, the function f (xk+αdk) is unimodal
and differentiable. Let αk be the minimizing value of α. Show that if any αk >

αk is selected to define xk+1 = xk+αkdk , then pT
k qk > 0. (Refer to Sect. 10.3.)

10. Let {Hk}, k = 0, 1, 2 . . . be the sequence of matrices generated by the
Davidon–Fletcher–Powell method applied, without restarting, to a function
f having continuous second partial derivatives. Assuming that there is a >

0, A > 0 such that for all k we have Hk − aI and AI − Hk positive definite
and the corresponding sequence of xk’s is bounded, show that the method is
globally convergent.

11. Verify Eq. (10.41).

10.10 Exercises 355

12. (a) Show that starting with the rank one update formula for H, forming the
complementary formula, and then taking the inverse restores the original
formula.

(b) What value of φ in the Broyden class corresponds to the rank one formula?
13. Explain how the partial Davidon method can be implemented for m < n/2,

with less storage than required by the full method.
14. Prove statements (10.1) and (10.2) below Eq. (10.46) in Sect. 10.6.
15. Consider using

γ k = pT
k H−1

k pk

pT
k qk

instead of (10.47).

(a) Show that this also serves as a suitable scale factor for a self-scaling quasi-
Newton method.

(b) Extend part (a) to

γk = (1− φ)
pT

k qk

qT
k Hkqk

+ φ
pT

k H−1
k pk

pT
k qk

for 0 � φ � 1.

16. Prove global convergence of the combination of steepest descent and Newton’s
method.

17. Formulate a rate of convergence theorem for the application of the combination
of steepest and Newton’s method to nonquadratic problems.

18. Prove that if Q is positive definite

(pT p)

pT Qp
� pT Q−1p

pT p

for any vector p.
19. It is possible to combine Newton’s method and the partial conjugate gradient

method. Given a subspace N ⊂ En, xk+1 is generated from xk by first finding
zk by taking a Newton step in the linear variety through xk parallel to N , and
then taking m conjugate gradient steps from zk. What is a bound on the rate of
convergence of this method?

20. In this exercise we explore how the combined method of Sect. 10.7 can be
updated as more information becomes available. Begin with N0 = {0}. If Nk is
represented by the corresponding matrix Bk , define Nk+1 by the corresponding
Bk+1 = [Bk, pk], where pk = xk+1 − zk .

356 10 Quasi-Newton Methods

(a) If Dk = Bk(BT
k FBk)

−1BT
k is known, show that

Dk+1 = Dk = (pk − Dkqk)(pk − Dkqk)
T

(pk − Dkqk)T qk

,

where qk = gk+1 − gk. (This is the rank one correction of Sect. 10.2.)
(b) Develop an algorithm that uses (a) in conjunction with the combined

method of Sect. 10.8 and discuss its convergence properties.

References

10.1 An early analysis of this method was given by Crockett and Chernoff
[C9].

10.2–10.3 The variable metric method was originally developed by Davidon [D12],
and its relation to the conjugate gradient method was discovered by
Fletcher and Powell [F11]. The rank one method was later developed
by Davidon [D13] and Broyden [B24]. For an early general discussion
of these methods, see Murtagh and Sargent [M10], and for an excellent
recent review, see Dennis and Moré [D15].

10.4 The Broyden family was introduced in Broyden [B24]. The BFGS
method was suggested independently by Broyden [B25], Fletcher [F6],
Goldfarb [G9], and Shanno [S3]. The beautiful concept of comple-
mentarity, which leads easily to the BFGS update and definition of
the Broyden class as presented in the text, is due to Fletcher. Another
larger class was defined by Huang [H13]. A variational approach to
deriving variable metric methods was introduced by Greenstadt [G15].
Also see Dennis and Schnabel [D16]. Originally there was considerable
effort devoted to searching for a best sequence of φk’s in a Broyden
method, but Dixon [D17] showed that all methods are identical in the
case of exact linear search. There are a number of numerical analysis
and implementation issues that arise in connection with quasi-Newton
updating methods. From this viewpoint Gill and Murray [G6] have
suggested working directly with Bk , an approximation to the Hessian
itself, and updating a triangular factorization at each step.

10.5 Under various assumptions on the criterion function, it has been shown
that quasi-Newton methods converge globally and superlinearly, pro-
vided that accurate exact line search is used. See Powell [P8], Gabay
[G1] Dennis and Moré [D15] and Tapia [T3]. With inexact line search,
restarting is generally required to establish global convergence.

10.6 The lemma on interlocking eigenvalues is due to Loewner [L6]. An
analysis of the one-by-one shift of the eigenvalues to unity is con-
tained in Fletcher [F6]. The scaling concept, including the self-scaling

References 357

algorithm, is due to Oren and Luenberger [O5]. Also see Oren [O4].
The two-parameter class of updates defined by the scaling procedure
can be shown to be equivalent to the symmetric Huang class. Oren
and Spedicato [O6] developed a procedure for selecting the scaling
parameter so as to optimize the condition number of the update.

10.7 The idea of expressing conjugate gradient methods as update formulae
is due to Perry [P3]. The development of the form presented here is
due to Shanno [S4]. Preconditioning for conjugate gradient methods was
suggested by Bertsekas [B9].

10.8 The combined method appears in Luenberger [L10].

Part III
Constrained Optimization

Chapter 11
Constrained Optimization Conditions

We turn now, in this final part of the book, to the study of optimization problems
having constraints. We begin by studying in this chapter the necessary and sufficient
conditions satisfied at solution points. These conditions, aside from their intrinsic
value in characterizing solutions, define Lagrange multipliers and a certain Hessian
matrix which, taken together, form the foundation for both the development and
analysis of algorithms presented in subsequent chapters.

The general method used in this chapter to derive necessary and sufficient
conditions is a straightforward extension of that used in Chap. 7 for unconstrained
problems. In the case of equality constraints, the feasible region is a curved surface
embedded in En. Differential conditions satisfied at an optimal point are derived by
considering the value of the objective function along curves on this surface passing
through the optimal point. Thus the arguments run almost identically to those for the
unconstrained case; families of curves on the constraint surface replacing the earlier
artifice of considering feasible directions. There is also a theory of zero-order or
duality conditions that is presented in the final section of the chapter.

11.1 Constraints and Tangent Plane

We deal with general nonlinear programming problems of the minimization form

minimize f (x)

subject to h1(x) = 0, g1(x) � 0
h2(x) = 0, g2(x) � 0
...

...

hm(x) = 0, gp(x) � 0
x ∈ � ⊂ En,

(11.1)

© Springer Nature Switzerland AG 2021
D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
https://doi.org/10.1007/978-3-030-85450-8_11

361

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85450-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-85450-8_11

362 11 Constrained Optimization Conditions

where m � n and the functions f, hi, i = 1, 2, . . . ,m and gj , j = 1, 2, . . . , p

are continuous, and usually assumed to possess continuous second partial deriva-
tives. For notational simplicity, we introduce the vector-valued functions h =
(h1, h2, . . . , hm) and g = (g1, g2, . . . , gP) and rewrite (11.1) as

minimize f (x)

subject to h(x) = 0, g(x) � 0
x ∈ �.

(11.2)

The constraints h(x) = 0, g(x) � 0 are referred to as functional constraints,
while the constraint x ∈ � is a set constraint. As before we continue to de-
emphasize the set constraint, assuming in most cases that either � is the whole
space En or that the solution to (11.2) is in the interior of �. A point x ∈ � that
satisfies all the functional constraints is said to be feasible.

A fundamental concept that provides a great deal of insight as well as simplifying
the required theoretical development is that of an active constraint. An inequality
constraint gi(x) � 0 is said to be active at a feasible point x if gi(x) = 0 and inactive
at x if gi(x) < 0. By convention we refer to any equality constraint hi(x) = 0 as
active at any feasible point. The constraints active at a feasible point x restrict the
domain of feasibility in neighborhoods of x, while the other, inactive constraints,
have no influence in neighborhoods of x. Therefore, in studying the properties of
a local minimum point, it is clear that attention can be restricted to the active
constraints. This is illustrated in Fig. 11.1 where local properties satisfied by the
solution x∗ obviously do not depend on the inactive constraints g2 and g3.

It is clear that, if it were known a priori which constraints were active at the
solution to (11.1), the solution would be a local minimum point of the problem
defined by ignoring the inactive constraints and treating all active constraints as
equality constraints. Hence, with respect to local (or relative) solutions, the problem
could be regarded as having equality constraints only. This observation suggests

Fig. 11.1 Example of
inactive constraints

11.1 Constraints and Tangent Plane 363

that the majority of insight and theory applicable to (11.1) can be derived by
consideration of equality constraints alone, later making additions to account for the
selection of the active constraints. This is indeed so. Therefore, in the early portion
of this chapter we consider problems having only equality constraints, thereby both
economizing on notation and isolating the primary ideas associated with constrained
problems. We then extend these results to the more general situation.

Tangent Plane

A set of equality constraints on En

h1(x) = 0
h2(x) = 0

...

hm(x) = 0

(11.3)

defines a subset of En which is best viewed as a hypersurface. If the constraints
are everywhere regular, in a sense to be described below, this hypersurface is of
dimension n−m. If, as we assume in this section, the functions hi, i = 1, 2, . . . , m

belong to C1, the surface defined by them is said to be smooth.
Associated with a point on a smooth surface is the tangent plane at that point, a

term which in two or three dimensions has an obvious meaning. To formalize the
general notion, we begin by defining curves on a surface. A curve on a surface S

is a family of points x(t) ∈ S continuously parameterized by t for a � t � b.
The curve is differentiable if ẋ ≡ (d/dt)x(t) exists, and is twice differentiable if
ẍ(t) exists. A curve x(t) is said to pass through the point x∗ if x∗ = x(t∗) for some
t∗, a � t∗ � b. The derivative of the curve at x∗ is, of course, defined as ẋ(t∗). It is
itself a vector in En.

Now consider all differentiable curves on S passing through a point x∗. The
tangent plane at x∗ is defined as the collection of the derivatives at x∗ of all these
differentiable curves. The tangent plane is a subspace of En.

For surfaces defined through a set of constraint relations such as (11.3), the prob-
lem of obtaining an explicit representation for the tangent plane is a fundamental
problem that we now address. Ideally, we would like to express this tangent plane
in terms of derivatives of functions hi that define the surface. We introduce the
subspace

M = {d : ∇h(x∗)d = 0}

and investigate under what conditions M is equal to the tangent plane at x∗. The key
concept for this purpose is that of a regular point. Figure 11.2 shows some examples
where for visual clarity the tangent planes (which are subspaces) are translated to

364 11 Constrained Optimization Conditions

Fig. 11.2 Three examples of
tangent planes (translated to
x∗)

11.1 Constraints and Tangent Plane 365

the point x∗. Note that if h is affine, h(x) = Ax + b, ∇h(·) ≡ A and M becomes
the null space of A and also the feasible direction space of the constraint set.

Definition A point x∗ satisfying the constraint h(x∗) = 0 is said to be a regular point
of the constraint if the gradient vectors ∇h1(x∗), ∇h2(x∗), . . . , ∇hm(x∗) are linearly
independent.

If h is affine, h(x) = Ax + b, regularity is equivalent to A having rank equal to
m, and this condition is independent of x.

In general, at regular points it is possible to characterize the tangent plane in
terms of the gradients of the constraint functions.

Theorem At a regular point x∗ of the surface S defined by h(x) = 0 the tangent plane is
equal to

M = {d : ∇h(x∗)d = 0}.

Proof Let T be the tangent plane at x∗. It is clear that T ⊂ M whether x∗ is regular
or not, for any curve x(t) passing through x∗ at t = t∗ having derivative ẋ(t∗) such
that ∇h(x∗)ẋ(t∗) �= 0 would not lie on S.

To prove that M ⊂ T we must show that if d ∈ M then there is a curve on
S passing through x∗ with derivative d. To construct such a curve we consider the
equations

h(x∗ + td+∇h(x∗)T u(t)) = 0, (11.4)

where for fixed t we consider u(t) ∈ Em to be the unknown. This is a nonlinear
system of m equations and m unknowns, parameterized continuously, by t . At t = 0
there is a solution u(0) = 0. The Jacobian matrix of the system with respect to u at
t = 0 is the m×m matrix

∇h(x∗)∇h(x∗)T ,

which is nonsingular, since ∇h(x∗) is of full rank if x∗ is a regular point.
Thus, by the Implicit Function Theorem (see Appendix A) there is a continuously
differentiable solution u(t) in some region−a � t � a.

The curve x(t) = x∗ + td+∇h(x∗)T u(t) is thus, by construction, a curve on S.
By differentiating the system (11.4) with respect to t at t = 0 we obtain

0 = d

dt
h(x(t))

]

t=0
= ∇h(x∗)d+∇h(x∗)∇h(x∗)T u̇(0).

By definition of d we have ∇h(x∗)d = 0 and thus, again since ∇h(x∗)∇h(x∗)T is
nonsingular, we conclude that u̇(0) = 0. Therefore

ẋ(0) = d+ ∇h(x∗)T u̇(0) = d,

and the constructed curve has derivative d at x∗.

366 11 Constrained Optimization Conditions

It is important to recognize that the condition of being a regular point is not a
condition on the constraint surface itself but on its representation in terms of an h.
The tangent plane is defined independently of the representation, while M is not.

Example In E2 let h(x1, x2) = x1. Then h(x) = 0 yields the x2 axis, and every
point on that axis is regular. If instead we put h(x1, x2) = x2

1 , again S is the x2

axis but now no point on the axis is regular. Indeed in this case M = E2, while the
tangent plane is the x2 axis.

11.2 First-Order Necessary Conditions (Equality
Constraints)

The derivation of necessary and sufficient conditions for a point to be a local
minimum point subject to equality constraints is fairly simple now that the
representation of the tangent plane is known. We begin by deriving the first-order
necessary conditions.

Lemma Let x∗ be a regular point of the constraints h(x) = 0 and a local extremum
point (a minimum or maximum) of f subject to these constraints.
Then all d ∈ En satisfying

∇h(x∗)d = 0 (11.5)

must also satisfy

∇f (x∗)d = 0. (11.6)

Proof Let d be any vector in the tangent plane at x∗ and let x(t) be any smooth
curve on the constraint surface passing through x∗ with derivative d at x∗; that is,
x(0) = x∗, ẋ(0) = d, and h(x(t)) = 0 for −a � t � a for some a > 0.

Since x∗ is a regular point, the tangent plane is identical with the set of d’s
satisfying ∇h(x∗)d = 0. Then, since x∗ is a constrained local minimum point of
f , we have

d

dt
f (x(t))

]

t=0
= 0,

or equivalently,

∇f (x∗)d = 0.

The above Lemma says that ∇f (x∗) is orthogonal to the tangent plane. Next we
conclude that this implies that ∇f (x∗) is a linear combination of the gradients of h

11.2 First-Order Necessary Conditions (Equality Constraints) 367

at x∗, a relation that leads to the introduction of Lagrange multipliers. As in much
of nonlinear programming, the Lagrange multiplier vector is often labeled λ rather
than y in linear programming, and this convention is followed here. But, in order
to be consistent with (conic) linear programming, λ in this book represents −λ in
nonlinear programming tradition.

Theorem Let x∗ be a local minimum point of f subject to the constraints h(x) = 0. Assume
further that x∗ is a regular point of these constraints. Then there is a λ ∈ Em such that

∇f (x∗)− λT ∇h(x∗) = 0. (11.7)

Proof From the Lemma, we may conclude that the linear system

∇f (x∗)d �= 0 and ∇h(x∗)d = 0

has no feasible solution d. Then, by Farkas’ lemma (see Sect. 2.6 of Chap. 2), its
alternative system must have a solution. Specifically, there is λ ∈ Em such that
∇f (x∗)− λT ∇h(x∗) = 0.

It should be noted that the first-order necessary conditions

∇f (x∗)− λT ∇h(x∗) = 0

together with the constraints

h(x∗) = 0

give a total of n + m (generally nonlinear) equations in the n + m variables
comprising x∗, λ. Thus the necessary conditions are a complete set since, at
least locally, they determine a unique solution, which is usually called a first-order
stationary solution.

It is convenient to introduce the Lagrangian or Lagrange function associated with
the constrained problem, defined as

l(x, λ) = f (x)− λT h(x). (11.8)

The necessary conditions can then be expressed as the Lagrangian derivatives

∇xl(x, λ) = 0 (11.9)

∇λl(x, λ) = 0, (11.10)

where the second of these being simply a restatement of the constraints.
The Lagrangian can be viewed as a combined objective function with a penalized

term on constraint violations, where each λi is the penalty weight on equality
constraint hi(x) = 0. With appropriate λi ’s, a constrained problem could then be
solved as an unconstrained optimization problem. In particular, if f is convex and

368 11 Constrained Optimization Conditions

h(x) is affine Ax − b, then l(·) is convex in x for every fixed λ. Therefore, if x∗
meets condition (11.9), then x∗ is the global minimizer of unconstrained l(x, λ)

of the same λ. If, in addition, h(x∗) = 0, then x∗ is the global minimizer of f (x)

subject to h(x) = 0.

Theorem The first-order necessary conditions are sufficient if f is convex and h is affine.

We remark that the necessary condition may not be “necessary” for a minimizer
if the regular-point assumption, generally called constraint qualification, does not
hold.

Example 1 (Minimizer may not meet Necessary Condition) Consider a pathological
case

minimize x1

subject to x2
1 + (x2 − 1)2 = 1

x2
1 + (x2 + 1)2 = 1

minimize x2

subject to x2
1 + (x2 − 1)2 = 1

x2
1 + (x2 + 1)2 = 1

There is a single feasible solution, the origin (x1 = 0; x2 = 0), in either of the two
problems, so that it is the unique minimizer for both of them. Note that the origin is
not a regular point, and it does not meet the necessary condition on the left problem
but does meet the condition on the right problem.

Normally, however, we do expect minimizers to be stationary solutions so
that the necessary condition would narrow the search range for a minimizer.
For example, we present another type of constraint qualifications to replace the
regularity condition based on Farkas’ lemma.

Theorem All minimizers must be first-order stationary solutions if h is affine.

Sensitivity

The Lagrange multipliers associated with a constrained minimization problem have
an interpretation as prices, similar to the prices associated with constraints in linear
programming. In the nonlinear case the multipliers are associated with the particular
solution point and correspond to incremental or marginal prices, that is, prices
associated with small variations in the constraint requirements.

Let minimum solution x∗ be a regular point of the equality constraints and λ∗ be
the corresponding Lagrange multiplier vector. Now consider the family of problems

z(b) = minimize f (x)

subject to h(x) = b, (11.11)

where b ∈ Em. For a sufficiently small range of b near the zero vector, the problem
will have a solution point x(b) near x(0) ≡ x∗. For each of these solutions there is a

11.3 Equality Constrained Optimization Examples 369

corresponding minimum value z(b) = f (x(b)), and this value can be regarded as a
function of b, the right-hand side of the constraints. The components of the gradient
of this function can be interpreted as the incremental rate of change in value per
unit change in the constraint requirements. Thus, they are the incremental prices of
the constraint requirements measured in units of the objective. We show below how
these prices are related to the Lagrange multipliers of the problem having b = 0.

Sensitivity Theorem Let f, h ∈ C1 and consider the family of problems (11.11). Suppose
that for every b ∈ Em in a region containing 0, its minimizer x(b) is continuously
differentiable depending on b. Let x∗ = x(0) with the corresponding Lagrange multiplier
λ∗. Then,

∇z(0) = ∇bf (x(b))]b=0 = (λ∗)T .

Proof Using the chain rule and taking derivatives with respect to b on both sides of

b = h(x(b))

at b = 0, we have

I = ∇bh(x(b))]b=0 = ∇xh(x(0))∇bx(0) = ∇xh(x∗)∇bx(0).

On the other hand, using the chain rule and the first-order condition for x∗ and the
above matrix equality

∇bf (x(b))]b=0 = ∇f (x(0))∇bx(0) = ∇f (x∗)∇bx(0) = (λ∗)T ∇xh(x∗)∇bx(0) = (λ∗)T .

This completes the proof.

There are many conditions that ensure x(b) is continuously differentiable depending
on b, such as the regularity condition of the combined Lagrangian derivative
condition of (11.9) and (11.10).

11.3 Equality Constrained Optimization Examples

We digress briefly from our mathematical development to consider some examples
of constrained optimization problems. We present five simple examples that can
be treated explicitly in a short space and then briefly discuss a broader range of
applications.

Example 1 (Geometric Programming: Maximum Volume) Let us consider an exam-
ple of the type that is now standard in textbooks and which has a structure similar
to that of the example above. We seek to construct a cardboard box of maximum
volume, given a fixed area of cardboard.

370 11 Constrained Optimization Conditions

Denoting the dimensions of the box by x, y, z, the problem can be expressed as

maximize xyz

subject to (xy+ yz+ xz) = c

2
, (11.12)

where c > 0 is the given area of cardboard. Introducing a Lagrange multiplier, the
first-order necessary conditions are easily found to be

yz − λ(y + z) = 0

xz− λ(x + z) = 0 (11.13)

xy− λ(x + y) = 0

together with the constraint. Before solving these, let us note that the sum of these
equations is (xy+ yz+ xz)− 2λ(x + y + z) = 0. Using the constraint this becomes
c/2 − 2λ(x + y + z) = 0. From this it is clear that λ �= 0. Now we can show that
x, y, and z are nonzero. This follows because x = 0 implies z = 0 from the second
equation and y = 0 from the third equation. In a similar way, it is seen that if either
x, y, or z are zero, all must be zero, which is impossible.

To solve the equations, multiply the first by x and the second by y, and then
subtract the two to obtain

λ(x − y)z = 0.

Operate similarly on the second and third to obtain

λ(y − z)x = 0.

Since no variables can be zero, it follows that x = y = z = √c/6 (and λ =
√

6c
12) is

the unique solution to the necessary conditions. The box must be a cube.

Example 2 (Entropy) Optimization problems often describe natural phenomena.
An example is the characterization of naturally occurring probability distributions
as maximum entropy distributions.

As a specific example consider a discrete probability density corresponding to a
measured value taking one of n values ξ1, ξ2, . . . , ξn. The probability associated

with ξi is pi . The pi ’s satisfy pi � 0 and
n∑

i=1
pi = 1. The entropy of such a density

is ε = −∑n
i=1 pi log(pi), while the mean value of the density is

n∑
i=1

ξipi .

11.3 Equality Constrained Optimization Examples 371

If the value of mean is known to be m (by the physical situation), the maximum
entropy argument suggests that the density should be taken as that which solves the
following problem:

maximize −
n∑

i=1

pi log(pi)

subject to
n∑

i=1

pi = 1 (11.14)

n∑
i=1

ξipi = m

pi ≥ 0, i = 1, 2, . . . , n.

We begin by ignoring the nonnegativity constraints, believing that they may be
inactive. Introducing two Lagrange multipliers, λ and μ, the Lagrangian is

l =
n∑

i=1

{−pi log pi − λpi − μξipi} − λ − μm.

The necessary conditions are immediately found to be

− log pi − 1− λ − μξi = 0, i = 1, 2, . . . , n.

This leads to

pi = exp{(−λ− 1)− μξi}, i = 1, 2, . . . , n. (11.15)

We note that pi > 0, so the nonnegativity constraints are indeed inactive. The
result (11.15) is known as an exponential density. The Lagrange multipliers λ and μ

are parameters that must be selected so that the two equality constraints are satisfied.

Example 3 (Hanging Chain) A chain is suspended from two thin hooks that are
16 ft apart on a horizontal line as shown in Fig. 11.3. The chain itself consists of 20
links of stiff steel. Each link is one foot in length (measured inside). We wish to
formulate the problem to determine the equilibrium shape of the chain.

The solution can be found by minimizing the potential energy of the chain. Let
us number the links consecutively from 1 to 20 starting with the left end. We let link
i span an x distance of xi and a y distance of yi . Then x2

i + y2
i = 1. The potential

energy of a link is its weight times its vertical height (from some reference). The
potential energy of the chain is the sum of the potential energies of each link. We
may take the top of the chain as reference and assume that the mass of each link is

372 11 Constrained Optimization Conditions

Fig. 11.3 A hanging chain

concentrated at its center. Assuming unit weight, the potential energy is then

1

2
y1 +

(
y1 + 1

2
y2

)
+
(

y1 + y2 + 1

2
y3

)
+ · · ·

+
(

y1 + y2 + · · · + yn−1 + 1

2
yn

)
=

n∑
i=1

(
n− i + 1

2

)
yi,

where n = 20 in our example.
The chain is subject to two constraints: The total y displacement is zero, and the

total x displacement is 16. Thus the equilibrium shape is the solution of

minimize
n∑

i=1

(
n− i + 1

2

)
yi

subject to
n∑

i=1

yi = 0 (11.16)

n∑
i=1

√
1− y2

i = 16.

The first-order necessary conditions are

(
n− i + 1

2

)
− λ+ μyi√

1− y2
i

= 0 (11.17)

for i = 1, 2, . . . , n. This leads directly to

yi = − n− i + 1
2 − λ√

μ2 +
(
n− i + 1

2 − λ
)2

. (11.18)

11.3 Equality Constrained Optimization Examples 373

As in Example 1 the solution is determined once the Lagrange multipliers are
known. They must be selected so that the solution satisfies the two constraints.

It is useful to point out that problems of this type may have local minimum points.
The reader can examine this by considering a short chain of, say, four links and V

and/or W configurations.

Example 4 (Portfolio Management) Suppose there are n securities indexed by i =
1, 2, . . . , n. Each security i is characterized by its random rate of return ri which
has mean value r̄i . Its covariances with the rates of return of other securities are
σij, for j = 1, 2, . . . , n. The portfolio problem is to allocate total available wealth
among these n securities, allocating a fraction wi of wealth to the security i.

The overall rate of return of a portfolio is r =∑n
i=1 wi r̄i and variance σ 2 =∑n

i,j=1
wiσijwj .

Markowitz introduced the concept of devising efficient portfolios which for a
given expected rate of return r̄ have minimum possible variance. Such a portfolio is
the solution to the problem

min
w1,w2,...wn

∑n

i,j=1
wiσijwj

subject to
∑n

i=1
wir̄i = r̄

∑n

i=1
wi = 1.

The second constraint forces the sum of the weights to equal one. There may be the
further restriction that each wi ≥ 0 which would imply that the securities must not
be shorted (that is, sold short).

Introducing Lagrange multipliers λ and μ for the two constraints leads easily to
the n+ 2 linear equations

n∑
j=1

σijwj − λr̄i − μ = 0 for i = 1, 2, . . . , n

n∑
i=1

wi r̄i = r̄ and
n∑

i=1

wi = 1

in the n+ 2 unknowns (the wi ’s, λ and μ).

Example 5 (Compressed Sensing) In practice, we often want to find the sparsest
solution to fit exact data measurements in regression. That is, to minimize the
number of nonzero entries in x that satisfies a system of linear equations Ax = b.
But this discrete cardinality function is not continuous so it is natural to approximate

374 11 Constrained Optimization Conditions

it by continuous and mostly differentiable pseudo-norm function

(|x|p
)p =

n∑
j=1

|xj |p,

where 0 < p ≤ 1 (it becomes the L1 norm function when p = 1). Then we would
like to solve the linear equality constrained minimization problem

minimize
∑n

j=1 |xj |p
subject to Ax− b = 0.

The first derivative of |xj |p, when xj �= 0, is p(|xj |p−1 · sign(xj)). Let us remove
those zero entries in x, then the remaining nonzero variables must still meet the
first-order necessary conditions: for the j th column aj of A and some λ

p(|xj |p−1 · sign(xj))− λT aj = 0, ∀xj �= 0.

Multiplying each equation by xj from the right and summing them up, we have

p
∑

j : xj �=0

|xj |p = λT

⎛
⎝ ∑

j : xj �=0

aj xj

⎞
⎠ = λT b ≤ |λ| · |b|,

which means that the sum of the pth power of absolute values of the nonzero entries
is bounded above. For simplicity, let p = 1/2. Then we have

∑
j : xj �=0

√|xj | ≤
2|λ| · |b|. Moreover,

|xj |−1/2 · sign(xj) = 2λT aj , which implies
1√|xj |

≤ 2|λ| · |aj |.

This establishes a lower bound on the absolute values of each nonzero entry of any
possible local minimizer of the problem.

Large-Scale Applications

The problems that serve as the primary motivation for the methods described
in this part of the book are actually somewhat different in character than the
problems represented by the above examples, which by necessity are quite simple.
Larger, more complex, nonlinear programming problems arise frequently in modern
applied analysis in a wide variety of disciplines. Indeed, within the past few decades
nonlinear programming has advanced from a relatively young and primarily analytic
subject to a substantial general tool for problem solving.

11.3 Equality Constrained Optimization Examples 375

Large nonlinear programming problems arise in problems of finance, data
science, network and engineering structure design, portfolio risk management,
nonlinear regression, and wireless network planning, determining optimal config-
urations for bridges, trusses, and so forth. Some mechanical designs and structures
that in the past were found by solving differential equations are now often found by
solving suitable optimization problems. An example that is somewhat similar to the
hanging chain problem is the determination of the shape of a stiff cable suspended
between two points and supporting a load.

A wide assortment, of large-scale optimization problems arise in a similar way as
methods for solving partial differential equations. In situations where the underlying
continuous variables are defined over a two- or three-dimensional region, the con-
tinuous region is replaced by a grid consisting of perhaps several thousand discrete
points. The corresponding discrete approximation to the partial differential equation
is then solved indirectly by formulating an equivalent optimization problem. This
approach is used in studies of plasticity, in heat equations, in the flow of fluids, in
atomic physics, and indeed in almost all branches of physical science.

Problems of optimal control lead to large-scale nonlinear programming prob-
lems. In these problems a dynamic system, often described by an ordinary differ-
ential equation, relates control variables to a trajectory of the system state. This
differential equation, or a discretized version of it, defines one set of constraints.
The problem is to select the control variables so that the resulting trajectory satisfies
various additional constraints and minimizes some criterion. An early example of
such a problem that was solved numerically was the determination of the trajectory
of a rocket to the moon that required the minimum fuel consumption.

There are many examples of nonlinear programming in industrial operations
and business decision making. Many of these are nonlinear versions of the kinds
of examples that were discussed in the linear programming part of the book.
Nonlinearities can arise in production functions, cost curves, and, in fact, in almost
all facets of problem formulation.

Portfolio analysis, in the context of both stock market investment and evaluation
of a complex project within a firm, is an area where nonlinear programming
is becoming increasingly useful. These problems can easily have thousands of
variables.

In many areas of model building and analysis, optimization formulations are
increasingly replacing the direct formulation of systems of equations. Thus large
economic forecasting models often determine equilibrium prices by minimizing
an objective termed consumer surplus. Physical models are often formulated as
minimization of energy. Decision problems are formulated as maximizing expected
utility. Data analysis procedures are based on minimizing an average error or max-
imizing a probability. As the methodology for solution of nonlinear programming
improves, one can expect that this trend will continue.

376 11 Constrained Optimization Conditions

11.4 Second-Order Conditions (Equality Constraints)

By an argument analogous to that used for the unconstrained case, we can also
derive the corresponding second-order conditions for equality constrained problems.
Throughout this section it is assumed that f, h ∈ C2.

Second-Order Necessary Conditions Suppose that x∗ is a local minimum of f subject to
h(x) = 0 and that x∗ is a regular point of these constraints. Then there is a λ ∈ Em such
that

∇f (x∗)− λT ∇h(x∗) = 0. (11.19)

If we denote by M the tangent plane M = {d : ∇h(x∗)d = 0}, then the matrix

L(x∗) = F(x∗)− λT H(x∗) (11.20)

is positive semidefinite on M , that is, dT L(x∗)d � 0 for all d ∈ M .

Proof From elementary calculus it is clear that for every twice differentiable curve
on the constraint surface S through x∗ (with x(0) = x∗) we have

d2

dt2
f (x(t))

]

t=0
� 0. (11.21)

By definition

d2

dt2 f (x(t))

]

t=0
= ẋ(0)T F(x∗)ẋ(0)+∇f (x∗)ẍ(0). (11.22)

Furthermore, differentiating the relation λT h(x(t)) = 0 twice, we obtain

ẋ(0)T λT H(x∗)ẋ(0)− λT ∇h(x∗)ẍ(0) = 0. (11.23)

Adding (11.23) to (11.22), while taking account of (11.21), yields the result

d2

dt2 f (x(t))

]

t=0
= ẋ(0)T L(x∗)ẋ(0) � 0.

Since ẋ(0) is arbitrary in M , we immediately have the stated conclusion.

The above theorem is our first encounter with the matrix L = F − λT H which
is the matrix of second partial derivatives, with respect to x, of the Lagrangian l.
(See Appendix A, Sect. A.6, for a discussion of the notation λT H used here). This
matrix is the backbone of the theory of algorithms for constrained problems, and it
is encountered often in subsequent chapters.

We next state the corresponding set of sufficient conditions.

11.4 Second-Order Conditions (Equality Constraints) 377

Second-Order Sufficiency Conditions Suppose there is a point x∗ satisfying h(x∗) = 0,
and a λ ∈ Em such that

∇f (x∗)− λT ∇h(x∗) = 0. (11.24)

Suppose also that the matrix L(x∗) = F(x∗) − λT H(x∗) is positive definite on M = {d :
∇h(x∗)d = 0}, that is, for d ∈ M, d �= 0 there holds dT L(x∗)d > 0. Then x∗ is a strict
local minimum of f subject to h(x) = 0.

Proof If x∗ is not a strict relative minimum point, there exists a sequence of feasible
points {yk} converging to x∗ such that for each k, f (yk) � f (x∗). Write each yk in
the form yk = x∗ + δksk where sk ∈ En, |sk| = 1, and δk > 0 for each k. Clearly,
δk → 0 and the sequence {sk}, being bounded, must have a convergent subsequence
converging to some s∗. For convenience of notation, we assume that the sequence
{sk} is itself convergent to s∗. We also have h(yk) − h(x∗) = 0, and dividing by δk

and letting k →∞ we see that ∇h(x∗)s∗ = 0.
Now by Taylor’s theorem, we have for each i

0 = hi(yk) = hi(x∗)+ δk∇hi(x∗)sk + δ2
k

2
sT
k ∇2hi(ηj)sk (11.25)

and

0 � f (yk)− f (x∗) = δk∇f (x∗)sk + δ2
k

2
sT
k ∇2f (η0)sk, (11.26)

where each ηi is a point on the line segment joining x∗ and yk . Multiplying (11.25)
by −λi and adding these to (11.26) we obtain, on accounting for (11.24),

0 �
δ2
k

2
sT
k

{
∇2f (η0)−

m∑
i=1

λi∇2hi(ηi)

}
sk,

which yields a contradiction as k →∞.

Example 1 Consider the problem

maximize (x1 − 1)2 + (x2 − 1)2

subject to x2
1 + x2

2 − 1 = 0.

The Lagrangian and subsequent first-order conditions would be

l(x1, x2, λ) = (x1 − 1)2 + (x2 − 1)2 − λ(x2
1 + x2

2 − 1),

∇xl(x1, x2, λ) =
(

2x1(1− λ)− 2
2x2(1− λ)− 2

)
= 0.

378 11 Constrained Optimization Conditions

Fig. 11.4 Illustration of first-
and second-order stationary
solutions

From the two equations we conclude x1 = x2, together with x2
1 + x2

2 − 1 = 0,
we have two first-order stationary solutions (x1 = x2 = 1√

2
, λ = 1 − √2) and

(x1 = x2 = −1√
2
, λ = 1+√2), illustrated in Fig. 11.4.

The Lagrangian Hessian matrix F− λT H, at two λs, becomes

[
2(1− λ) 0

0 2(1− λ)

]
⇒
[

2
√

2 0

0 2
√

2

]
(λ = 1−√2),

[
−2
√

2 0

0 −2
√

2

]
(λ = 1+√2).

where the first one is positive definite and the second negative definite, and they
remain so in subspace M . Thus, x1 = x2 = 1√

2
is a minimum and x1 = x2 = −1√

2
is

a maximum.

Eigenvalues in Tangent Subspace

In the preceding discussion it was shown that the matrix L restricted to the
subspace M that is tangent to the constraint surface plays a role in second-order
conditions entirely analogous to that of the Hessian of the objective function in the
unconstrained case. It is perhaps not surprising, in view of this, that the structure
of L restricted to M also determines rates of convergence of algorithms designed
for constrained problems in the same way that the structure of the Hessian of the
objective function does for unconstrained algorithms. Indeed, we shall see that the
eigenvalues of L restricted to M determine the natural rates of convergence for algo-
rithms designed for constrained problems. It is important, therefore, to understand
what these restricted eigenvalues represent. We first determine geometrically what

11.4 Second-Order Conditions (Equality Constraints) 379

Fig. 11.5 Definition of LM

Fig. 11.6 Eigenvector of LM

we mean by the restriction of L to M which we denote by LM . Next we define the
eigenvalues of the operator LM . Finally we indicate how these various quantities
can be computed.

Given any vector d ∈ M , the vector Ld is in En but not necessarily in M .
We project Ld orthogonally back onto M , as shown in Fig. 11.5, and the result
is said to be the restriction of L to M operating on d. In this way we obtain a
linear transformation from M to M . The transformation is determined somewhat
implicitly, however, since we do not have an explicit matrix representation.

A vector y ∈ M is an eigenvector of LM if there is a real number λ such that
LMy = λy; the corresponding λ is an eigenvalue of LM . This coincides with the
standard definition. In terms of L we see that y is an eigenvector of LM if Ly can be
written as the sum of λy and a vector orthogonal to M . See Fig. 11.6.

To obtain a matrix representation for LM it is necessary to introduce a basis in
the subspace M . For simplicity it is best to introduce an orthonormal basis, say
e1, e2, . . . , en−m. Define the matrix E to be the n×(n−m) matrix whose columns
consist of the vectors ei . Then any vector y in M can be written as y = Ez for some
z ∈ En−m and, of course, LEz represents the action of L on such a vector. To project
this result back into M and express the result in terms ofthe basis e1, e2, . . . , en−m,
we merely multiply by ET . Thus ET LEz is the vector whose components give the

380 11 Constrained Optimization Conditions

representation in terms of the basis; and, correspondingly, the (n − m) × (n − m)

matrix ET LE is the matrix representation of L restricted to M .
The eigenvalues of L restricted to M can be found by determining the eigenvalues

of ET LE. These eigenvalues are independent of the particular orthonormal basis E.

Example 1 Let us consider the problem

minimize x1 + x2
2 + x2x3 + 2x2

3

subject to
1

2

(
x2

1 + x2
2 + x2

3

)
= 1.

The first-order necessary conditions are

1− λx1 = 0

2x2 + x3 − λx2 = 0

x2 + 4x3 − λx3 = 0.

One solution to this set is easily seen to be x1 = 1, x2 = 0, x3 = 0, λ = 1. Let us
examine the second-order conditions at this solution point. The Lagrangian matrix
there is

L =
⎡
⎣
−1 0 0

0 1 1
0 1 3

⎤
⎦ ,

and the corresponding subspace M is

M = {y : y1 = 0}.

In this case M is the subspace spanned by the second two basis vectors in E3 and
hence the restriction of L to M can be found by taking the corresponding submatrix
of L. Thus, in this case,

ET LE =
[

1 1
1 3

]
.

so that LM is positive definite.
Since the LM matrix is positive definite, we conclude that the point found is a

relative minimum point. This example illustrates that, in general, the restriction of
L to M can be thought of as a submatrix of L, although it can be read directly from
the original matrix only if the subspace M is spanned by a subset of the original
basis vectors.

11.5 Inequality Constraints 381

Projected Hessians

The above approach for determining the eigenvalues of L projected onto M is quite
direct and relatively simple. There is another approach, however, that is useful in
some theoretical arguments and convenient for simple applications. It is based on
constructing matrices and determinants of order n rather than n − m, but there is
no need to find the orthonormal basis E. For simplicity, let A = ∇h which has full
row rank.

Any x satisfying Ax = 0 can be expressed as

x = (I− AT (AAT)−1A)z

for some z (and the converse is also true), where PA = (I − AT (AAT)−1A) is the
so-called projection matrix to the null space of A (that is, M). If xT Lx ≥ 0 for
all x in this null space, then zT PALPAz ≥ 0 for all z ∈ En, or the n-dimensional
symmetric matrix PALPA is positive semidefinite. Furthermore, if PALPA has rank
n−m, then LM is positive definite, which results the following test.

Projected Hessian Test The matrix L is positive definite on the subspace M = {x : ∇hx =
0} if and only if the projected Hessian matrix to the null space of ∇h is positive semidefinite
and has rank n−m.

Example 2 Approaching Example 1 in this way and noting A = ∇h = (1, 0, 0)

we have

PA = I−
⎡
⎣

1
0
0

⎤
⎦
⎡
⎣

1
0
0

⎤
⎦

T

=
⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦ .

Then

PALPA =
⎡
⎣

0 0 0
0 1 1
0 1 3

⎤
⎦

which is clearly positive semidefinite and has rank 2.

11.5 Inequality Constraints

We consider now problems of the form

minimize f (x)

subject to h(x) = 0, g(x) � 0. (11.27)

382 11 Constrained Optimization Conditions

We assume that f and h are as before and that g is a p-dimensional function.
Initially, we assume f, h, g ∈ C1.

There are a number of distinct theories concerning this problem, based on
various regularity conditions or constraint qualifications, which are directed toward
obtaining definitive general statements of necessary and sufficient conditions. One
can by no means pretend that all such results can be obtained as minor extensions
of the theory for problems having equality constraints only. To date, however, these
alternative results concerning necessary conditions have been of isolated theoretical
interest only—for they have not had an influence on the development of algorithms,
and have not contributed to the theory of algorithms. Their use has been limited to
small-scale programming problems of two or three variables. We therefore choose
to emphasize the simplicity of incorporating inequalities rather than the possible
complexities, not only for ease of presentation and insight, but also because it is
this viewpoint that forms the basis for work beyond that of obtaining necessary
conditions.

First-Order Necessary Conditions

With the following generalization of our previous definition it is possible to parallel
the development of necessary conditions for equality constraints.

Definition Let x∗ be a point satisfying the constraints

h(x∗) = 0, g(x∗) � 0, (11.28)

and let J be the set of indices j for which gj (x∗) = 0. Then x∗ is said to be a regular point
of the constraints (11.28) if the gradient vectors ∇hi(x∗), ∇gj (x∗), 1 � i � m, j ∈ J are
linearly independent.

We note that, following the definition of active constraints given in Sect. 11.1,
a point x∗ is a regular point if the gradients of the active constraints are linearly
independent. Or, equivalently, x∗ is regular for the constraints if it is regular in
the sense of the earlier definition for equality constraints applied to the active
constraints.

Karush-Kuhn-Tucker (KKT) Conditions Let x∗ be a relative minimum point for the
problem

minimize f (x)

subject to h(x) = 0, g(x) � 0, (11.29)

and suppose x∗ is a regular point for the constraints. Then there is a vector λ ∈ Em and a
vector μ ∈ Ep with μ � 0 such that

∇f (x∗)− λT ∇h(x∗)− μT ∇g(x∗) = 0 (11.30)

μT g(x∗) = 0. (11.31)

11.5 Inequality Constraints 383

Proof We note first, since μ � 0 and g(x∗) � 0, (11.31) is equivalent to
the statement that a component of μ may be nonzero only if the corresponding
constraint is active. This a complementary slackness condition studied in linear
programming, which states that g(x∗)j > 0 implies μj = 0 and μj > 0 implies
g(x∗)j = 0.

Since x∗ is a relative minimum point over the constraint set, it is also a relative
minimum over the subset of that set defined by setting the active constraints to zero.
Thus, for the resulting equality constrained problem defined in a neighborhood of
x∗, there are Lagrange multipliers. Therefore, we conclude that (11.30) holds with
μj = 0 if gj (x∗) �= 0 (and hence (11.31) also holds).

It remains to be shown that μ ≥ 0. Suppose μk < 0 for some k ∈ J . Let S′
and M ′ be the surface and tangent plane, respectively, defined by all other active
constraints at x∗. By the regularity assumption, there is a d such that d ∈ M ′ (that
is, ∇h(x∗)d = 0 and ∇gj (x∗)d = 0 for all j ∈ J but j �= k) and ∇gk(x∗)d > 0.
Multiplying this d from the right to (11.30), we have

∇f (x∗)d− μk∇gk(x∗)d = 0 or ∇f (x∗)d = μk(∇gk(x∗)d) < 0,

which implies that d is a descent direction for the objective function.
Let x(t) be a curve on S′ passing through x∗(at t = 0) with ẋ(0) = d. Then

for small t ≥ 0, x(t) is feasible—it remains on the surface of S′ and gk(x(t)) > 0
because ∇gk(x∗)d > 0 (that is, constraint gk becomes inactive). But

df

dt
(x(t))

]

t=0
= ∇f (x∗)d < 0

which contradicts the minimality of x(0) = x∗.

A solution, together with multipliers, satisfying the KKT conditions is called a
KKT point. Again, a minimizer may not necessarily be a KKT point, unless some
constraint qualifications are met, such as the regularity condition used here or if the
constraint set has a relative interior (the Slater condition: there is feasible x such that
g(x) > 0). We present another qualification directly from Farkas’ lemma.

Theorem All minimizers of (11.28) must be KKT points if h, g are both affine.

The Lagrangian and First-Order Conditions

Again it is convenient to introduce the Lagrangian or Lagrange function associated
with the problem, defined as

l(x, λ,μ) = f (x)− λT h(x)− μT g(x). (11.32)

The Lagrangian can again be viewed as an unconstrained objective function com-
bined with the original objective with two penalized terms on constraint violations,

384 11 Constrained Optimization Conditions

where λi is the penalty weight on equality hi(x) = 0 and μj on inequality gj (x). For
the inequality, if gj (x) > 0, there should be no penalty so that μj = 0; otherwise, μj

needs to be increased to a positive value in the Lagrangian to pump up the value of
gj (x) when the Lagrangian is minimized (note the negative sign before the penalty
term).

With the introduction of the Lagrangian, the first-order necessary conditions can
be summarized as:

(OVC) The Original Variable Constraints of Problem (11.28).
(MSC) The Multiplier Sign Constraints: λ “free” and μ ≤ 0. In general, the sign of

the multiplier is determined by the sense of the original constraint: (i) if it is =
(equality), then the sign is “free”, (ii) if it is ≤, then the sign is ≤, and (iii) if it is
≥, then the sign is ≥.

(LDC) The Lagrangian Derivative Condition (i.e., (11.30))

∇xl(x, λ,μ) = ∇f (x) − λT ∇h(x) − μT ∇g(x) = 0.

(CSC) The Complementary Slackness Condition (i.e., (11.31)): μigi(x) = 0, ∀i (for
every inequality constraint).

Example Consider the problem

maximize (x1 − 1)2 + (x2 − 1)2

subject to 1− x2
1 − x2

2 ≥ 0.

The Lagrangian and subsequent (LDC) conditions would be

l(x1, x2, μ(≥ 0)) = (x1 − 1)2 + (x2 − 1)2 − μ(1− x2
1 − x2

2),

(LDC) : ∇xl(x1, x2, λ) =
(

2x1(1+ μ)− 2
2x2(1+ μ)− 2

)
= 0,

and the (CSC) condition is μ(1− x2
1 − x2

2) = 0.
From the two equations of (LDC) and μ ≥ 0, we conclude x1 = x2. We first

try μ = 0, which, from the two equations of (LDC), leads to x1 = x2 = 1 and
violates the inequality constraint. Thus, the constraint must be active, which gives
rise to two possible solutions (x1 = x2 = 1√

2
) and (x1 = x2 = −1√

2
). The former,

again from the equations in (LDC), makes μ = √
2 − 1; while the latter makes

μ = −√2 − 1, which violates (CSC). Thus, the only qualified first-order solution
is (x1 = x2 = 1√

2
) with the corresponding μ = √2− 1.

In particular, if f is convex and h(x) is affine Ax − b, and g(x) are concave
functions, then l(·) is convex in x for every fixed λ and μ(≥ 0). Therefore, if x∗
meets condition (11.30), then x∗ is the global minimizer of unconstrained l(x, λ,μ)

with the same λ and μ.

Theorem The first-order necessary conditions are sufficient if f is convex, h is affine, and
gj (x) is concave for all j .

11.5 Inequality Constraints 385

Proof Let x be any feasible solution of (11.27) and x∗, together with λ∗ and μ∗,
satisfy the first-order necessary conditions. Again, let J denote the index set of
active inequality constraints. Then we have

0 ≤ l(x,λ∗,μ∗)− l(x∗,λ∗,μ∗)
= f (x)− f (x∗)− (λ∗)T (h(x)− h(x∗))− (μ∗)T (g(x)− g(x∗))
= f (x)− f (x∗)− (μ∗)T (g(x)− g(x∗)) (h(x) = h(x∗) = 0)

= f (x)− f (x∗)−∑j∈J μj (gj (x)− gj (x∗)) (μj = 0 if j �∈ J)

= f (x)− f (x∗)−∑j∈J μj (gj (x)) (gj (x∗) = 0 if j ∈ J)

≤ f (x)− f (x∗) (μj ≥ 0, gj (x) ≥ 0 if j ∈ J),

which completes the proof.

Second-Order Conditions

The second-order conditions, both necessary and sufficient, for problems with
inequality constraints, are derived essentially by consideration only of the equality
constrained problem that is implied by the active constraints. The appropriate
tangent plane for these problems is the plane tangent to the active constraints.

Second-Order Necessary Conditions Suppose the functions f, g, h ∈ C2 and that
x∗ is a regular point of the constraints (11.28). If x∗ is a relative minimumpoint for
problem (11.27), then there is a λ ∈ Em, μ ∈ Ep, μ ≥ 0 such that (11.30) and (11.31)
hold and such that

L(x∗) = F(x∗)− λT H(x∗)− μT G(x∗) (11.33)

is positive semidefinite on the tangent subspace of the active constraints at x∗.

Proof If x∗ is a relative minimum point over the constraints (11.28), it is also a
relative minimum point for the problem with the active constraints taken as equality
constraints.

Just as in the theory of unconstrained minimization, it is possible to formulate a
converse to the Second-Order Necessary Condition Theorem and thereby obtain a
Second-Order Sufficiency Condition Theorem. By analogy with the unconstrained
situation, one can guess that the required hypothesis is that L(x∗) be positive definite
on the tangent plane M . This is indeed sufficient in most situations. However, if
there are degenerate inequality constraints (that is, active inequality constraints
having zero as associated Lagrange multiplier), we must require L(x∗) to be positive
definite on a subspace that is larger than M .

Second-Order Sufficiency Conditions Let f, g, h ∈ C2. Sufficient conditions that a
point x∗ satisfying (33) be a strict relative minimum point of problem (11.27) is that there

386 11 Constrained Optimization Conditions

exist λ ∈ Em, μ ∈ Ep , such that

μ ≥ 0 (11.34)

μT g(x∗) = 0 (11.35)

∇f (x∗)− λT ∇h(x∗)− μT ∇g(x∗) = 0, (11.36)

and the Hessian matrix

L(x∗) = F(x∗)− λT H(x∗)− μT G(x∗) (11.37)

is positive definite on the subspace

M ′ = {d : ∇h(x∗)d = 0, ∇gj (x∗)d = 0 f or all j ∈ J
}
,

where J = {j : gj (x∗) = 0, μj > 0
}
.

Proof As in the proof of the corresponding theorem for equality constraints in
Sect. 11.4, assume that x∗ is not a strict relative minimum point; let {yk} be a
sequence of feasible points converging to x∗ such that f (yk) � f (x∗), and write
each yk in the form yk = x∗ + δksk with |sk| = 1, δk > 0. We may assume that
δk → 0 and sk → s∗. We have 0 ≥ ∇f (x∗)s∗, and for each i = 1, . . . , m we have

∇hi(x∗)s∗ = 0.

Also for each active constraint gj we have gj (yk)− gj (x∗) � 0, and hence

∇gj (x∗)s∗ � 0.

If ∇gj (x∗)s∗ = 0 for all j ∈ J , then the proof goes through just as in Sect. 11.4. If
∇gj (x∗)s∗ > 0 for at least one j ∈ J , then

0 � ∇f (x∗)s∗ = λT ∇h(x∗)s∗ + μT ∇g(x∗)s∗ > 0,

which is a contradiction.

We note in particular that if all active inequality constraints have strictly positive
corresponding Lagrange multipliers (no degenerate inequalities), then the set J

includes all of the active inequalities. In this case the sufficient condition is that
the Lagrangian be positive definite on M , the tangent plane of active constraints.

Sensitivity

The sensitivity result for problems with inequalities is a simple restatement of the
result for equalities. In this case, a nondegeneracy assumption is introduced so

11.6 Mix-Constrained Optimization Examples 387

that the small variations produced in Lagrange multipliers when the constraints are
varied will not violate the positivity requirement.

Sensitivity Theorem Let f, g, h ∈ C2 and consider the family of problems

minimize f (x)

subject to h(x) = b, g(x) � c. (11.38)

Suppose that for b = 0, c = 0, there is a local solution x∗ that is a regular point and that,
together with the associated Lagrange multipliers, λ, μ ≥ 0, satisfies the second-order
sufficiency conditions for a strict local minimum. Assume further that no active inequality
constraint is degenerate. Then for every (b, c) ∈ Em+p in a region containing (0, 0), there
is a solution x(b, c), depending continuously on (b, c), such that x(0, 0) = x∗ and x(b, c)
is a relative minimum point of (11.38). Furthermore,

∇bf (x(b, c))]0,0 = λT (11.39)

∇cf (x(b, c))]0,0 = μT . (11.40)

11.6 Mix-Constrained Optimization Examples

Example 1 (Portfolio Management Revisited) Suppose that there are n assets and
consider the portfolio management problem where “shorting” is not allowed.

min
∑n

i,j=1
wiσijwj

s.t.
∑n

i=1
wir̄i = r̄

∑n

i=1
wi = 1

wi ≥ 0, ∀i.

Introducing Lagrange multipliers λ1 and λ2 for the two constraints and μ for the
nonnegative constraints leads easily to

(OV C)
∑n

i=1 wir̄i = r̄ ,
∑n

i=1 wi = 1, and w ≥ 0
(MSC) μ ≥ 0
(LDC)

∑n
j=1 σijwj − λ1r̄i − λ2 − μi = 0 for i = 1, 2, . . . , n

(CSC) μi · wi = 0, ∀i.

Note that if an additional inequality constraint is from xj ≥ 0, to avoid introducing
one more multiplier to this, one may take a “shortcut” by just adding a (CSC) and

388 11 Constrained Optimization Conditions

rewriting (LDC), with respect to xj , as

(LDC)
(∇f (x)− λT ∇h(x) − μT ∇g(x)

)
j
≥ 0,

(CSC) Add a condition: xj

(∇f (x) − λT ∇h(x) − μT ∇g(x)
)
j
= 0.

Example 2 (Soft-Margin Minimization in SVM) In the support vector machine
Example 6 of Chap. 2, the two sets of data are not separable so that some margins of
error would occur. An objective function would need to be added to the model. Let
A represent the data matrix where each column is a point ai and let B represent the
data matrix where each column is a point bj , and let 1 denote the vector of all ones.
Then a so-called soft-margin minimization model is, for a given positive weight β,

minimize
1

2
|x|2 + β(1T u+ 1T v)

subject to AT x+ 1x0 + u � 1

−BT x− 1x0 + v � 1

u ≥ 0, v ≥ 0,

where {y : xT y+x0 = 0} is the desired hyperplane, and ui and vj represent possible
error margins of ai and bj , respectively, on the wrong side of the hyperplane.

Introducing multiplier vectors ξA and ξB for the top two sets of inequality
constraints, respectively, we have the Lagrangian

l(x, x0, u, v, ξA, ξB) = 1

2
|x|2+β(1T u+1T v)−ξT

A(AT x+1x0+u−1)−ξT
B(−BT x−1x0+v−1).

Thus, besides the (OVC), the first-order conditions are

(MSC) : ξA ≥ 0, ξB ≥ 0
(LDC) : ∇xl(·) = x− AξA + BξB = 0

∇x0 l(·) = −1T ξA + 1T ξB = 0
∇ul(·) = β1− ξA ≥ 0 and ∇vl(·) = β1− ξB ≥ 0

(CSC) : ξT
A(AT x+ 1x0 + u− 1) = 0

ξT
B(−BT x− 1x0 + v− 1) = 0

uT (β1− ξA) = 0 and vT (β1− ξB) = 0.

Example 3 (Fisher-Market Social Maximization) The Fisher-market equilibrium
problem is an allocation problem between a set of buyers, B, and a set of product
sellers, G. Each buyer i ∈ B is equipped with a budget w̄i to buy, and each product
j ∈ G has an available quantity s̄j to sell. Moreover, each buyer i has a linear
utility function uT

i xi = ∑j∈P uij xij , where xij represents the quantity of product
j bought by buyer i. If there are market prices pj for each product, the ith buyer’s

11.6 Mix-Constrained Optimization Examples 389

utility maximization problem, subject to the budget constraint, would be

maximize uT
i xi =

∑
j∈G

uij xij

subject to pT xi =
∑
j∈G

pjxij ≤ wi (11.41)

xi ≥ 0.

This would be the individual optimization problem for every i ∈ B.
A fundamental question in market economy is: are there equilibrium prices

p∗j , j ∈ G and allocation x∗i , i ∈ B such that:

(i) for every i, x∗i is an optimal solution for given prices p∗j , j ∈ G;
(ii) moreover, allocations x∗i , i ∈ B, clear the market, meaning

∑
i∈B

x∗ij = s̄j , ∀ j ∈ G, or in vector form
∑
i∈B

xi = s̄.

The last condition indicates that all products are sold: there is no shortage nor
leftover.

Assuming that ui ≥ 0 and ui �= 0, it turns out that there is a social or centralized
optimization problem associated with the equilibrium question

maximize
∑

i

wi log(uT
i xi)

subject to
∑
i∈B

xi = s̄ (11.42)

xij ≥ 0, ∀i ∈ B.

The objective of (11.42) is an aggregated social welfare function and the constraints
are the market-clearing conditions. Introducing multiplier vector p for these equality
constraints, we have the Lagrangian

l(xi , i ∈ B, p) =
∑

i

wi log(uT
i xi)− pT

(∑
i∈B

xi − s̄

)
.

Hence, besides the (OVC), the first-order conditions for maximization of the
objective are

(LDC) : ∇xi l(·) = wi

uT
i xi

ui − p ≥ 0, ∀i ∈ B

(CSC) : xT
i

(
wi

uT
i xi

ui − p
)
= 0, ∀i ∈ B.

390 11 Constrained Optimization Conditions

Theorem (Eisenberg–Gale) The corresponding optimal Lagrangian multipliers (p
in the first-order conditions described here) of the social optimization problem
(11.42) are equilibrium prices and xi is an optimal solution vector of individual
problem (11.41) for the given the equilibrium prices.

We leave the proof as an exercise, which is directly from the first-order conditions
above.

11.7 Lagrangian Duality and Zero-Order Conditions

Duality in nonlinear programming takes its most elegant form when it is formulated
globally in terms of sets and hyperplanes that touch those sets. This theory makes
clear the role of Lagrange multipliers as defining hyperplanes which can be
considered as dual to points in a vector space. The theory provides a symmetry
between primal and dual problems and this symmetry can be considered as perfect
for convex problems. For nonconvex problems the “imperfection” is made clear
by the duality gap which has a simple geometric interpretation. The global theory,
which is presented in this section, serves as useful background when later we
specialize to a local duality theory that can be used even without convexity and
which is central to the understanding of the convergence of dual algorithms.

As a counterpoint to earlier sections where equality constraints were considered
before inequality constraints, here we shall first consider a problem with inequality
constraints. In particular, consider the problem

minimize f (x) (11.43)

subject to g(x) ≥ 0

x ∈ �.

� ⊂ En is a convex set, and the functions f and g are defined on �. The function g
is p-dimensional. The problem is not necessarily convex, but we assume that there
is a feasible point. Define the (parametric) primal function associated with (11.43)
for z ∈ Ep as

ω(z) = inf{f (x) : g(x) ≥ z, x ∈ �}, (11.44)

by letting the right-hand side of inequality constraint take on arbitrary values. It is
understood that (11.44) is defined on the set D = {z : g(x) ≥ z for some x ∈ �}.

If problem (11.43) has a solution x∗ with value f ∗ = f (x∗), then f ∗ is the point
on the vertical axis in Ep+1 where the primal function passes through the axis.
If (11.43) does not have a solution, then f ∗ = inf{f (x) : g(x) ≥ 0, x ∈ �} is the
intersection point.

11.7 Lagrangian Duality and Zero-Order Conditions 391

Fig. 11.7 Hyperplane below
ω(z)

The duality principle is derived from consideration of all hyperplanes that lie
below the primal function. As illustrated in Fig. 11.7 the intercept with the vertical
axis of such a hyperplanes lies below (or at) the value f ∗.

To express this property we define the dual function on the nonnegative orthant
or cone in Ep as

φ(μ) = inf{f (x)− μT g(x) : x ∈ �}. (11.45)

In general, φ may not be finite throughout the nonnegative orthant Ep
+ but is concave

on the region where it is finite.

Proposition 1 The dual function is concave on the region where it is finite.

Proof Suppose μ1, μ2 are in the finite region, and let 0 ≤ α ≤ 1. Then

φ(αμ1 + (1− α)μ2) = inf{f (x)− (αμ1 + (1− α)μ2)
T g(x) : x ∈ �}

≥ inf{αf (x1)− αμT
l g(x1) : x1 ∈ �}

+ inf{(1− α)f (x2)− (1− α)μT
2 g(x2) : x2 ∈ �}

= αφ(μ1)+ (1− α)φ(μ2).

We define φ∗ = sup {φ(μ) : μ ≥ 0}, where it is understood that φ∗ be
positive or negative infinity. We can now state the weak form of global duality: the
dual objective function gives lower bounds on the optimal value f ∗ like in linear
programming.

Weak Duality Proposition φ∗ ≤ f ∗, where f ∗ = inf{f (x) : g(x) ≥ 0, x ∈ �}.

392 11 Constrained Optimization Conditions

Proof For every μ ≥ 0 we have

φ(μ) = inf{f (x)− μT g(x) : x ∈ �}
≤ inf{f (x)− μT g(x) : g(x) ≥ 0, x ∈ �}
≤ inf{f (x) : g(x) ≥ 0, x ∈ �} = f ∗.

Taking the supremum over the left-hand side gives φ∗ ≤ f ∗.

This dual function has a strong geometric interpretation. Consider a (p + 1)-
dimensional vector (1, μ) ∈ Ep+1 with μ ≥ 0 and a constant c. The set of vectors
(r, −z) such that the inner product (1, μ)T (r, −z) ≡ r − μT z = c defines a
hyperplane in Ep+1. Different values of c give different hyperplanes, all of which
are parallel.

For a given (1, μ) we consider the lowest possible hyperplane of this form
that just barely touches (supports) the region above the primal function of prob-
lem (11.43). Suppose x1 defines the touching point with values r = f (x1) and
z = g(x1). Then c = f (x1)− μT g(x1) = φ(μ).

The hyperplane intersects the vertical axis at a point of the form (r0, 0). This
point also must satisfy (1, μ)T (r0, 0) = c = φ(μ). This gives c = r0. Thus the
intercept gives φ(μ) directly. Thus the dual function at μ is equal to the intercept of
the hyperplane defined by μ that just touches the epigraph of the primal function.

Furthermore, this intercept (and dual function value) is maximized by the
Lagrange multiplier which corresponds to the largest possible intercept, at a point
no higher than the optimal value f ∗. See Fig. 11.8.

The above analysis can easily extended to general problem (for simplicity we
now ignore convex set �)

minimize f (x) (11.46)

subject to h(x) = 0, g(x) ≥ 0.

Fig. 11.8 The highest
hyperplane

11.7 Lagrangian Duality and Zero-Order Conditions 393

Fig. 11.9 The strong duality
theorem. There is no duality
gap

In this case the dual function is

φ(λ, μ) = inf
x
[f (x)− λT h(x)− μT g(x)],

and the dual problem is

φ∗ = sup φ(λ, μ) s.t. μ ≥ 0, λ “free”. (11.47)

Zero-order Sufficient Condition If there is a pair of primal feasible solution x of (11.46)
and dual feasible solution (λ, μ) of (11.47) such that f (x) = φ(λ, μ), then both of them
are globally optimal, respectively.

By introducing convexity assumptions, the foregoing analysis can be strength-
ened to give the strong duality theorem or necessary condition, with zero duality
gap when the intercept is at f ∗. See Fig. 11.9. Specifically, in problem (11.46) h is
affine of dimension m, g is concave of dimension p, and f is convex.

Strong Duality Theorem Suppose in the problem (11.46), f is convex, h is affine, g is
concave. Suppose the problem has minimal solution x∗ with value f (x∗) = f ∗ and it
satisfies the KKT conditions with corresponding multipliers λ∗ and μ∗ ≥ 0. Then φ∗ = f ∗.
Moreover, λ∗ and μ∗ are optimal solutions for the dual problem.

Proof The proof follows almost immediately from the entire KKT conditions,
where the key fact is that the Lagrangian becomes a convex function so that its
zero-derivative with respect to x implies

φ(λ∗,μ∗) = f (x∗)− (λ∗)T h(x∗)− (μ∗)T g(x∗) = f (x∗) = f ∗,

where the second equality comes from feasibility h(x∗) and complementary slack-
ness (μ∗)T g(x∗) = 0. Then the zero-order sufficient condition establishes the
results.

Example 1 (Integer Minimization). In general, duality gaps may arise if the object
function or the constraint functions are not convex. A gap may also arise if the
underlying set is not convex. This is characteristic, for example, of problems in

394 11 Constrained Optimization Conditions

Fig. 11.10 Duality for an
integer problem

which the components of the solution vector are constrained to be integers. For
instance, consider the problem

minimize x2
1 + 2x2

2

subject to x1 + x2 ≥ 1/2

x1, x2 nonnegative integers

It is clear that the solution is x1 = 1, x2 = 0, with objective value f ∗ = 1. To put
this problem in the standard form we have discussed, we write the constraint as

−x1 − x2 + 1/2 ≤ z, where z = 0.

The primal function ω(z) is equal to 0 for z ≥ 1/2 since then x1 = x2 = 0 is
feasible. The entire primal function has steps as z steps negatively integer by integer,
as shown in Fig. 11.10.

The dual function is

φ(μ) = max{x2
1 + x2

2 − μ(x1 + x2 − 1/2)}

where the maximum is taken with respect to the integer constraint. Analytically, the
solution for small values of μ is

φ(μ) = μ/2 for 0 ≤ μ ≤ 1,

= 1− μ/2 for 1 ≤ μ ≤ 2,

... and more

The maximum value of φ(μ) is the maximum intercept of the corresponding
hyperplanes (lines, in this case) with the vertical axis. This occurs for μ = 1 with

11.8 Rules for Constructing the Lagrangian Dual Explicitly 395

a corresponding value of φ∗ = φ(1) = 1/2. We have φ∗ < f ∗ and the difference
f ∗ − φ∗ = 1/2 is the duality gap.

11.8 Rules for Constructing the Lagrangian Dual Explicitly

Sometimes it is possible to construct the dual explicitly. We use the following
example to illustrate the steps.

Example 1 (Dual of Soft-Margin Minimization in SVM) As presented earlier, for a
given positive weight β the soft-margin minimization model is

minimize
1

2
|x|2 + β(1T u+ 1T v)

subject to AT x+ 1x0 + u � 1

−BT x− 1x0 + v � 1

u ≥ 0, v ≥ 0.

As before, after introducing multiplier vectors ξA and ξB for the top two sets
of inequality constraints (we keep u ≥ 0, v ≥ 0 as constraint �), the Lagrangian
becomes

l(x, x0, u, v, ξA, ξB)

= 1

2
|x|2 + β(1T u+ 1T v)− ξT

A(AT x+ 1x0 + u− 1)− ξT
B(−BT x− 1x0 + v− 1)

= 1

2
|x|2 + (−ξT

AAT + ξT
BBT)x+ (−1T ξA + 1T ξB)x0 + (β1 − ξA)T u+ (β1− ξB)T v.

By definition, the dual objective

φ(ξA, ξB) = inf {l(x, x0, u, v, ξA, ξB) : u ≥ 0, v ≥ 0}

and the dual would choose (ξA, ξB) ≥ 0 to maximize it.
First, if the dual does not make −1T ξA + 1T ξB = 0, then clearly φ(ξA, ξB) =

−∞ since x0 can be chosen arbitrarily. To avoid this outcome, the dual would
choose−1T ξA + 1T ξB = 0. Then the Lagrangian, after removing x0, is reduced to

l(x, u, v, ξA, ξB) = 1

2
|x|2 + (−ξT

AAT + ξT
BBT)x+ (β1− ξA)T u+ (β1− ξB)T v.

Second, we must have x = AξA − BξB in the Lagrangian minimization since the
function is convex in x. Replacing x by this formula in the Lagrangian, the function

396 11 Constrained Optimization Conditions

is further reduced to

l(u, v, ξA, ξB) = −1

2
|AξA − BξB |2 + (β1− ξA)T u+ (β1− ξB)T v.

Finally, if one of β1 − ξA, say the j th, is negative, then φ(ξA, ξB) = −∞ by
choosing uj →∞ in the Lagrangian. The same holds for β1 − ξB . Thus, the dual
would make both of them nonnegative. Therefore, the minimum of (β1− ξA)T u+
(β1− ξB)T v, given u ≥ 0, v ≥ 0 in the Lagrangian minimization, is 0. Therefore,
we have the Lagrangian further reduced to

l(ξA, ξB) = −1

2
|AξA − BξB |2,

where no primal variables appear, so that it reduces to φ(ξA, ξB). Consequently, the
dual of the problem is

maximize
−1

2
|AξA − BξB |2

subject to −1T ξA + 1T ξB = 0

β1− ξA ≥ 0, β1− ξB ≥ 0

ξA ≥ 0, ξB ≥ 0.

The interpretation of the dual is to find two distributions, ξA and ξB , with equal
total mass (first constraint) and every density is bounded above by β, such that
the distance between the convex combination of data points in A and the convex
combination of data points in B is minimized.

Recall that the KKT conditions for the primal problem of the above example include

(MSC) : ξA ≥ 0, ξB ≥ 0
(LDC) : ∇xl(·) = x− AξA + BξB = 0

∇x0 l(·) = −1T ξA + 1T ξB = 0
∇ul(·) = β1− ξA ≥ 0 and ∇vl(·) = β1− ξB ≥ 0.

Thus, the general rules to construct the Lagrangian dual would be:

(i) Constraints in the Dual: the multiplier sign constraints (MSC). Additionally, if
no primal variables appeared in (LDC), set them as constraints in the dual, and
remove them from the Lagrangian.

(ii) Dual Objective: Express the primal variables in the rest of (LDC) in terms of
multipliers, and substitute them into the Lagrangian, which becomes the dual
objective (this may be hard to do symbolically).

11.9 Summary 397

Example 2 (Dual of Linear Program with Barrier Function) Recall the linear
program with logarithmic barrier function (5.6)

(BP) minimize cT x− μ

n∑
j=1

log xj subject to Ax = b, x > 0.

Since all nonnegative constraints are redundant, we can omit them and write the
Lagrangian as

l(x, y) = cT x− μ

n∑
j=1

log xj − yT (Ax− b) = (c−AT y)T x− μ

n∑
j=1

log xj + bT y,

where y are the multipliers of the equality constraints. The (LDC) condition is

cj − yT aj − μ/xj = 0, or xj = μ

cj − yT aj

for each j.

Substituting this expression to replace xj in the Lagrangian, we have

φ(y) = l(y) = nμ(1− log(μ))+ bT y+ μ

n∑
j=1

log(cj − yT aj).

This is in fact of the dual linear program with the logarithmic barrier function on
constraints cj − yT aj ≥ 0, ∀j . This symmetry feature of the logarithmic barrier
function makes it especially effective compared to other barrier functions; see more
in Chap. 13.

11.9 Summary

Given a minimization problem subject to equality constraints in which all functions
are smooth, a necessary condition satisfied at a minimum point is that the gradient
of the objective function is orthogonal to the tangent plane of the constraint surface.
If the point is regular, then the tangent plane has a simple representation in terms of
the gradients of the constraint functions, and the above condition can be expressed
in terms of Lagrange multipliers.

If the functions have continuous second partial derivatives and Lagrange multi-
pliers exist, then the Hessian of the Lagrangian restricted to the tangent plane plays
a role in second-order conditions analogous to that played by the Hessian of the
objective function in unconstrained problems. Specifically, the restricted Hessian
must be positive semidefinite at a relative minimum point and, conversely, if it is

398 11 Constrained Optimization Conditions

positive definite at a point satisfying the first-order conditions, that point is a strict
local minimum point.

Inequalities are treated by determining which of them are active at a solution. An
active inequality then acts just like an equality, except that its associated Lagrange
multiplier can never be negative because of the sensitivity interpretation of the
multipliers.

The necessary conditions for convex problems can be expressed without deriva-
tives, and these are according termed zero-order conditions. These conditions are
highly geometric in character and explicitly treat the Lagrange multiplier as a vector
in a space having dimension equal to that of the right-hand-side of the constraints.
This Lagrange multiplier vector defines a hyperplane that separates the epigraph
of the primal function from a set of unattainable objective and constraint value
combinations.

The Lagrangian duality and “zero-order” optimality condition developed in this
chapter establishes a theoretical base of the Lagrangian relaxation method, which
will be introduced later and is extremely popular for large-scale optimization. It
includes the conic duality as a structured special case. Typically, the dual presents a
different point of view than the associated primal problem.

11.10 Exercises

1. In E2 consider the constraints

x1 � 0, x2 � 0

x2 − (x1 − 1)2 � 0.

Show that the point x1 = 1, x2 = 0 is feasible but is not a regular point.
2. Find the rectangle of given perimeter that has greatest area by solving the first-

order necessary conditions. Verify that the second-order sufficiency conditions
are satisfied.

3. Verify the second-order conditions for the entropy example of Sect. 11.3.
4. A cardboard box for packing quantities of small foam balls is to be manu-

factured as shown in Fig. 11.11. The top, bottom, and front faces must be of
double weight (i.e., two pieces of cardboard). A problem posed is to find the
dimensions of such a box that maximize the volume for a given amount of
cardboard, equal to 72 sq. ft.

(a) What are the first-order necessary conditions?
(b) Find x, y, z.
(c) Verify the second-order conditions.

11.10 Exercises 399

Fig. 11.11 Packing box

5. Define

L =
⎡
⎣

4 3 2
3 1 1
2 1 1

⎤
⎦ , h = (1, 1, 0),

and let M be the subspace consisting of those points x = (x1, x2, x3) satisfying
hT x = 0.

(a) Find LM .
(b) Find the eigenvalues of LM .
(c) Find

p(λ) = det

[
0 hT

−h L− Iλ

]
.

(d) Apply the projected Hessian test.

6. Show that zT x = 0 for all x satisfying Ax = 0 if and only if z = AT w for
some w. (Hint: Use the Duality Theorem of Linear Programming.)

7. After a heavy military campaign a certain army requires many new shoes.
The quartermaster can order three sizes of shoes. Although he does not know
precisely how many of each size are required, he feels that the demand for
the three sizes are independent and the demand for each size is uniformly
distributed between zero and three thousand pairs. He wishes to allocate his
shoe budget of $4,000 among the three sizes so as to maximize the expected
number of men properly shod. Small shoes cost $1 per pair, medium shoes cost
$2 per pair, and large shoes cost $4 per pair. How many pairs of each size should
he order?

400 11 Constrained Optimization Conditions

8. Optimal control. A one-dimensional dynamic process is governed by a differ-
ence equation

x(k + 1) = φ(x(k), u(k), k)

with initial condition x(0) = x0. In this equation the value x(k) is called the
state at step k and u(k) is the control at step k. Associated with this system
there is an objective function of the form

J =
N∑

k=0

ψ(x(k), u(k), k).

In addition, there is a terminal constraint of the form

g(x(N + 1)) = 0.

The problem is to find the sequence of controls u(0), u(1), u(2), . . . , u(N)

and corresponding state values to minimize the objective function while
satisfying the terminal constraint. Assuming all functions have continuous
first partial derivatives and that the regularity condition is satisfied, show that
associated with an optimal solution there is a sequence λ(k), k = 0, 1, . . . , N

and a μ such that

λ(k − 1) = λ(k)φx(x(k), u(k), k)+ ψx(x(k), u(k), k), k = 1, 2, . . . , N

λ(N) = μgx(x(N + 1))

ψu(x(k), u(k), k)+ λ(k)φu(x(k), u(k), k) = 0, k = 0, 1, 2, . . . , N.

9. Generalize Exercise 8 to include the case where the state x(k) is an n-
dimensional vector and the control u(k) is an m-dimensional vector at each
stage k.

10. An egocentric young man has just inherited a fortune F and is now planning
how to spend it so as to maximize his total lifetime enjoyment. He deduces
that if x(k) denotes his capital at the beginning of year k, his holdings will be
approximately governed by the difference equation

x(k + 1) = αx(k)− u(k), x(0) = F,

where α � 1 (with α − 1 as the interest rate of investment) and where u(k) is
the amount spent in year k. He decides that the enjoyment achieved in year k

can be expressed as ψ(u(k)) where ψ , his utility function, is a smooth function,

11.10 Exercises 401

and that his total lifetime enjoyment is

J =
N∑

k=0

ψ(u(k))βk,

where the term βk(0 < β < 1) reflects the notion that future enjoyment
is counted less today. The young man wishes to determine the sequence of
expenditures that will maximize his total enjoyment subject to the condition
x(N + 1) = 0.

(a) Find the general optimality relationship for this problem.
(b) Find the solution for the special case ψ(u) = u1/2.

11. Let A be an m × n matrix of rank m and let L be an n × n matrix that is
symmetric and positive definite on the subspace M = {x : Ax = 0}. Show that
the (n+m)× (n+m) matrix

[
L AT

A 0

]

is nonsingular.
12. Consider the quadratic program

minimize
1

2
xT Qx− bT x

subject to Ax = c.

Prove that x∗ is a local minimum point if and only if it is a global minimum
point. (No convexity is assumed.)

13. Maximize 14x − x2 + 6y − y2 + 7 subject to x + y � 2, x + 2y � 3.
14. Consider the problem min {f (x) : g(x) ≥ 0} where f, g are C1. Prove that

every minimizer must be a KKT solution if the constraints satisfy the Slater
condition: functions of g are all concave and there is an x0 such that g(x0) > 0
(hint: Farkas’ lemma). Slater condition is one kind of constraint qualification to
replace the regularity condition.

15. Show that the problem of finding the rectangle of maximum area with a diago-
nal of unit length can be formulated as an unconstrained convex programming
problem using trigonometric functions. [Hint: use variable θ over the range
0 ≤ θ ≤ 45◦.]

16. Consider a quadratically constrained quadratic minimization problem with a
parameter κ > 0:

min (x1 − 1)2 + (x2)
2 s.t. − x1 + κ · (x2)

2 ≥ 0.

402 11 Constrained Optimization Conditions

(a) Is x = 0 a first-order KKT solution?
(b) Is x = 0 a second-order necessary KKT solution for some value of κ?
(c) Is x = 0 a second-order sufficient KKT solution for some value of κ?

17. Prove z(b) of (11.11) is a convex function if f is convex and h is affine.
18. Use Farkas’ lemma to prove that all minimizers of Problem (11.28) must be

KKT points if both h, g are affine (no need for the regularity assumption).
19. Prove the Eisenberg–Gale theorem of the Fisher market in Sect. 11.6. In

particular, consider a two-buyer and two-product instance:

max 2x11 + x12

Buyer 1: s.t. p1x11 + p2x12 ≤ 5,

(x11, x12) ≥ 0,

max 3x21 + x22

Buyer 2: s.t. p1x21 + p2x22 ≤ 8,

(x21, x22) ≥ 0,

where each of the products have one unit of supply in the market.

(a) What is the social optimization problem of the instance?
(b) Using any optimization solver, solve the social problem.
(c) What are the equilibrium prices and product allocations to each of the two

buyers? Verify that they are also optimal for each buyer individually.
(d) Use the information to construct exact and rational-number prices and

allocations for the instance.
(e) Suppose that all input data are integer or rational numbers, prove that

there always exists a rational-number price vector, together with a rational-
number product allocation solution, for the Fisher market.

20. (Linear programming) Use the global duality theorem to find the dual of the
linear program

minimize cT x

subject to Ax = b, x ≥ 0.

Note that some of the regularity conditions may not be necessary for the linear
case.

21. (Double dual) Show that for a convex programming problem with a solution,
the dual of the dual is in some sense the original problem.

References

11.1–11.2 For a classic treatment of Lagrange multipliers see Hancock [H4]. Also
see Fiacco and McCormick [F4], Luenberger [L8], or McCormick [M2].

11.3 The simple formula for the characteristic polynomial of LM as an (n+m)

th-order determinant is apparently due to Luenberger [L17].

11.10 Exercises 403

11.4–11.5 The materials presented here are standard. The systematic treatment of
inequality constraints was published by Kuhn and Tucker [K11]. Later it
was found that the essential elements of the theory were contained in the
1939 unpublished M. Sci. Dissertation of W. Karush in the Department
of Mathematics, University of Chicago. It is common to recognize this
contribution by including his name to the conditions for optimality.

11.7 Global duality was developed in conjunction with the theory of
Sect. 11.7, by Hurwicz [H14] and Slater [S7]. An important early
differential form of duality was developed by Wolfe [W3]. The convex
theory can be traced to the Legendre transformation used in the calculus
of variations but it owes its main heritage to Fenchel [F3]. This line
was further developed by Karlin [K1] and Hurwicz [H14]. Also see
Luenberger [L8].

Chapter 12
Primal Methods

In this chapter we initiate the presentation, analysis, and comparison of algorithms
designed to solve constrained minimization problems. The four chapters that
consider such problems roughly correspond to the following classification scheme.
Consider a constrained minimization problem having n variables and m constraints.
Methods can be devised for solving this problem that work in spaces of dimension
n−m, n, m, or n+m. Each of the following chapters corresponds to methods in one
of these spaces. Thus, the methods in the different chapters represent quite different
approaches and are founded on different aspects of the theory. However, there are
also strong interconnections between the methods of the various chapters, both in the
final form of implementation and in their performance. Indeed, there soon emerges
the theme that the rates of convergence of most practical algorithms are determined
by the Lipschitz constants and the structure of the Hessian of the Lagrangian
much like the structure of the Hessian of the objective function determines the
rates of convergence for a wide assortment of methods for unconstrained problems.
Thus, although the various algorithms of these chapters differ substantially in their
motivation, they are ultimately found to be governed by a common set of principles.

Advantage of Primal Methods
We consider the question of solving the general nonlinear programming problem

minimize f (x)

subject to h(x) = 0, g(x) � 0
(12.1)

where x is of dimension n, while f , g, and h have dimensions 1, p, and m,
respectively. It is assumed throughout the chapter that all of the functions have
continuous partial derivatives of order three. Geometrically, we regard the problem
as that of minimizing f over the region in En defined by the constraints.

By a primal method of solution we mean a search method that works on the
original problem directly by searching through the feasible region for the optimal

© Springer Nature Switzerland AG 2021
D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
https://doi.org/10.1007/978-3-030-85450-8_12

405

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85450-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-85450-8_12

406 12 Primal Methods

solution. Each point in the process is feasible and the value of the objective
function constantly decreases. For a problem with n variables and having m equality
constraints only, primal methods work in the feasible space, which has dimension
n−m.

Primal methods possess three significant advantages that recommend their use
as general procedures applicable to almost all nonlinear programming problems.
First, since each point generated in the search procedure is feasible, if the process
is terminated before reaching the solution (as practicality almost always dictates
for nonlinear problems), the terminating point is feasible. Thus this final point is a
feasible and probably nearly optimal solution to the original problem and therefore
may represent an acceptable solution to the practical problem that motivated the
nonlinear program. A second attractive feature of primal methods is that, often,
it can be guaranteed that if they generate a convergent sequence, the limit point
of that sequence must be at least a local constrained minimum. Finally, a major
advantage is that most primal methods do not rely on special problem structure,
such as convexity, and hence these methods are applicable to general nonlinear
programming problems.

Primal methods are not, however, without major disadvantages. They require a
Phase I procedure (see Sect. 4.2) to obtain an initial feasible point, and they are all
plagued, particularly for problems with nonlinear constraints, with computational
difficulties arising from the necessity to remain within the feasible region as the
method progresses. Some methods can fail to converge for problems with inequality
constraints unless elaborate precautions are taken. Therefore, primal methods are
most suitable for solving problems with linear/affine constraints (i.e., the constraint
set is polyhedral) or simple nonlinear constraint sets such as a ball or ellipsoid. More
complex nonlinear constraints are generally better handled by the penalty/barrier
and Lagrangian dual methods presented in the next two chapters.

The convergence rates of primal methods are competitive with those of other
methods, and particularly for affine constraints, they are often among the most
efficient. On balance their general applicability and simplicity place these methods
in a role of central importance among nonlinear programming algorithms.

12.1 Infeasible Direction and the Steepest Descent Projection
Method

To take advantage of the convergence properties of the steepest descent method
established for unconstrained optimization, we first describe an infeasible direction
method due to its simplicity. Let f be a first-order β-Lipschitz function. Then,
rather than finding a simultaneously descent and feasible direction, the steepest
descent projection methods take steps along the negative gradient vector, ignoring
the feasibility, and then projects the new iterate back to the feasible region.

12.1 Infeasible Direction and the Steepest Descent Projection Method 407

Fig. 12.1 Steepest descent
projection method

More precisely, let the feasible region be �. Then, given the current iterate xk ∈
� and gk = ∇f (xk)

T , do the following two consecutive calculations:

x̂k+1 = xk − 1
2β

gk

xk+1 = Proj�(x̂k+1), (12.2)

where Proj�(x) is defined as

Proj�(x) = arg min
y
{ |y− x|2 : y ∈ � }. (12.3)

Repeat the process until |xk+1 − xk| < ε for a predetermined tolerance of ε > 0
(Fig. 12.1).

Note that the stepsize of first calculation is a half of the stepsize typically used for
unconstrained optimization. This will play a key role in the convergence analysis.
Two questions naturally arise: (1) Is the method descent? (2) Is the projection
computable?

We answer the first question. Given the formula of x̂k+1, problem (12.3) is
equivalent to (after removing constant 1

4β2 |gk|2 in the objective)

zk = minimize |y− xk|2 + 1

β
gT
k (y− xk) (12.4)

subject to y ∈ �.

Since y = xk is a feasible solution, we must have zk ≤ 0 which implies

gT
k (xk+1 − xk) ≤ −β|xk+1 − xk|2

since xk+1 is the minimizer. Consequently, from the first-order β-Lipschitz condi-
tion,

f (xk+1)− f (xk) ≤ gT
k (xk+1 − xk)+ β

2
|xk+1 − xk|2 ≤ −β

2
|xk+1 − xk|2.

408 12 Primal Methods

Therefore, the method generates a sequence of strictly descending iterates xk ,
starting from any initial feasible x0, unless xk+1− xk = 0. This case implies that xk

is already a first-order stationary solution, that is, there is no direction d = xk+1−xk

which is descent and feasible for the convex hull of � (that contains � when it is
not convex).

Theorem Assuming bounded minimum, for a given ε, the convergence speed of the Steep-
est Descent Projection method is consistent with that for the unconstrained optimization. It
generates a first-order ε-stationary solution in O(1

ε2) iterations, that is, if there is a descent
and feasible direction in the convex hull of �, its norm must be less than ε.

To further interpret d = xk+1 − xk , consider the two following examples.

Example 1 Consider the conic optimization

minimize f (x)

subject to x ≥ 0.

The projection would simply be

xk+1 = max{0, xk− 1

2β
∇f (xk)

T }, or d = xk+1−xk = max{0, xk− 1

2β
∇f (xk)

T }−xk.

Then, we have cases as:

∇f (xk)j < 0 ⇒ dj = − 1
2β

∇f (xk)j

∇f (xk)j ≥ 0 & xj > 1
2β

∇f (xk)j ⇒ dj = − 1
2β

∇f (xk)j

∇f (xk)j ≥ 0 & xj ≤ 1
2β

∇f (xk)j ⇒ dj = −(xk)j .

Therefore, d represents the Lagrangian derivative and complementary slackness
residuals of the first-order optimality conditions: for every j , one of xj and ∇f (xk)j
converges to zero; and when xj → 0, ∇f (xk)j ≥ 0.

Example 2 Consider � = {x : Ax = b} and assume A has full row rank. Then the
projection is

xk+1 = arg miny |y− xk + 1

2β
gk|2

subject to Ay = b.

Substitute variables by d = y − xk , because xk is also feasible, the problem can be
rewritten as

minimize |d+ 1

2β
gk|2

subject to Ad = 0.

12.1 Infeasible Direction and the Steepest Descent Projection Method 409

The close-form solution to this direction is

d = − 1

2β

(
I− AT (AAT)−1A

)
gk.

That is, the gradient projection onto the null space of matrix A. Thus

xk+1 = xk + d = xk − 1

2β

(
I− AT (AAT)−1A

)
gk.

Let λk = (AAT)−1Agk and d = −gT
k + λT

k A. Then, not only is d a descent and
feasible direction, it also represents the Lagrangian derivative residuals of the first-
order conditions that need to vanish.

If f is a convex function, then convergence speed can be further accelerated,
similar to the steepest descent method applied for solving unconstrained convex
minimization. More precisely, |gk| ≤ ε in O(1

ε
) iterations, or even to O(1√

ε
).

Furthermore, one should use the Lipschitz constant restricted on the null space of A
or the largest eigenvalue of the projected Hessian on the subspace (see Sect. 11.4).
This is typically smaller than the (global) constant β in the definition, which means
one can take a larger stepsize.

Now we answer the second question: Is problem (12.3) easy to solve? When �

is convex, then the problem can be solved as a convex optimization problem since
its objective is a convex quadratic function. Surprisingly, it can still be efficiently
solved when � has certain structures. We list few cases below.

1. Cube constraint � = {y : 0 ≤ y ≤ 1}: y = min{ 1, max{0, x} }.
2. Support size of x, |supp(x)|, is bounded by d(< n): y is the truncated x with the

largest d absolute-value entries remaining.
3. Integer grid: y is the entry-wise integer rounding of x.
4. Positive semidefinite cone: Factorize X = X+ −X−, where both X+ and X− are

positive semidefinite, and let Y = X+.
5. Positive semidefinite cone with rank no more than d(< n): Find the

largest d eigenvalues and eigenvectors, (λj , vj), of X, and let Y =∑d
j=1 max{0, λj }vjvT

j .

Example 3 The compressed sensing problem presented in Sect. 11.3, with the
cardinality (the number of nonzero entries) of x bounded by d , can be written as

minimize |Ax− b|2
subject to |supp(x)| ≤ d.

The objective function is a sum of linear squares so it is a convex function.

410 12 Primal Methods

Example 4 The sensor network localization relaxation problem in d-dimensional
space presented in Sect. 6.2 can be written as

minimize
∑
(i,j)

∣∣∣(ei − ej)(ei − ej)
T • Y− (dij)

2
∣∣∣
2

subject to Y � 0, rank(Y) ≤ d.

The objective function is a sum of linear squares so it is a convex function.

Convergence Analysis for Convex Optimization
Here, we let f (x) be a first-order β-Lipschitz function and convex and � be a convex
region. Then, the steepest descent projection method generates

f (xk+1)− f (xk)+ β

2
|xk+1 − xk|2

≤ ∇f (xk)
T (xk+1 − xk)+ β

2
|xk+1 − xk|2 + β

2
|xk+1 − xk|2

= ∇f (xk)
T (xk+1 − xk)+ β|xk+1 − xk|2.

Let x∗ ∈ � denote the minimal solution of f and dk = xk+1 − xk . Then we must
have, because αx∗ + (1− α)xk ∈ � for any 0 ≤ α ≤ 1,

f (xk+1)− f (xk)+ β

2
|dk|2

≤ ∇f (xk)
T (xk+1 − xk)+ β|xk+1 − xk|2

≤ ∇f (xk)
T (αx∗ + (1− α)xk − xk)+ β|αx∗ + (1− α)xk − xk|2

= α∇f (xk)
T (x∗ − xk)+ α2β|x∗ − xk|2, ∀0 ≤ α ≤ 1.

(12.5)

Since f is a convex function,

f (x∗)− f (xk) ≥ ∇f (xk)
T (x∗ − xk)

so that ∇f (xk)
T (x∗ − xk) is negative and

|∇f (xk)
T (x∗ − xk)| = −∇f (xk)

T (x∗ − xk) ≥ f (xk)− f (x∗) > 0. (12.6)

Now we choose α∗ to minimize the last expression in (12.5), and it is

α∗ = min

{
1,
|∇f (xk)

T (x∗ − xk)|
2β
2

k

}
,

12.1 Infeasible Direction and the Steepest Descent Projection Method 411

where
k = |x∗−xk|. If α∗ = 1 then xk+1 = x∗ and stop, so that we expect α∗ < 1.
Therefore, from (12.5)

f (xk+1)− f (xk)+ β

2
|dk|2 ≤ −|∇f (xk)

T (x∗ − xk)|2
4β
2

k

.

Let δk = f (xk)− f (x∗) and note |∇f (xk)
T (x∗ − xk)| ≥ δk from (12.6). Then

β

2
|dk|2 + δk+1 ≤ δk − |∇f (xk)

T (x∗ − xk)|2
4β
2

k

≤ δk − δ2
k

4β
2
k

=
(

1− δk

4β
2
k

)
δk.

(12.7)

This inequality, omitting term β
2 |dk|2 on the left, implies

log

(
δk+1

δk

)
≤ log

(
1− δk

4β
2
k

)
≤ − δk

4β
2
k

.

Summing up over all iterates to k + 1,

log

(
δk+1

δ0

)
≤ −

∑
k δk

4β
2
k

≤ − (k + 2)δk+1

4β
2
k

or δk+1 ≤ 4β
2
k

k + 2
log

(
δ0

δk+1

)
,

which gives an arithmetic convergence speed O(log(k)/k) to zero for δk.
If f is strictly convex, that is,

δk = f (xk)− f (x∗) ≥ ∇f (xk)
T (xk − x∗)+ λ
2

k ≥ λ
2
k

for some constant λ ≤ β. Then, from (12.7)

δk+1 ≤
(

1− δk

4β
2
k

)
δk ≤

(
1− λ

4β

)
δk

which gives a linear convergence rate as was exhibited when the steepest descent
method was applied to unconstrained optimization.

One can see that the above analyses also work when � is x∗-star convex, that is,
for any x ∈ �, the convex combination of αx∗ + (1 − α)x ∈ � for all 0 ≤ α ≤ 1.
General star-convex set examples: (i) all cones are 0-star convex; (ii) support size
bounded vector set is x∗-star convex when supp(x∗) ⊂ supp(x) ∈ � where x∗ is the
sparsest optimal solution.

We summarize these results in the following theorem.

Theorem Let f ∈ C1 be convex and � be x∗-star convex where x∗ is the minimizer of f

in �. For an initial solution x0 ∈ �, also assume that the level set {x ∈ � : f (x) ≤ f (x0)}

412 12 Primal Methods

be bounded with diameter
. Then, in at most

O(
β
2

ε
log(

f (x0)− f (x∗)
ε

))

steps of the steepest descent projection method, f (xk)− f (x∗) < ε.
If further f is strictly convex, then the convergence rate is linear, that is, in at most
O(log(

f (x0)−f (x∗)
ε

)) steps of the method, f (xk)− f (x∗) < ε.

12.2 Feasible Direction Methods: Sequential Linear
Programming

The idea of feasible direction methods is to take steps through the feasible region of
the form

xk+1 = xk + αkdk, (12.8)

where dk is a direction vector and αk is a nonnegative scalar. The scalar is chosen
to minimize the objective function f with the restriction that the point xk+1 and
the line segment joining xk and xk+1 be feasible. Thus, in order that the process of
minimizing with respect to stepsize α be nontrivial, an initial segment of the ray
xk +αdk, α > 0 must be contained in the feasible region. This motivates the use of
feasible directions for the directions of search. We recall from Sect. 7.1 that a vector
dk is a feasible direction (at xk) if there is an ᾱ > 0 such that xk + αdk is feasible
for all α, 0 � α � ᾱ. A feasible direction method can be considered as a natural
extension of our unconstrained descent methods. Each step is the composition of
selecting a feasible direction and a constrained line search.

Let us consider the problem with linear inequality constraints

minimize f (x)

subject to aT
i x � bi, i = 1, . . .,m.

(12.9)

Example 1 (Frank–Wolfe Method) One of the earliest proposals for a feasible
direction method uses a sequential linear programming subproblem approach. Given
a feasible point xk, the direction vector

dk = x∗k − xk

where x∗k is a solution to the linear program

minimize ∇f (xk)x
subject to aT

i x � bi, i = 1, . . .,m.

A line search procedure is then used to determine the stepsize.

12.2 Feasible Direction Methods: Sequential Linear Programming 413

Example 2 (Simplified Zoutendijk Method) Another proposal solves a sequence of
linear subprograms in the direction space as follows. Given a feasible point, xk, let
I be the set of indices representing active constraints, that is, aT

i xk = bi for i ∈ I .
The direction vector dk is then chosen as a solution to the linear program

minimize ∇f (xk)d
subject to aT

i d � 0, i ∈ I

|d|1 ≤ 1,

(12.10)

where d = (d1, d2, . . . , dn). The last equation is a 1-norm constraint that ensures
a bounded solution. (note that the problem can be converted to a linear program; see
Exercise 3.) The other constraints assure that vectors of the form xk + αdk will be
feasible for sufficiently small α > 0, and subject to these conditions, d is chosen
to line up as closely as possible with the negative gradient of f . In some sense this
will result in the locally best direction in which to proceed. The overall procedure
progresses by generating feasible directions in this manner, and moving along them
to decrease the objective.

There are two major shortcomings of feasible direction methods that require that
they be modified in most cases. The first shortcoming is that for general problems
there may not exist any feasible directions. If, for example, a problem had nonlinear
equality constraints, we might find ourselves in the situation depicted by Fig. 12.2
where no straight line from xk has a feasible segment. For such problems it is
necessary either to relax our requirement of feasibility by allowing points to deviate
slightly from the constraint surface or to introduce the concept of moving along
curves rather than straight lines. Therefore, the feasible direction methods often
serve as important sub-procedures for solving nonlinearly constrained problems.

A second shortcoming is that in simplest form most feasible direction methods,
such as the simplified Zoutendijk method, are not globally convergent. They are
subject to jamming (sometimes referred to as zigzagging) where the sequence of
points generated by the process converges to a point that is not even a constrained
local minimum point. This phenomenon can be explained by the fact that the
algorithmic map is not closed.

It is possible to develop feasible direction algorithms that are closed and
hence not subject to jamming. Some procedures for doing so are discussed in
Exercises 6–9. However, such methods can become somewhat complicated. A
simpler approach for treating inequality constraints is to use an active set method,
as discussed in next and later sections.

Fig. 12.2 No feasible
direction

414 12 Primal Methods

12.3 The Gradient Projection Method

The gradient projection in Example 2 in Sect. 12.1 can be extended to handling
linear inequality constraints as in the Zoutendijk Method by working on the set of
active constraints, together with the original linear equality constraints, and it is
motivated by the ordinary method of steepest descent for unconstrained problems.
The negative gradient is projected onto the working space/surface in order to define
the direction of movement. We present it here in a simplified form that is based on
a pure active set strategy.

Linear Constraints

Consider first problems of the form

minimize f (x)

subject to aT
i x � bi, i ∈ I1

aT
i x = bi, i ∈ I2

(12.11)

having linear equalities and inequalities.
A feasible solution to the constraints, if one exists, can be found by application

of the phase I procedure of linear programming; so we shall always assume that
our descent process is initiated at such a feasible point. At a given feasible point x
there will be a certain number q of active constraints satisfying aT

i x = bi and some
inactive constraints aT

i x > bi . We initially take the working set W(x) to be the set
of active constraints. Note that I2 ⊂ W(x) always.

At the feasible point x we seek a feasible direction vector d satisfying ∇f (x)d <

0, so that movement in the direction d will cause a decrease in the function f .
Initially, we consider directions satisfying aT

i d = 0, i ∈ W(x) so that all working
constraints remain active. This requirement amounts to requiring that the direction
vector d lie in the tangent subspace M defined by the working set of constraints. The
particular direction vector that we shall use is the projection of the negative gradient
onto this subspace.

To compute this projection let Aq be defined as composed of the rows of working
constraints. Assuming regularity of the constraints, as we shall always assume, Aq

will be a q × n matrix of rank q < n. The tangent subspace M in which d must
lie is the subspace of vectors satisfying Aqd = 0. This means that the subspace N

consisting of the vectors making up the rows of Aq (that is, all vectors of the form
AT

q λ for λ ∈ Eq) is orthogonal to M . Indeed, any vector can be written as the
sum of vectors from each of these two complementary subspaces. In particular, the
negative gradient vector−gk can be written

− gk = dk − AT
q λk (12.12)

12.3 The Gradient Projection Method 415

where dk ∈ M and λk ∈ Eq . We may solve for λk through the requirement that
Aqdk = 0. Thus

Aqdk = −Aqgk + (AqAT
q)λk = 0, (12.13)

which leads to

λk = (AqAT
q)−1Aqgk (12.14)

and

dk = −[I− AT
q (AqAT

q)−1Aq]gk = −Pkgk. (12.15)

The matrix

Pk = [I − AT
q (AqAT

q)−1Aq] (12.16)

is called the projection matrix corresponding to the subspace M . Action by it on
any vector yields the projection of that vector onto M . See Exercise 10 for other
derivations of this result.

We easily check that if dk �= 0, then it is a direction of descent. Since gk + dk is
orthogonal to dk , we have

gT
k dk = (gT

k + dT
k − dT

k)dk = −|dk|2.

Thus if dk as computed from (12.15) turns out to be nonzero, it is a feasible direction
of descent on the working surface.

We next consider selection of the stepsize. As α is increased from zero, the
point x + αd will initially remain feasible and the corresponding value of f will
decrease. We find the length of the feasible segment of the line emanating from x
and then minimize f over this segment. If the minimum occurs at the endpoint, a
new constraint will become active and will be added to the working set.

Next, consider the possibility that the projected negative gradient is zero. We
have in that case

∇f (xk)− λT
k Aq = 0, (12.17)

and the point xk satisfies the necessary conditions for a minimum on the working
surface. If the components of λk corresponding to the active inequalities are all
nonnegative, then this fact together with (12.17) implies that the Karush–Kuhn–
Tucker conditions for the original problem are satisfied at xk and the process
terminates. In this case the λk found by projecting the negative gradient is
essentially the Lagrange multiplier vector for the original problem (except that zero-
valued multipliers must be appended for the inactive constraints).

416 12 Primal Methods

If, however, at least one of those components of λk is negative, it is possible, by
relaxing the corresponding inequality, to move in a new direction to an improved
point. Suppose that λjk, the j th component of λk , is negative and the indexing
is arranged so that the corresponding constraint is the inequality aT

j x � bj . We
determine the new direction vector by relaxing the j th constraint and projecting
the negative gradient onto the subspace determined by the remaining q − 1 active
constraints. Let Aq̄ denote the matrix Aq with row aj deleted. We have for some λ̄k

gk = AT
q λk (12.18)

−gk = dk − AT
q λk, (12.19)

where dk is the projection of −gk using Aq̄ . It is immediately clear that dk �= 0,
since otherwise (12.19) would be a special case of (12.18) with λjk = 0 which is
impossible, since the rows of Aq are linearly independent. From our previous work
we know that gT

k d̄k < 0. Multiplying the transpose of (12.18) by dk and using
Aq̄dk = 0 we obtain

0 > gT
k dk = λjkaT

j dk. (12.20)

Since λjk < 0 we conclude that aT
j dk > 0. Thus the vector dk is not only a direction

of descent, but it is a feasible direction, since aT
i dk = 0, i ∈ W(xk), i �= j , and

aT
j dk > 0. Hence j can be dropped from W(xk).

In summary, one step of the algorithm is as follows: Given a feasible point x:

1. Find the subspace of active constraints M , and form Aq, W(x).
2. Calculate λ = (AqAT

q)−1Aq∇f (x)T and d = −∇f (x)T + AT
q λ.

3. If d �= 0, find α1 and α2 achieving, respectively,

max{α : x+ αd is feasible}
min{f (x+ αd) : 0 � α � α1}.

Set x to x+ α2d and return to (12.1).
4. If d = 0, then do following

(a) if λj � 0, for all j corresponding to active inequalities, stop; x satisfies the
Karush–Kuhn–Tucker conditions;

(b) otherwise, delete the row from Aq corresponding to the inequality with the
most negative component of λ (and drop the corresponding constraint from
W(x)) and return to (12.8).

12.3 The Gradient Projection Method 417

We remark that Step 4(b) is exactly the dual simplex method discussed in the
first part of the book for linear programming. Note also that we avoid computing the
projection matrix but solve for λ from symmetric and positive definite matrix AqAT

q ,
possibly via its factorization. Moreover, the factorization need not be recomputed in
its entirety at each new point. Since the set of active constraints in the working set
changes by at most one constraint at a time, it is possible to calculate one required
factorization from the previous one by an updating procedure (see Exercise 12).
This is an important feature of the gradient projection method and greatly reduces
the computation required at each step.

Example Consider the problem

minimize x2
1 + x2

2 + x2
3 + x2

4 − 2x1 − 3x4

subject to 2x1 + x2 + x3 + 4x4 = 7
x1 + x2 + 2x3 + x4 = 6
xi � 0, i = 1, 2, 3, 4.

(12.21)

Suppose that given the feasible point x = (2, 2, 1, 0) we wish to find the direction
of the projected negative gradient g = (2, 4, 2,−3). The active constraints are the
two equalities and the inequality x4 � 0. Thus

Aq =
⎡
⎣

2 1 1 4
1 1 2 1
0 0 0 1

⎤
⎦ , and hence AqAT

q =
⎡
⎣

22 9 4
9 7 1
4 1 1

⎤
⎦ . (12.22)

After considerable calculation we then find

(AqAT
q)−1 = 1

11

⎡
⎣

6 −5 −19
−5 6 14
−19 14 73

⎤
⎦ , so that λ = (AqAT

q)−1(AqgT) = 1

11

⎡
⎣

10
10
−83

⎤
⎦

and finally

dT = −gT + AT
q λ = 1

11
(8,−24, 8, 0),

or normalizing by 8/11

dT = (1,−3, 1, 0). (12.23)

It can be easily verified that movement in this direction does not violate the
constraints.

418 12 Primal Methods

Nonlinear Constraints

In extending the gradient projection method to problems of the form

minimize f (x)

subject to h(x) = 0, g(x) � 0,
(12.24)

the basic idea is that at a feasible point xk one determines the active constraints and
projects the negative gradient onto the subspace tangent to the surface determined
by these constraints. This vector, if it is nonzero, determines the direction for the
next step. The vector itself, however, is not in general a feasible direction, since the
surface may be curved as illustrated in Fig. 12.3. It is therefore not always possible
to move along this projected negative gradient to obtain the next point.

What is typically done in the face of this difficulty is essentially to search along
a curve on the constraint surface, the direction of the curve being defined by the
projected negative gradient. A new point is found in the following way: First, a
move is made along the projected negative gradient to a point y. Then a move is
made in the direction perpendicular to the tangent plane at the original point to a
nearby feasible point on the working surface, as illustrated in Fig. 12.3. Once this
point is found the value of the objective is determined. This is repeated with various
y’s until a feasible point is found that satisfies one of the standard descent criteria
for improvement relative to the original point.

This procedure of tentatively moving away from the feasible region and then
coming back introduces a number of additional difficulties that require a series of
interpolations and nonlinear equation solutions for their resolution. A satisfactory
general routine implementing the gradient projection philosophy is therefore of
necessity quite complex. It is not our purpose here to elaborate on these details

Fig. 12.3 Gradient projection method

12.3 The Gradient Projection Method 419

Fig. 12.4 Interpolation to
obtain feasible point

but simply to point out the general nature of the difficulties and the basic devices for
surmounting them.

One difficulty is illustrated in Fig. 12.4. If, after moving along the projected
negative gradient to a point y, one attempts to return to a point that satisfies the
old active constraints, some inequalities that were originally satisfied may then be
violated. One must in this circumstance use an interpolation scheme to find a new
point y along the negative gradient so that when returning to the active constraints
no originally nonactive constraint is violated. Finding an appropriate y is to some
extent a trial and error process. Finally, the job of returning to the active constraints
is itself a nonlinear problem which must be solved with an iterative technique. Such
a technique is described below, but within a finite number of iterations, it cannot
exactly reach the surface. Thus typically an error tolerance δ is introduced, and
throughout the procedure the constraints are satisfied only to within δ.

Computation of the projections is also more difficult in the nonlinear case.
Lumping, for notational convenience, the active inequalities together with the
equalities into h(xk), the projection matrix at xk is

Pk = I− ∇h(xk)
T [∇h(xk)∇h(xk)

T]−1∇h(xk). (12.25)

At the point xk this matrix can be updated to account for one more or one less
constraint, just as in the linear case. When moving from xk to xk+1, however, ∇h
will change and the new projection matrix cannot be found from the old, and hence
this matrix must be recomputed at each step.

The most important new feature of the method is the problem of returning to
the feasible region from points outside this region. The type of iterative technique
employed is a common one in nonlinear programming, including interior-point
methods of linear programming, and we describe it here. The idea is, from any
point near xk , to move back to the constraint surface in a direction orthogonal
to the tangent plane at xk. Thus from a point y we seek a point of the form
y + ∇h(xk)

T α = y∗ such that h(y∗) = 0. As shown in Fig. 12.5 such a solution
may not always exist, but it does for y sufficiently close to xk.

420 12 Primal Methods

Fig. 12.5 Case in which it is
impossible to return to
surface

To find a suitable first approximation to α, and hence to y∗, we linearize the
equation at xk obtaining

h(y+ ∇h(xk)
T α) h(y)+∇h(xk)∇h(xk)

T α, (12.26)

the approximation being accurate for |α| and |y − x| small. This motivates the first
approximation

α1 = −[∇h(xk)∇h(xk)
T]−1h(y) (12.27)

y1 = y−∇h(xk)
T [∇h(xk)∇h(xk)

T]−1h(y). (12.28)

Substituting y1 for y and successively repeating the process yields the sequence {yj }
generated by

yj+1 = yj −∇h(xk)
T [∇h(xk)∇h(xk)

T]−1h(yj), (12.29)

which, started close enough to xk and the constraint surface, will converge to a
solution y∗. We note that this process requires the same matrices as the projection
operation.

The gradient projection method has been successfully implemented and has
been found to be effective in solving general nonlinear programming problems.
Successful implementation resolving the several difficulties introduced by the
requirement of staying in the feasible region requires, as one would expect, some
degree of skill. The true value of the method, however, can be determined only
through an analysis of its rate of convergence.

12.4 Convergence Rate of the Gradient Projection Method

An analysis that directly attacked the nonlinear version of the gradient projection
method, with all of its iterative and interpolative devices, would quickly become
monstrous. To obtain the asymptotic rate of convergence, however, it is not

12.4 Convergence Rate of the Gradient Projection Method 421

necessary to analyze this complex algorithm directly—instead it is sufficient to
analyze an alternate simplified algorithm that asymptotically duplicates the gradient
projection method near the solution. Through the introduction of this idealized
algorithm we show that the rate of convergence of the gradient projection method is
governed by the eigenvalue structure of the Hessian of the Lagrangian restricted to
the constraint tangent subspace.

Geodesic Descent

For simplicity we consider first the problem having only equality constraints

minimize f (x)

subject to h(x) = 0.
(12.30)

The constraints define a continuous surface � in En.
In considering our own difficulties with this problem, owing to the fact that the

surface is nonlinear thereby making directions of descent difficult to define, it is
well to also consider the problem as it would be viewed by a small bug confined to
the constraint surface who imagines it to be his total universe. To him the problem
seems to be a simple one. It is unconstrained, with respect to his universe, and is
only (n−m)-dimensional. He would characterize a solution point as a point where
the gradient of f (as measured on the surface) vanishes and where the appropriate
(n − m)-dimensional Hessian of f is positive semidefinite. If asked to develop a
computational procedure for this problem, he would undoubtedly suggest, since he
views the problem as unconstrained, the method of steepest descent. He would
compute the gradient, as measured on his surface, and would move along what
would appear to him to be straight lines.

Exactly what the bug would compute as the gradient and exactly what he would
consider as straight lines would depend basically on how distance between two
points on his surface were measured. If, as is most natural, we assume that he
inherits his notion of distance from the one which we are using in En, then the
path x(t) between two points x1 and x2 on his surface that minimizes

∫ x2
x1
|ẋ(t)|dt

would be considered a straight line by him. Such a curve, having minimum arc
length between two given points, is called a geodesic.

Returning to our own view of the problem, we note, as we have previously, that if
we project the negative gradient onto the tangent plane of the constraint surface at a
point xk, we cannot move along this projection itself and remain feasible. We might,
however, consider moving along a curve which had the same initial heading as the
projected negative gradient but which remained on the surface. Exactly which such
curve to move along is somewhat arbitrary, but a natural choice, inspired perhaps
by the considerations of the bug, is a geodesic. Specifically, at a given point on the
surface, we would determine the geodesic curve passing through that point that had

422 12 Primal Methods

Fig. 12.6 Geodesic descent

an initial heading identical to that of the projected negative gradient. We would then
move along this geodesic to a new point on the surface having a lesser value of f .

The idealized procedure then, which the bug would use without a second thought,
and which we would use if it were computationally feasible (which it definitely is
not), would at a given feasible point xk (see Fig. 12.6):

1. Calculate the projection p of −∇f (xk)
T onto the tangent plane at xk.

2. Find the geodesic, x(t), t � 0, of the constraint surface having x(0) =
xk, ẋ(0) = p.

3. Minimize f (x(t)) with respect to t � 0, obtaining tk and xk+1 = x(tk).

At this point we emphasize that this technique (which we refer to as geodesic
descent) is proposed essentially for theoretical purposes only. It does, however,
capture the main philosophy of the gradient projection method. Furthermore, as
the stepsize of the methods go to zero, as it does near the solution point, the
distance between the point that would be determined by the gradient projection
method and the point found by the idealized method goes to zero even faster. Thus
the asymptotic rates of convergence for the two methods will be equal, and it is,
therefore, appropriate to concentrate on the idealized method only.

Our bug confined to the surface would have no hesitation in estimating the rate
of convergence of this method. He would simply express it in terms of the smallest
and largest eigenvalues of the Hessian of f as measured on his surface. It should
not be surprising, then, that we show that the asymptotic convergence ratio is

(
A− a

A+ a

)2

, (12.31)

where a and A are, respectively, the smallest and largest eigenvalues of L, the
Hessian of the Lagrangian, restricted to the tangent subspace M . This result parallels
the convergence rate of the method of steepest descent, but with the eigenvalues
determined from the same restricted Hessian matrix that is important in the general
theory of necessary and sufficient conditions for constrained problems. This rate,

12.4 Convergence Rate of the Gradient Projection Method 423

which almost invariably arises when studying algorithms designed for constrained
problems, will be referred to as the canonical rate.

We emphasize again that, since this convergence ratio governs the convergence
of a large family of algorithms, it is the formula itself rather than its numerical
value that is important. For any given problem we do not suggest that this ratio be
evaluated, since this would be extremely difficult. Instead, the potency of the result
derives from the fact that fairly comprehensive comparisons among algorithms can
be made, on the basis of this formula, that apply to general classes of problems
rather than simply to particular problems.

The remainder of this section is devoted to the analysis that is required to
establish the convergence rate. Since this analysis is somewhat involved and not
crucial for an understanding of remaining material, some readers may wish to
simply read the theorem statement and proceed to the next section.

Geodesics

Given the surface � = {x : h(x) = 0} ⊂ En, a smooth curve, x(t) ∈ �, 0 � t � T

starting at x(0) and terminating at x(T) that minimizes the total arc length

∫ T

0
|ẋ(t)|dt

with respect to all other such curves on � is said to be a geodesic connecting x(0)

and x(T).
It is common to parameterize a geodesic x(t), 0 � t � T so that |ẋ(t)| = 1. The

parameter t is then itself the arc length. If the parameter t is also regarded as time,
then this parameterization corresponds to moving along the geodesic curve with unit
velocity. Parameterized in this way, the geodesic is said to be normalized. On any
linear subspace of En geodesics are straight lines. On a three-dimensional sphere,
the geodesics are arcs of great circles.

It can be shown, using the calculus of variations, that any normalized geodesic
on � satisfies the condition

ẍ(t) = ∇hT (x(t))ω(t) (12.32)

for some function ω taking values in Em. Geometrically, this condition says that
if one moves along the geodesic curve with unit velocity, the acceleration at every
point will be orthogonal to the surface. Indeed, this property can be regarded as
the fundamental defining characteristic of a geodesic. To stay on the surface �, the
geodesic must also satisfy the equation

∇h(x(t))ẋ(t) = 0, (12.33)

424 12 Primal Methods

since the velocity vector at every point is tangent to �. At a regular point x0 these
two differential equations, together with the initial conditions x(0) = x0, ẋ(0)

specified, and |ẋ(0)| = 1, uniquely specify a curve x(t), t � 0 that can be continued
as long as points on the curve are regular. Furthermore, |ẋ(t)| = 1 for t � 0. Hence
geodesic curves emanate in every direction from a regular point. Thus, for example,
at any point on a sphere there is a unique great circle passing through the point in a
given direction.

Lagrangian and Geodesics

Corresponding to any regular point x ∈ � we may define a corresponding Lagrange
multiplier λ(x) by calculating the projection of the gradient of f onto the tangent
subspace at x, denoted M(x). The matrix that, when operating on a vector, projects
it onto M(x) is

P(x) = I −∇h(x)T [∇h(x)∇h(x)T]−1∇h(x),

and it follows immediately that the projection of ∇f (x)T onto M(x) has the form

y(x) = [∇f (x)− λ(x)T ∇h(x)]T , (12.34)

where λ(x) is given explicitly as

λ(x)T = ∇f (x)∇h(x)T [∇h(x)∇h(x)T]−1. (12.35)

Thus, in terms of the Lagrangian function l(x, λ) = f (x)− λT h(x), the projected
gradient is

y(x) = lx(x, λ(x))T . (12.36)

If a local solution to the original problem occurs at a regular point x∗ ∈ �, then as
we know

lx(x∗, λ(x∗)) = 0, (12.37)

which states that the projected gradient must vanish at x∗. Defining L(x) =
lxx(x, λ(x)) = F(x) − λ(x)T H(x) we also know that at x∗ we have the second-
order necessary condition that L(x∗) is positive semidefinite on M(x∗); that is,
zT L(x∗)z � 0 for all z ∈ M(x∗). Equivalently, letting

L(x) = P(x)L(x)P(x), (12.38)

it follows that L(x∗) is positive semidefinite.

12.4 Convergence Rate of the Gradient Projection Method 425

We then have the following fundamental and simple result, valid along a
geodesic.

Proposition 1 Let x(t), 0 � t � T , be a geodesic on �. Then

d

dt
f (x(t)) = lx(x, λ(x))ẋ(t) (12.39)

d2

dt2
f (x(t)) = ẋ(t)T L(x(t))ẋ(t). (12.40)

Proof We have

d

dt
f (x(t)) = ∇f (x(t))ẋ(t) = lx(x, λ(x))ẋ(t),

the second equality following from the fact that ẋ(t) ∈ M(x). Next,

d2

dt2
f (x(t)) = ẋ(t)T F(x(t))ẋ(t)+∇f (x(t))ẍ(t). (12.41)

But differentiating the relation λT h(x(t)) = 0 twice, for fixed λ, yields

ẋ(t)T λT H(x(t))ẋ(t)+ λT ∇h(x(t))ẍ(t) = 0.

Adding this to (12.41), we have

d2

dt2
f (x(t)) = ẋ(t)T (F− λT H)ẋ(t)+ (∇f (x)− λT ∇h(x))ẍ(t),

which is true for any fixed λ. Setting λ = λ(x) determined as above, (∇f−λT ∇h)T

is in M(x) and hence orthogonal to ẍ(t), since x(t) is a normalized geodesic. This
gives (12.40).

It should be noted that we proved a simplified version of this result in Chap. 11.
There the result was given only for the optimal point x∗, although it was valid for
any curve. Here we have shown that essentially the same result is valid at any point
provided that we move along a geodesic.

Rate of Convergence

We now prove the main theorem regarding the rate of convergence. We assume
that all functions are three times continuously differentiable and that every point
in a region near the solution x∗ is regular. This theorem only establishes the rate
of convergence and not convergence itself so for that reason the stated hypotheses

426 12 Primal Methods

assume that the method of geodesic descent generates a sequence {xk} converging
to x∗.

Theorem Let x∗ be a local solution to the problem (12.30) and suppose that A and a > 0
are, respectively, the largest and smallest eigenvalues of L(x∗) restricted to the tangent
subspace M(x∗). If {xk} is a sequence generated by the method of geodesic descent that
converges to x∗, then the sequence of objective values {f (xk)} converges to f (x∗) linearly
with a ratio no greater than [(A− a)/(A + a)]2 .

Proof Without loss of generality we may assume f (x∗) = 0. Given a point xk it
will be convenient to define its distance from the solution point x∗ as the arc length
of the geodesic connecting x∗ and xk. Thus if x(t) is a parameterized version of the
geodesic with x(0) = x∗, |ẋ(t)| = 1, x(T) = xk, then T is the distance of xk

from x∗. Associated with such a geodesic we also have the family y(t), 0 � t � T ,
of corresponding projected gradients y(t) = lx(x, λ(x))T , and Hessians L(t) =
L(x(t)). We write yk = y(xk), Lk = L(xk).

We now derive an estimate for f (xk). Using the geodesic discussed above we
can write (setting ẋk = ẋ(T))

f (x∗)− f (xk) = −f (xk) = −yT
k ẋkT + 1

2
T 2ẋT

k Lk ẋk + o(T 2), (12.42)

which follows from Proposition 1. We also have

yk = −y(x∗)+ y(xk) = ẏkT + o(T). (12.43)

But differentiating (12.34) we obtain

ẏk = Lk ẋk −∇h(xk)
T λ̇

T

k , (12.44)

and hence if Pk is the projection matrix onto M(xk) =Mk , we have

Pk ẏk = PkLk ẋk. (12.45)

Multiplying (12.43) by Pk and accounting for Pkyk = yk we have

Pk ẏkT = yk + o(T). (12.46)

Substituting (12.45) into this we obtain

PkLk ẋkT = yk + o(T).

Since Pk ẋk = ẋk we have, defining Lk = PkLkPk ,

LkẋkT = yk + o(T). (12.47)

12.4 Convergence Rate of the Gradient Projection Method 427

The matrix Lk is related to LMk , the restriction of Lk to Mk , the only difference
being that while LMk is defined only on Mk , the matrix Lk is defined on all of En

but in such a way that it agrees with LMk on Mk and is zero on M⊥
k . The matrix Lk

is not invertible, but for yk ∈ Mk there is a unique solution z ∈ Mk to the equation

Lkz = yk which we denote† Lk
−1

yk . With this notation we obtain from (12.47)

ẋkT = Lk
−1

yk + o(T). (12.48)

Substituting this last result into (12.42) and accounting for |yk| = O(T)

(see (12.43)) we have

f (xk) = 1

2
yT
k L

−1
k yk + o(T 2), (12.49)

which expresses the objective value at xk in terms of the projected gradient.
Since |ẋk| = 1 and since Lk → L

∗
as xk → x∗, we see from (12.47) that

o(T)+ aT � |yk| � AT + o(T), (12.50)

which means that not only do we have |yk| = O(T), which was known before, but
also |yk| �= o(T). We may therefore write our estimate (12.49) in the alternate form

f (xk) = 1

2
yT
k Lk

−1
yk

(
1+ o(T 2)

yT
k L

−1
k yk

)
, (12.51)

and since o(T 2) �= yT
k L

−1
k yk = O(T 2), we have

f (xk) = 1

2
yT
k L

−1
k yk(1+O(T)), (12.52)

which is the desired estimate.
Next, we estimate f (xk+1) in terms of f (xk). Given xk now let x(t), t � 0, be

the normalized geodesic emanating from xk ≡ x(0) in the direction of the negative
projected gradient, that is,

ẋ(0) ≡ ẋk = −yk/|yk|.

Then

f (x(t)) = f (xk)+ tyT
k ẋk + t2

2
ẋT
k Lk ẋk + o(t2). (12.53)

† Actually a more standard procedure is to define the pseudoinverse L
†
k , and then z = L

†
kyk .

428 12 Primal Methods

This is minimized at

tk = − yT
k ẋk

ẋT
k Lk ẋk

+ o(tk). (12.54)

In view of (12.50) this implies that tk = O(T), tk �= o(T). Thus tk goes to zero at
essentially the same rate as T . Thus we have

f (xk+1) = f (xk)− 1

2

(yT
k ẋk)

2

ẋT
k Lk ẋk

+ o(T 2). (12.55)

Using the same argument as before we can express this as

f (xk)− f (xk+1) = 1

2

(yT
k yk)

2

yT
k Lkyk

(1+O(T)), (12.56)

which is the other required estimate.
Finally, dividing (12.56) by (12.52) we find

f (xk)− f (xk+1)

f (xk)
= (yT

k yk)
2(1+O(T))

(yT
k Lkyk)(yT

k Lk
−1

yk)
, (12.57)

and thus

f (xk+1) =
[

1− (yT
k yk)

2(1+O(T))

(yT
k Lkyk)(yT

k Lk
−1

yk)

]
f (xk). (12.58)

Using the fact that Lk → L∗ and applying the Kantorovich inequality leads to

f (xk+1) �
[(

A− a

A+ a

)2

+O(T)

]
f (xk). (12.59)

Problems with Inequalities

The idealized version of gradient projection could easily be extended to problems
having nonlinear inequalities as well as equalities by following the pattern of
Sect. 12.3. Such an extension, however, has no real value, since the idealized scheme
cannot be implemented. The idealized procedure was devised only as a technique
for analyzing the asymptotic rate of convergence of the analytically more complex,
but more practical, gradient projection method.

12.5 The Reduced Gradient Method 429

The analysis of the idealized version of gradient projection given above, never-
theless, does apply to problems having inequality as well as equality constraints. If
a computationally feasible procedure is employed that avoids jamming and does
not bounce on and off constraint boundaries an infinite number of times, then
near the solution the active constraints will remain fixed. This means that near
the solution the method acts just as if it were solving a problem having the active
constraints as equality constraints. Thus the asymptotic rate of convergence of the
gradient projection method applied to a problem with inequalities is also given
by (12.59) but with L(x∗) and M(x∗) (and hence a and A) determined by the active
constraints at the solution point x∗. In every case, therefore, the rate of convergence
is determined by the eigenvalues of the same restricted Hessian that arises in the
necessary conditions.

12.5 The Reduced Gradient Method

From a computational viewpoint, the reduced gradient method, discussed in this
section and the next, is closely related to the simplex method of linear programming
in that the problem variables are partitioned into basic and nonbasic groups. From
a theoretical viewpoint, the method can be shown to behave very much like the
gradient projection method.

Linear Constraints

Consider the problem

minimize f (x)

subject to Ax = b, x � 0,
(12.60)

where x ∈ En, b ∈ Em, A is m× n, and f is a function in C2. The constraints are
expressed in the format of the standard form of linear programming. For simplicity
of notation it is assumed that each variable is required to be nonnegative—if
some variables were free, the procedure (but not the notation) would be somewhat
simplified.

We invoke the nondegeneracy assumptions that every collection of m columns
from A is linearly independent and every basic solution to the constraints has m

strictly positive variables. With these assumptions any feasible solution will have
at most n − m variables taking the value zero. Given a vector x satisfying the
constraints, we partition the variables into two groups: x = (y, z) where y has
dimension m and z has dimension n−m. This partition is formed in such a way that
all variables in y are strictly positive (for simplicity of notation we indicate the basic

430 12 Primal Methods

variables as being the first m components of x but, of course, in general this will not
be so). With respect to the partition, the original problem can be expressed as

minimize f (y, z) (12.61a)

subject to By+ Cz = b (12.61b)

y � 0, z � 0, (12.61c)

where, of course, A = [B, C]. We can regard z as consisting of the independent
variables and y the dependent variables, since if z is specified, (12.61b) can be
uniquely solved for y. Furthermore, a small change �z from the original value that
leaves z + �z nonnegative will, upon solution of (12.61b), yield another feasible
solution, since y was originally taken to be strictly positive and thus y + �y
will also be positive for small �y. We may therefore move from one feasible
solution to another by selecting a �z and moving z on the line z + α�z, α � 0.
Accordingly, y will move along a corresponding line y + α�y. If in moving this
way some variable becomes zero, a new inequality constraint becomes active. If
some independent variable becomes zero, a new direction �z must be chosen. If
a dependent (basic) variable becomes zero, the partition must be modified. The
zero-valued basic variable is declared independent and one of the strictly positive
independent variables is made dependent. Operationally, this interchange will be
associated with a pivot operation.

The idea of the reduced gradient method is to consider, at each stage, the problem
only in terms of the independent variables. Since the vector of dependent variables
y is determined through the constraints (12.61b) from the vector of independent
variables z, the objective function can be considered to be a function of z only.
Hence a simple modification of steepest descent, accounting for the constraints, can
be executed. The gradient with respect to the independent variables z (the reduced
gradient) is found by evaluating the gradient of f (B−1b − B−1 Cz, z). It is equal
to

rT = ∇zf (y, z)−∇yf (y, z)B−1C. (12.62)

It is easy to see that a point (y, z) satisfies the first-order necessary conditions for
optimality if and only if

ri = 0 for all zi > 0

ri � 0 for all zi = 0.

In the active set form of the reduced gradient method the vector z is moved in
the direction of the reduced gradient on the working surface. Thus at each step, a
direction of the form

zi =
{−ri, i �∈ W(z)

0, i ∈ W(z)

12.5 The Reduced Gradient Method 431

is determined and a descent is made in this direction. The working set is augmented
whenever a new variable reaches zero; if it is a basic variable, a new partition is also
formed. If a point is found where ri = 0 for all i �∈ W(z) (representing a vanishing
reduced gradient on the working surface) but rj < 0 for some j ∈ W(z), then j is
deleted from W(z) as in the standard active set strategy.

It is possible to avoid the pure active set strategy by moving away from our
active constraint whenever that would lead to an improvement, rather than waiting
until an exact minimum on the working surface is found. Indeed, this type of
procedure is often used in practice. One version progresses by moving the vector
z in the direction of the overall negative reduced gradient, except that zero-valued
components of z that would thereby become negative are held at zero. One step of
the procedure is as follows:

1. Let �zi =
{−ri if ri < 0 or zi > 0

0 otherwise.
2. If �z is zero, stop; the current point is a solution. Otherwise, find �y =
−B−1C
z.

3. Find α1, α2, α3 achieving, respectively,

max{α : y+ α�y � 0}
max{α : z+ α�z � 0}
min{f (x+ α�x) : 0 � α � α1, 0 � α � α2}

Let x = x+ α3�x.
4. If α3 < α1, return to (12.1). Otherwise, declare the vanishing variable in

the dependent set independent and declare a strictly positive variable in the
independent set dependent. Update B and C.

Example We consider the example presented in Sect. 12.3 where the projected
negative gradient was computed:

minimize x2
1 + x2

2 + x2
3 + x2

4 − 2x1 − 3x4

subject to 2x1 + x2 + x3 + 4x4 = 7
x1 + x2 + 2x3 + x4 = 6
xi � 0, i = 1, 2, 3, 4.

We are given the feasible point x = (2, 2, 1, 0). We may select any two of the strictly
positive variables to be the basic variables. Suppose y = (x1, x2) is selected. In
standard form the constraints are then

x1 + 0− x3 + 3x4 = 1

0+ x2 + 3x3 − 2x4 = 5

xi � 0, i = 1, 2, 3, 4.

432 12 Primal Methods

The gradient at the current point is g = (2, 4, 2,−3). The corresponding reduced
gradient (with respect to z = (x3, x4)) is then found by pricing out in the usual
manner. The situation at the current point can then be summarized by the tableau

In this solution x3 and x4 would be increased together in a ratio of eight to one.
As they increase, x1 and x2 would follow in such a way as to keep the constraints
satisfied. Overall, in E4, the implied direction of movement is thus

d = (5,−22, 8, 1).

If the reader carefully supplies the computational details not shown in the presenta-
tion of the example as worked here and in Sect. 12.3, he will undoubtedly develop a
considerable appreciation for the relative simplicity of the reduced gradient method.

It should be clear that the reduced gradient method can, as illustrated in the
example above, be executed with the aid of a tableau. At each step the tableau
of constraints is arranged so that an identity matrix appears over the m dependent
variables, and thus the dependent variables can be easily calculated from the values
of the independent variables. The reduced gradient at any step is calculated by
evaluating the n-dimensional gradient and “pricing out” the dependent variables
just as the reduced cost vector is calculated in linear programming. And when the
partition of basic and nonbasic variables must be changed, a simple pivot operation
is all that is required.

Global Convergence

The perceptive reader will note the direction finding algorithm that results from the
second form of the reduced gradient method is not closed, since slight movement
away from the boundary of an inequality constraint can cause a sudden change in
the direction of search. Thus one might suspect, and correctly so, that this method
is subject to jamming. However, a trivial modification will yield a closed mapping;
and hence global convergence. This is discussed in Exercise 19.

12.5 The Reduced Gradient Method 433

Nonlinear Constraints

The generalized reduced gradient method solves nonlinear programming problems
in the standard form

minimize f (x)

subject to h(x) = 0, a � x � b,

where h(x) is of dimension m. A general nonlinear programming problem can
always be expressed in this form by the introduction of slack variables, if required,
and by allowing some components of a and b to take on the values +∞ or −∞, if
necessary.

In a manner quite analogous to that of the case of linear constraints, we introduce
a nondegeneracy assumption that, at each point x, hypothesizes the existence of a
partition of x into x = (y, z) having the following properties:

(i) y is of dimension m, and z is of dimension n−m.
(ii) If a = (ay, az) and b = (by, bz) are the corresponding partitions of a, b, then

ay < y < by.
(iii) The m×m matrix ∇yh(y, z) is nonsingular at x = (y, z).

Again y and z are referred to as the vectors of dependent and independent
variables, respectively.

The reduced gradient (with respect to z) is in this case:

rT = ∇zf (y, z)− λT ∇zh(y, z),

where λ satisfies

∇yf (y, z)− λT ∇yh(y, z) = 0.

Equivalently, we have

rT = ∇zf (y, z)−∇yf (y, z)[∇yh(y, z)]−1∇zh(y, z). (12.63)

The actual procedure is roughly the same as for linear constraints in that moves
are taken by changing z in the direction of the negative reduced gradient (with
components of z on their boundary held fixed if the movement would violate the
bound). The difference here is that although z moves along a straight line as before,
the vector of dependent variables y must move nonlinearly to continuously satisfy
the equality constraints. Computationally, this is accomplished by first moving
linearly along the tangent to the surface defined by z → z+�z, y → y+�y with
�y = −[∇yh]−1∇zh�z. Then a correction procedure, much like that employed
in the gradient projection method, is used to return to the constraint surface and
the magnitude bounds on the dependent variables are checked for feasibility. As

434 12 Primal Methods

Fig. 12.7 Reduced gradient method

with the gradient projection method, a feasibility tolerance must be introduced to
acknowledge the impossibility of returning exactly to the constraint surface. An
example corresponding to n = 3, m = 1, a = 0, b = +∞ is shown in Fig. 12.7.

To return to the surface once a tentative move along the tangent is made, an
iterative scheme is employed. If the point xk was the point at the previous step, then
from any point x = (v, w) near xk one gets back to the constraint surface by solving
the nonlinear equation

h(y, w) = 0 (12.64)

for y (with w fixed). This is accomplished through the iterative process

yj+1 = yj − [∇yh(xk)]−1h(yj , w), (12.65)

which, if started close enough to xk, will produce {yj }with yj → y, solving (12.64).
The reduced gradient method suffers from the same basic difficulties as the

gradient projection method, but as with the latter method, these difficulties can
all be more or less successfully resolved. Computation is somewhat less complex
in the case of the reduced gradient method, because rather than compute with
[∇h(x)∇h(x)T]−1 at each step, the matrix [∇yh(y, z)]−1 is used.

12.6 Convergence Rate of the Reduced Gradient Method 435

12.6 Convergence Rate of the Reduced Gradient Method

As argued before, for purposes of analyzing the rate of convergence, it is sufficient
to consider the problem having only equality constraints

minimize f (x)

subject to h(x) = 0.
(12.66)

We then regard the problem as being defined over a surface � of dimension n −
m. At this point it is again timely to consider the view of our bug, who lives on
this constraint surface. Invariably, he continues to regard the problem as extremely
elementary, and indeed would have little appreciation for the complexity that seems
to face us. To him the problem is an unconstrained problem in n − m dimensions
not, as we see it, a constrained problem in n dimensions. The bug will tenaciously
hold to the method of steepest descent. We can emulate him provided that we know
how he measures distance on his surface and thus how he calculates gradients and
what he considers to be straight lines.

Rather than imagine that the measure of distance on his surface is the one that
would be inherited from us in n dimensions, as we did when studying the gradient
projection method, we, in this instance, follow the construction shown in Fig. 12.8.
In our n-dimensional space, n−m coordinates are selected as independent variables
in such a way that, given their values, the values of the remaining (dependent)
variables are determined by the surface. There is already a coordinate system in
the space of independent variables, and it can be used on the surface by projecting
it parallel to the space of the remaining dependent variables. Thus, an arc on the
surface is considered to be straight if its projection onto the space of independent
variables is a segment of a straight line. With this method for inducing a geometry on
the surface, the bug’s notion of steepest descent exactly coincides with an idealized
version of the reduced gradient method.

In the idealized version of the reduced gradient method for solving (12.66), the
vector x is partitioned as x = (y, z) where y ∈ Em, z ∈ En−m. It is assumed that
the m × m matrix ∇yh(y, z) is nonsingular throughout a given region of interest.

Fig. 12.8 Induced coordinate
system

436 12 Primal Methods

(With respect to the more general problem, this region is a small neighborhood
around the solution where it is not necessary to change the partition.) The vector y
is regarded as an implicit function of z through the equation

h(y(z), z) = 0. (12.67)

The ordinary method of steepest descent is then applied to the function q(z) =
f (y(z), z). We note that the gradient rT of this function is given by (12.63).

Since the method is really just the ordinary method of steepest descent with
respect to z, the rate of convergence is determined by the eigenvalues of the Hessian
of the function q at the solution. We therefore turn to the question of evaluating this
Hessian.

Denote by Y(z) the first derivatives of the implicit function y(z), that is, Y(z) ≡
∇zy(z). Explicitly,

Y(z) = −[∇yh(y, z)]−1∇zh(y, z). (12.68)

For any λ ∈ Em we have

q(z) = f (y(z), z) = f (y(z), z)− λT h(y(z), z). (12.69)

Thus

∇q(z) = [∇yf (y, z)− λT ∇yh(y, z)]Y(z)+ ∇zf (y, z)− λT ∇zh(y, z).
(12.70)

Now if at a given point x∗ = (y∗, z∗) = (y(z∗), z∗), we let λ satisfy

∇yf (y∗, z∗)− λT ∇yh(y∗, z∗) = 0; (12.71)

then introducing the Lagrangian l(y, z, λ) = f (y, z) − λT h(y, z), we obtain by
differentiating (12.70)

∇2q(z∗) = Y(z∗)T ∇2
yyl(y

∗, z∗)Y(z∗)+∇2
zyl(y

∗, z∗)Y(z∗)

+Y(z∗)T ∇2
yzl(y

∗, z∗)+∇2
zzl(y

∗, z∗). (12.72)

Or defining the n× (n−m) matrix

C =
[

Y(z∗)
I

]
, (12.73)

where I is the (n−m)× (n−m) identity, we have

Q ≡ ∇2q(z∗) = CT L(x∗)C. (12.74)

12.6 Convergence Rate of the Reduced Gradient Method 437

The matrix L(x∗) is the n × n Hessian of the Lagrangian at x∗, and ∇2q(z∗) is an
(n−m)× (n−m) matrix that is a restriction of L(x∗) to the tangent subspace M ,
but it is not the usual restriction. We summarize our conclusion with the following
theorem.

Theorem Let x∗ be a local solution of problem (12.66). Suppose that the idealized reduced
gradient method produces a sequence {xk} converging to x∗ and that the partition x =
(y, z) is used throughout the tail of the sequence. Let L be the Hessian of the Lagrangian
at x∗ and define the matrix C by (12.73) and (12.68). Then the sequence of objective values
{f (xk)} converges to f (x∗) linearly with a ratio no greater than [(B − b)/(B + b)]2 where
b and B are, respectively, the smallest and largest eigenvalues of the matrix Q = CT LC.

To compare the matrix CT LC with the usual restriction of L to M that determines
the convergence rate of most methods, we note that the n × (n − m) matrix C
maps �z ∈ En−m into (�y, �z) ∈ En lying in the tangent subspace M; that is,
∇yh�y + ∇zh�z = 0. Thus the columns of C form a basis for the subspace M .
Next note that the columns of the matrix

E = C(CT C)−1/2 (12.75)

form an orthonormal basis for M , since each column of E is just a linear
combination of columns of C and by direct calculation we see that ET E = I. Thus
by the eigenvalue-in-tangent space procedure described in Sect. 11.4 we see that a
representation for the usual restriction of L to M is

LM = (CT C)−1/2CT LC(CT C)−1/2. (12.76)

Comparing (12.76) with (12.74) we deduce that

Q = (CT C)1/2LM(CT C)1/2. (12.77)

This means that the Hessian matrix for the reduced gradient method is the restriction
of L to M but pre- and post-multiplied by a positive definite symmetric matrix.

The eigenvalues of Q depend on the exact nature of C as well as LM . Thus, the
rate of convergence of the reduced gradient method is not coordinate independent
but depends strongly on just which variables are declared as independent at the final
stage of the process. The convergence rate can be either faster or slower than that
of the gradient projection method. In general, however, if C is well-behaved (that
is, well-conditioned), the ratio of eigenvalues for the reduced gradient method can
be expected to be the same order of magnitude as that of the gradient projection
method. If, however, C should be ill-conditioned, as would arise in the case where
the implicit equation h(y, z) = 0 is itself ill-conditioned, then it can be shown that
the eigenvalue ratio for the reduced gradient method will most likely be considerably
worsened. This suggests that care should be taken to select a set of basic variables y
that leads to a well-behaved C matrix.

438 12 Primal Methods

Example (The Hanging Chain Problem) Consider again the hanging chain
problem discussed in Sect. 11.3. This problem can be used to illustrate a wide
assortment of theoretical principles and practical techniques. Indeed, a study of this
example clearly reveals the predictive power that can be derived from an interplay
of theory and physical intuition.

The problem is

minimize
n∑

i=1
(n− i + 0.5)yi

subject to
n∑

i=1
yi = 0

n∑
i=1

√
1− y2

i = 16,

where in the original formulation n = 20.
This problem has been solved numerically by the reduced gradient method.∗ An

initial feasible solution was the triangular shape shown in Fig. 12.9a with

yi =
{−0.6, 1 � i � 10

0.6, 11 � i � 20.

The results obtained from a reduced gradient package are shown in Table 12.1.
Note that convergence is obtained in approximately 70 iterations.

The Lagrange multipliers of the constraints are a by-product of the solution.
These can be used to estimate the change in solution value if the constraint values are
changed slightly. For example, suppose we wish to estimate, without resolving the
problem, the change in potential energy (the objective function) that would result
if the separation between the two supports were increased by, say, one inch. The
change can be estimated by the formula
u = λ2/12 = 0.0833× (6.76) = 0.563.
(When solved again numerically the change is found to be 0.568.)

Let us now pose some more challenging questions. Consider two variations of the
original problem. In the first variation the chain is replaced by one having twice as
many links, but each link is now half the size of the original links. The overall chain
length is therefore the same as before. In the second variation the original chain is
replaced by one having twice as many links, but each link is the same size as the
original links. The chain length doubles in this case. If these problems are solved by
the same method as the original problem, approximately how many iterations will
be required—about the same number, many more, or substantially less?

∗ The exact solution is obviously symmetric about the center of the chain, and hence the problem
could be reduced to having ten links and only one constraint. However, this symmetry disappears
if the first constraint value is specified as nonzero. Therefore for generality we solve the full chain
problem.

12.6 Convergence Rate of the Reduced Gradient Method 439

Fig. 12.9 The chain example. (a) Original configuration of chain. (b) Final configuration. (c) Long
chain

440 12 Primal Methods

Table 12.1 Results of
original chain problem

Iteration Value Solution (1/2 of chain)

0 −60.00000 y1 = −0.8148260

10 −66.47610 y2 = −0.7826505

20 −66.52180 y3 = −0.7429208

30 −66.53595 y4 = −0.6930959

40 −66.54154 y5 = −0.6310976

50 −66.54537 y6 = −0.5541078

60 −66.54628 y7 = −0.4597160

69 −66.54659 y8 = −0.3468334

70 −66.54659 y9 = −0.2169879

y10 = −0.07492541

Lagrange multipliers 9.993817, 6.763148

These questions can be easily answered by using the theory of convergence rates
developed in this chapter. The Hessian of the Lagrangian is

L = F− λ1H1 − λ2H2.

However, since the objective function and the first constraint are both linear, the
only nonzero term in the above equation is λ2H2. Furthermore, since convergence
rates depend only on eigenvalue ratios, the λ2 can be ignored. Thus the eigenvalues
of H2 determine the canonical convergence rate.

It is easily seen that H2 is diagonal with ith diagonal term,

(H2)ii = −(1− y2
i)−3/2,

and these values are the eigenvalues of H2. The canonical convergence rate is
defined by the eigenvalues of H22 in the (n − 2)-dimensional tangent subspace
M . We cannot exactly determine these eigenvalues without a lot of work, but we
can assume that they are close to the eigenvalues of H22. (Indeed, a version of the
Interlocking Eigenvalues Lemma states that the n − 2 eigenvalues are interlocked
with the eigenvalues of H22.) Then the convergence rate of the gradient projection
method will be governed by these eigenvalues. The reduced gradient method will
most likely be somewhat slower.

The eigenvalue of smallest absolute value corresponds to the center links, where
yi 0. Conversely, the eigenvalue of largest absolute value corresponds to the first
or last link, where yi is largest in absolute value. Thus the relevant eigenvalue ratio
is approximately

r = 1

(1− y2
1)3/2

= 1

(sin θ)3/2
,

where θ is the angle shown in Fig. 12.9b.

12.6 Convergence Rate of the Reduced Gradient Method 441

Table 12.2 Results of
modified chain problems

Short links Long chain

Iteration Value Iteration Value

0 −60.00000 0 −366.6061

10 −66.45499 10 −375.6423

20 −66.56377 20 −375.9123

40 −66.58443 50 −376.5128

60 −66.59191 100 −377.1625

80 −66.59514 200 −377.8983

100 −66.59656 500 −378.7989

120 −66.59825 1000 −379.3012

121 −66.59827 1500 −379.4994

122 −66.59827 2000 −379.5965

2500 −379.6489

y1 = 0.4109519 y1 = 0.9886223

For very little effort we have obtained a powerful understanding of the chain
problem and its convergence properties. We can use this to answer the questions
posed earlier. For the first variation, with twice as many links but each of half size,
the angle θ will be about the same (perhaps a little smaller because of increased
flexibility of the chain). Thus the number of iterations should be slightly larger
because of the increase in θ and somewhat larger again because there are more
variables (which tends to increase the condition number of CT C). Note in Table 12.2
that about 122 iterations were required, which is consistent with this estimate.

For the second variation the chain will hang more vertically; hence y1 will be
larger, and therefore convergence will be fundamentally slower. To be more specific
it is necessary to substitute a few numbers in our simple formula. For the original
case we have y1 −0.81. This yields

r = (1− 0.812)−3/2 = 4.9

and a convergence factor of

R =
(

r − 1

r + 1

)2

 .44.

This is a modest value and quite consistent with the observed result of 70 iterations
for a reduced gradient method. For the long chain we can estimate that y1 98.
This yields

r = (1− .982)−3/2 127

R =
(

r − 1

r + 1

)2

 .969.

442 12 Primal Methods

This last number represents extremely slow convergence. Indeed, since (0.969)25
0.44, we expect that it may easily take 25 times as many iterations for the long chain
problem to converge as the original problem (although quantitative estimates of this
type are rough at best). This again is verified by the results shown in Table 12.2,
where it is indicated that over 2,500 iterations were required by a version of the
reduced gradient method.

12.7 Sequential Quadratic Optimization Methods

Similarly to Newton’s method and the Frank–Wolfe sequential linear programming
approach, we can solve a sequence of quadratic minimization problems, where the
quadratic objective is the second-order Taylor’s expansion series of the objective.
Specifically, given a feasible point xk , the direction vector dk = x∗k − xk , where x∗k
solves

minimize 1
2 (x− xk)

T ∇2f (xk)(x− xk)+∇f (xk)(x− xk)

subject to Ax = b, x ≥ 0.
(12.78)

Here, constraints are the same linear constraints as in the original problem with
objective f (x) ∈ C2. Let gk denote the transpose of the gradient vector and Fk

denote the Hessian.
The key question is whether or not the quadratic program can be solved

efficiently like solving linear programs. If f is convex, then indeed the quadratic
program would be efficiently solved by the barrier or interior-point algorithms (see
discussion in the next chapter). Even if Fk is not positive semidefinite, one can
factorize Fk = F+k − F−k where both of the two symmetric matrices are positive
semidefinite. Then

(x− xk)
T (F+k − F−k)(x− xk) ≤ (x− xk)

T F+k (x− xk)

so that we can replace the quadratic objective with

1

2
(x− xk)F

+
k (x− xk)+ gT

k (x− xk),

which is a convex quadratic function. This would create a descent direction dk .
Two drawbacks to this approach: first, the concave part of the objective function

is not exploited; second, one needs to solve a complete quadratic program in order to
find a descent direction. To overcome these drawbacks, we adopt the sequential ball-
constrained quadratic minimization, or trust region method discussed in Sect. 8.7.

12.7 Sequential Quadratic Optimization Methods 443

For example, if the constraints are only Ax = b, we can work in the direction space

minimized
1
2 dT Fkd+ gT

k d
subject to Ad = 0, |d|2 ≤ (δk)

2,

where the radius δk can be chosen as in Sect. 8.7. This subproblem has exactly
the same solution efficiency and descent properties as those for unconstrained
optimization. Let dk be the solution of the subproblem. Then xk+1 = xk + dk and
we proceed to the next iteration.

Could this work in the presence of linear inequality constraints? In the following,
we give an affirmative answer. For simplicity, we consider the conic case x ≥ 0 with
none of the linear/affine equality constraints of (12.78). Using the affine scaling
discussed in Sect. 8.5, at any interior point x > 0, we solve the subproblem (after
omitting subscript k):

minimize 1
2 dT Fd+ gT d

subject to |X−1d|2 ≤ (δ)2(< 1),
(12.79)

where X is the diagonal matrix whose positive diagonal entries are from vector x.
Note that the ellipsoidal constraint set inscribes the nonnegative orthant, so that

x+ = x+ d = X(1+ X−1d) ≥ (1− δ)x > 0

that is, the new iterate remains in the interior of the orthant.
Let d′ = X−1d. Then the problem becomes a single ball-constrained quadratic

problem as in Sect. 8.5.

minimize 1
2 d′T (XFX)d′ + (gT X)d′

subject to |d′|2 ≤ (δ)2(< 1),

which can be solved very quickly using Proposition 1 of Sect. 8.7. The one-step
performance analysis is also identical to the unconstrained case when f is the
second-order Lipschitz.

The Analysis of the Interior Ellipsoidal-Trust Region Method
Below, we give an analysis when the original f is a nonconvex but quadratic
function

f (x) = 1

2
xT Fx+ cT x,

where the Hessian F is not positive semidefinite. At an interior solution x > 0, the
transpose of the gradient vector g = Fx + c. Since the Lipschitz constant is zero,
we fix δ = 1√

2
throughout the iterations.

444 12 Primal Methods

Recall the necessary and sufficient conditions for d′ being a global minimizer
are, there exists a scalar μ ≥ |λx | > 0, where λx is the most negative eigenvalue of
XQX, such that

(XFX+ μI)d′ = −Xg, (XFX+ μI) � 0, |d′|2 = 1

2
. (12.80)

Hence the objective at the new iterate, from the equality 1
2 (XFX)d′ + Xg =

− 1
2 (XFX+ μI)d′ − μ

2 d′, is

1

2
d′T (XFX)d′ + gT Xd′ = −1

2
d′T (XFX+ μI)d′ − μ

2
|d′|2 ≤ −μ

4
.

Note that the new iterate, after scaling back, would be

x+ = X(1+ d′) ≥ (1− 1√
2
)x > 0

and the scaled gradient vector transpose

Xg+ = X
(
FX(1+ d′)+ c

) = Xg+ XFXd′ = −μd′ ⇒ |Xg+| = μ√
2
.

(12.81)

Therefore,

|X+g+| = |X+X−1Xg+| ≤ |X+X−1| · |Xg+| ≤ μ√
2
|X+X−1| ≤ μ(1+√2)

2
.

The last inequality is from that 1− 1√
2
≤ x+j

xj
≤ 1+ 1√

2
for all j = 1, . . . , n.

The interior ellipsoid-trust region method would repeat the iterative process with
x+ replacing x; see Figure 12.10. Let the minimum value of 1

2 xT Fx + cT x on the
nonnegative orthant be z∗. Then, since each iteration reduces the objective function
by μ

4 , in 4(f (1)−z∗)
ε

iterations we must have μ ≤ ε, when the algorithm initiated

at x0 = 1. When μ → 0, we see μ(1+√2)
2 ≥ x+j ∇f (x+)j → 0 which represents

the complementary slackness solution, that is, either x+j → 0, or ∇f (x+)j → 0, or

both. One may also argue∇f (x+)j ≥ 0 if x+j → 0. From (12.81), if ∇f (x+)j < 0,

then d′j > 0 which implies that x+j would have been strictly increased from xj , a
contradiction.

Furthermore, the minimum eigenvalue, from |λx | ≤ μ, of the scaled Hessian
matrix XFX also converges to zero, indicating it becomes positive semidefinite at
the limit. This is exactly the second-order necessary condition: XFX is similar to
the Hessian projected on the null space of active constraints xj = 0 at the limit.
These results are summarized in the theorem.

12.8 Active Set Methods 445

Fig. 12.10 A sequence of
interior ellipsoidal-trust
regions

Theorem Consider the problem minimizing a nonconvex quadratic function in dimension-
n subject to nonnegative conic/orthant constraints. Let the problem have a bounded
minimal value z∗. Then, the interior ellipsoidal-trust region method computes a sequence
of descending solutions xk > 0, k = 0, 1, . . ., such that

|∇f (xk)Xk | ≤ O(
f (x0)− z∗

k
) and 0 ≥ λ(Xk∇2f (xk)Xk) ≥ −O(

f (x0)− z∗

k
),

where Xk is the diagonal matrix of iterate xk and λ(·) denotes the minimum eigenvalue of
the matrix argument. If the sequence converges to x∗, we must have ∇f (x∗) ≥ 0 so that it
is a first- and second-order stationary solution. Each iteration of the method solves a ball-
constrained quadratic minimization problem in O(n3 log log(1/ε)) arithmetic operations.

12.8 Active Set Methods

The idea underlying active set methods is to partition inequality constraints into
two groups: those that are to be treated as active and those that are to be treated as
inactive. The constraints treated as inactive are essentially ignored.

Consider the constrained problem

minimize f (x)

subject to g(x) � 0,
(12.82)

which for simplicity of the current discussion is taken to have inequality constraints
only. The inclusion of equality constraints is straightforward, as will become clear.

The necessary conditions for this problem are

∇f (x)− λT ∇g(x) = 0

g(x) � 0

λT g(x) = 0 (12.83)

λ � 0.

446 12 Primal Methods

(See Sect. 11.5.) These conditions can be expressed in a somewhat simpler form in
terms of the set of active constraints. Let A denote the index set of active constraints;
that is, A is the set of i such that gi(x∗) = 0. Then the necessary conditions (12.83)
become

∇f (x)−
∑
i∈A

λi∇gi(x) = 0

gi(x) = 0, i ∈ A

gi(x) > 0, i �∈ A (12.84)

λi � 0, i ∈ A

λi = 0, i �∈ A

The first two lines of these conditions correspond identically to the necessary
conditions of the equality constrained problem obtained by requiring the active
constraints to be zero. The next line guarantees that the inactive constraints are
satisfied, and the sign requirement of the Lagrange multipliers guarantees that every
constraint that is active should be active.

It is clear that if the active set were known, the original problem could be replaced
by the corresponding problem having equality constraints only. Alternatively,
suppose an active set was guessed and the corresponding equality constrained
problem solved. Then if the other constraints were satisfied and the Lagrange
multipliers turned out to be nonnegative, that solution would be correct.

The idea of active set methods is to define at each step, or at each phase, of
an algorithm a set of constraints, termed the working set, that is to be treated as
the active set. The working set is chosen to be a subset of the constraints that are
actually active at the current point, and hence the current point is feasible for the
working set. The algorithm then proceeds to move on the surface defined by the
working set of constraints to an improved point. At this new point the working
set may be changed. Overall, then, an active set method consists of the following
components: (1) determination of a current working set that is a subset of the current
active constraints, and (2) movement on the surface defined by the working set to an
improved point.

There are several methods for determining the movement on the surface defined
by the working set. (This surface will be called the working surface.) The most
important of these methods are discussed in the following sections. The direction
of movement is generally determined by first-order or second-order approximations
of the functions at the current point in a manner similar to that for unconstrained
problems. The asymptotic convergence properties of active set methods depend
entirely on the procedure for moving on the working surface, since near the solution
the working set is generally equal to the correct active set, and the process simply
moves successively on the surface determined by those constraints.

12.8 Active Set Methods 447

Changes in Working Set

Suppose that for a given working set W the problem with equality constraints

minimize f (x)

subject to gi(x) = 0, i ∈ W

is solved yielding the point xW that satisfies gi(xW) > 0, i �∈ W . This point satisfies
the necessary conditions

∇f (xW)−
∑
i∈W

λj∇gi(xW) = 0. (12.85)

If λi � 0 for all i ∈ W , then the point xW is a local solution to the original problem.
If, on the other hand, there is an i ∈ W such that λi > 0, then the objective can
be decreased by relaxing constraint i. This follows directly from the sensitivity
interpretation of Lagrange multipliers, since a small increase in the constraint value
from 0 to c would lead to a change in the objective function of λic, which is negative.
Thus, by dropping the constraint i from the working set, an improved solution can
be obtained. The Lagrange multiplier of a problem thereby serves as an indication
of which constraints should be dropped from the working set. This is illustrated in
Fig. 12.11. In the figure, x is the minimum point of f on the surface (a curve in this
case) defined by g1(x) = 0. However, it is clear that the corresponding Lagrange
multiplier λ1 is negative, implying that g1 should be dropped. Since ∇f points
outside, it is clear that a movement toward the interior of the feasible region will
indeed decrease f .

During the course of minimizing f (x) over the working surface, it is necessary
to monitor the values of the other constraints to be sure that they are not violated,
since all points defined by the algorithm must be feasible. It often happens that
while moving on the working surface a new constraint boundary is encountered. It
is then convenient to add this constraint to the working set, proceeding on a surface
of one lower dimension than before. This is illustrated in Fig. 12.12. In the figure
the working constraint is just g1 = 0 for x1, x2, x3. A boundary is encountered at
the next step, and therefore g2 = 0 is adjoined to the set of working constraints.

Fig. 12.11 Constraint to be
dropped

448 12 Primal Methods

Fig. 12.12 Constraint added
to working set

A complete active set strategy for systematically dropping and adding constraints
can be developed by combining the above two ideas. One starts with a given working
set and begins minimizing over the corresponding working surface. If new constraint
boundaries are encountered, they may be added to the working set, but no constraints
are dropped from the working set. Finally, a point is obtained that minimizes f

with respect to the current working set of constraints. The corresponding Lagrange
multipliers are determined, and if they are all nonnegative the solution is optimal.
Otherwise, one or more constraints with negative Lagrange multipliers are dropped
from the working set. The procedure is reinitiated with this new working set, and f

will strictly decrease on the next step.
An active set method built upon this basic active set strategy requires that a

procedure be defined for minimization on a working surface that allows constraints
to be added to the working set when they are encountered, and that, after dropping
a constraint, insures that the objective is strictly decreased. Such a method is
guaranteed to converge to the optimal solution, as shown below.

Active Set Theorem Suppose that for every subset W of the constraint indices, the
constrained problem

minimize f (x)

subject to gi(x) = 0, i ∈ W
(12.86)

is well defined with a unique nondegenerate solution (that is, for all i ∈ W , λi �= 0). Then
the sequence of points generated by the basic active set strategy converges to the solution
of the inequality constrained problem (12.83).

Proof After the solution corresponding to one working set is found, a decrease in
the objective is made, and hence it is not possible to return to that working set. Since
there are only a finite number of working sets, the process must terminate.

The difficulty with the above procedure is that several problems with incorrect
active sets must be solved. Furthermore, the solutions to these intermediate prob-
lems must, in general, be exact global minimum points in order to determine the

12.9 Summary 449

correct sign of the Lagrange multipliers and to assure that during the subsequent
descent process the current working surface is not encountered again.

In practice one deviates from the ideal basic method outlined above by dropping
constraints using various criteria before an exact minimum on the working surface
is found. Convergence cannot be guaranteed for many of these methods, and indeed
they are subject to zigzagging (or jamming) where the working set changes an
infinite number of times. However, experience has shown that zigzagging is very
rare for many algorithms, and in practice the active set strategy with various
refinement is often very effective.

It is clear that a fundamental component of an active set method is the algorithm
for solving a problem with equality constraints only, that is, for minimizing on the
working surface. Such methods and their analyses are presented in the following
sections.

12.9 Summary

The concept of both infeasible or feasible direction methods is a straightforward
and logical extension of the methods used for unconstrained problems but leads to
some subtle difficulties. These methods are susceptible to jamming (lack of global
convergence) because many simple direction finding mappings and the usual line
search mapping are not closed.

Problems with inequality constraints can be approached with an active set
strategy. In this approach certain constraints are treated as active and the others
are treated as inactive. By systematically adding and dropping constraints from
the working set, the correct set of active constraints is determined during the
search process. In general, however, an active set method may require that several
constrained problems be solved exactly.

The most practical first-order primal methods are the steepest descent projection,
gradient projection, and the reduced gradient methods. All of these basic methods
can be regarded as the method of steepest descent applied on the surface defined
by the active constraints. The rate of convergence of the first method is almost
identical to the one for unconstrained optimization on Lipschitz functions, and the
rate for the later two methods can be expected to be approximately equal and is
determined by the eigenvalues of the Hessian of the Lagrangian restricted to the
subspace tangent to the active constraints. Of the two methods, the reduced gradient
method seems to be best. It can be easily modified to ensure against jamming and
it requires fewer computations per iterative step and therefore, for most problems,
will probably converge in less time than the gradient projection method.

The sequential interior-trust region quadratic optimization method is a second-
order method, and it is desirable if one wants to compute a second-order stationary
solution. The method is also practical for solving large-scale and sparse problems.

450 12 Primal Methods

12.10 Exercises

1. Verify the steepest descent projections, i.e., the solutions of (12.3), for five �

cases listed in Sect. 12.1.
2. Apply the steepest descent projection method to compressed sensing

minimize |Ax− b|2
subject to |supp(x)| ≤ d.

You may randomly generate A and an x̄ ∈ En whose support size is less than
d(<< n), then let b = Ax̄. Compare the solution resulted from the method to
the ground-truth solution x̄.

3. Show that the Frank–Wolfe method is globally convergent if the intersection of
the feasible region and the objective level set {x : f (x) ≤ f (x0)} is bounded.

4. Sometimes a different normalizing term is used in (12.10). Show that the
problem of finding d = (d1, d2, . . . , dn) to

minimize cT d
subject to Ad � 0, (

∑
i

|di |p)1/p = 1

for p = 1 or p = ∞ can be converted to a linear program.
5. Perhaps the most natural normalizing term to use in (12.10) is one based on the

Euclidean norm. This leads to the problem of finding d = (d1, d2, . . . , dn) to

minimize cT d

subject to Ad � 0,
n∑

i=1
d2
i = 1.

Find the Karush-Kuhn–Tucker necessary conditions for this problem and show
how they can be solved by a modification of the simplex procedure.

6. Let � ⊂ En be a given feasible region. A set � ⊂ E2n consisting of pairs
(x, d), with x ∈ � and d a feasible direction at x, is said to be a set of uniformly
feasible direction vectors if there is a δ > 0 such that (x, d) ∈ � implies that
x + αd is feasible for all α, 0 � α � δ. The number δ is referred to as the
feasibility constant of the set �.

Let � ⊂ E2n be a set of uniformly feasible direction vectors for �, with
feasibility constant δ. Define the mapping

Mδ(x, d) = {y : f (y) � f (x+ τd) for all τ, 0 � τ � δ; y = x+ αd,

for some α, 0 � α �∞, y ∈ �}.

Show that if d �= 0, the map Mδ is closed at (x, d).

12.10 Exercises 451

7. Let � ⊂ E2n be a set of uniformly feasible direction vectors for � with
feasibility constant δ. For ε > 0 define the map εMδ or � by

εMδ(x, d) = {y : f (y) � f (x+ τd)+ ε for all τ, 0 � τ � δ; y = x+ αd,

for some α, 0 � α �∞, y ∈ �}.

The map εMδ corresponds to an “inaccurate” constrained line search. Show that
this map is closed if d �= 0.

8. For the problem

minimize f (x)

subject to aT
i x � bi, i = 1, 2, . . . , m

consider selecting d = (d1, d2, . . . , dn) at a feasible point x by solving the
problem

minimize ∇f (x)d
subject to aT

i d � (bi − aT
i x)M, i = 1, 2, . . . , m

n∑
i=1
|di | = 1,

where M is some given positive constant. For large M the ith inequality of this
subsidiary problem will be active only if the corresponding inequality in the
original problem is nearly active at x (indeed, note that M → ∞ corresponds
to Zoutendijk’s method). Show that this direction finding mapping is closed and
generates uniformly feasible directions with feasibility constant 1/M .

9. Generalize the method of Exercise 8 so that it is applicable to nonlinear
inequalities.

10. Show that finding the d that solves

minimize gT d
subject to Aqd = 0, |d|2 = 1

gives a vector d that has the same direction as the negative projected gradient.
11. Let P be a projection matrix. Show that PT = P, P2 = P.
12. Suppose Aq = [aT , Aq] so that Aq is the matrix Aq with the row aT adjoined.

Show that (AqAT
q)−1 can be found from (AqAT

q)−1 from the formula

(AqAT
q)−1 =

[
ε −εaT AT

q (AqAT
q)−1

−ε(AqAT
q)−1Aqa (AqAT

q)−1[I+ AqaaT AT
q (AqAT

q)−1]

]
,

452 12 Primal Methods

where

ε = 1

aT a− aT AT
q (AqAT

q)−1Aqa
.

Develop a similar formula for (AqAq)−1 in terms of (AqAq)−1.
13. Suppose that the projected negative gradient d is calculated satisfying

−g = d+ AT
q λ

and that some component λi of λ, corresponding to an inequality, is negative.
Show that if the ith inequality is dropped, the projection di of the negative
gradient onto the remaining constraints is a feasible direction of descent.

14. Using the result of Exercise 13, it is possible to avoid the discontinuity at d = 0
in the direction finding mapping of the simple gradient projection method. At a
given point let γ = −min{0, λi}, with the minimum taken with respect to the
indices i corresponding the active inequalities. The direction to be taken at this
point is d = −Pg if |Pg| � γ , or d, defined by dropping the inequality i for
which λi = −γ , if |Pg| � γ . (In case of equality either direction is selected.)
Show that this direction finding map is closed over a region where the set of
active inequalities does not change.

15. Consider the problem of maximizing entropy discussed in Example 3,
Sect. 14.2. Suppose this problem were solved numerically with two constraints
by the gradient projection method. Derive an estimate for the rate of
convergence in terms of the optimal pi’s.

16. Find the geodesics of

(a) a two-dimensional plane
(b) a sphere.

17. Suppose that the problem

minimize f (x)

subject to h(x) = 0

is such that every point is a regular point. And suppose that the sequence of
points {xk}∞k=0 generated by geodesic descent is bounded. Prove that every
limit point of the sequence satisfies the first-order necessary conditions for a
constrained minimum.

18. Show that, for linear constraints, if at some point in the reduced gradient method
�z is zero, that point satisfies the Karush-Kuhn–Tucker first-order necessary
conditions for a constrained minimum.

12.10 Exercises 453

19. Consider the problem

minimize f (x)

subject to Ax = b, x � 0,

where A is m × n. Assume f ∈ C1, that the feasible set is bounded,
and that the nondegeneracy assumption holds. Suppose a “modified” reduced
gradient algorithm is defined following the procedure in Sect. 12.5 but with
two modifications: (1) the basic variables are, at the beginning of an iteration,
always taken as the m largest variables (ties are broken arbitrarily); (2) the
formula for �z is replaced by

zi =
{−ri if ri � 0
−xiri if ri > 0

Establish the global convergence of this algorithm.
20. Find the exact solution to the example presented in Sect. 12.3.
21. Find the direction of movement that would be taken by the gradient projection

method if in the example of Sect. 12.3 the constraint x4 = 0 were relaxed. Show
that if the term−3x4 in the objective function were replaced by −x4, then both
the gradient projection method and the reduced gradient method would move
in identical directions.

22. Show that in terms of convergence characteristics, the reduced gradient method
behaves like the gradient projection method applied to a scaled version of the
problem.

23. Let r be the condition number of LM and s the condition number of CT C. Show
that the rate of convergence of the reduced gradient method is no worse than
[(sr − 1)/(sr + 1)]2.

24. Prove the statement “If the sequence converges to x∗, we must have ∇f (x∗) ≥
0 so that it is a first- and second-order stationary solution” in the theorem of
Sect. 12.7 for the interior ellipsoidal-trust region method.

25. Consider the Markov Decision Process Example 8, Sect. 2.2 that is to find the
optimal cost-to-go value yi for state i = 1, . . . ,m

maximize
m∑

i=1

yi

subject to yi − γ pT
j y ≤ cj , ∀j ∈ Ai , ∀i = 1, . . . ,m.

A very popular first-order method, the value-iteration method is, starting
from a y0 ∈ Em, updating the solution by a simple formula

(yi)k+1 = min
j∈Ai

[cj + γ pT
j yk], ∀i = 1, . . . ,m.

Denoting the optimal solution by y∗, prove the following statements.

454 12 Primal Methods

(a) If we start from y0 such that it is in the feasible region

(yi)0 ≤ min
j∈Ai

[cj + γ pT
j y0], ∀i,

then yk remains feasible and

y∗ ≥ yk+1 ≥ yk, ∀k ≥ 0.

(b) From any starting point y0,

|yk+1 − y∗|∞ ≤ γ |yk − y∗|∞
which establishes a linear convergence rate of γ —the discount factor.

References

12.1 The idea of the steepest descent projection method is classic (e.g., see
Goldstein [AG], Levitin and Polyak [L5], and more recent Nesterov
[N4], Bubeck [BUB] and Beck [BEC]), but the analyses for the star-
convex case presented here are new. The use of a half stepsize in the
standard SDM and convergence proof for nonconvex cases are due to
Andrew Naber’s Ph.D. thesis [AN].

12.2 Feasible direction methods of various types were originally suggested
and developed by Zoutendijk [Z4]. The systematic study of the global
convergence properties of feasible direction methods was begun by
Topkis and Veinott [T8] and by Zangwill [Z2]. The Frank–Wolfe method
was initially proposed in [109].

12.3 The gradient projection method was proposed and developed (more
completely than discussed here) by Rosen [R5, R6], who also introduced
the notion of an active set strategy.

12.4 This material is taken from Luenberger [L14].
12.5–12.6 The reduced gradient method was originally proposed by Wolfe [W5] for

problems with linear constraints and generalized to nonlinear constraints
by Abadie and Carpentier [A1]. Wolfe [W4] presents an example of
jamming in the reduced gradient method. The convergence analysis
given in this section is new.

12.7 The material on indefinite quadratic minimization is taken from Ye [Y3].
12.8 See Gill, Murray, and Wright [G7] for a discussion of working sets and

active set strategies.

Chapter 13
Penalty and Barrier Methods

Penalty and barrier methods are procedures for approximating constrained opti-
mization problems by unconstrained problems. The approximation is accomplished
in the case of penalty methods by adding to the objective function a term that
prescribes a high cost for violation of the constraints, and in the case of barrier
methods by adding a term that favors points interior to the feasible region over
those near the boundary. Associated with these methods is a parameter c or μ that
determines the severity of the penalty or barrier and consequently the degree to
which the unconstrained problem approximates the original constrained problem.
For a problem with n variables and m constraints, penalty and barrier methods work
directly in the n-dimensional space of variables, as compared to primal methods that
work in (n−m)-dimensional space.

There are two fundamental issues associated with the lumped penalty method
of this chapter. The first has to do with how well the unconstrained problem
approximates the constrained one. This is essential in examining whether, as the
parameter c is increased toward infinity, the solution of the unconstrained problem
converges to a solution of the constrained problem. The other issue, most important
from a practical viewpoint, is the question of how to solve a given unconstrained
problem when its objective function contains a penalty. It turns out that as c is
increased to yield a good approximating problem, the corresponding structure of the
resulting unconstrained problem becomes increasingly unfavorable thereby slowing
the convergence rate of many algorithms that might be applied. (Exact penalty
functions also have a very unfavorable structure.) It is necessary, then, to devise
acceleration procedures that circumvent this slow convergence phenomenon. (One
exception of the penalty method is the Lagrangian penalty method using a pinpoint
penalty weight on each of every individual constraint violation, which is the topic
of the next chapter.)

On the other hand, the barrier method, when the barrier function is chosen
appropriately, has experienced great successes recently, as demonstrated by the

© Springer Nature Switzerland AG 2021
D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
https://doi.org/10.1007/978-3-030-85450-8_13

455

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85450-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-85450-8_13

456 13 Penalty and Barrier Methods

linear programming interior-point algorithm presented in Chap. 5. We extend the
method to nonlinear optimization.

Penalty and barrier methods are of great interest to both the practitioner and
the theorist. To the practitioner they offer a simple straightforward method for
handling constrained problems that can be implemented without sophisticated
computer programming and that possess much the same degree of generality
as primal methods. The theorist, striving to make this approach practical by
overcoming its inherently slow convergence, finds it appropriate to bring into play
nearly all aspects of optimization theory; including Lagrange multipliers, necessary
conditions, and many of the algorithms discussed earlier in this book. The canonical
rate of convergence associated with the original constrained problem again asserts
its fundamental role by essentially determining the natural accelerated rate of
convergence for unconstrained penalty or barrier problems.

Both methods consider solving the problem

minimize f (x)

subject to x ∈ �,
(13.1)

where f is a continuous function on En and � is a constraint set in En. In most
applications � is defined implicitly by a number of functional constraints, but in
this chapter the more general description in (13.1) can be handled.

13.1 Penalty Methods

The idea of a penalty function method is to replace problem (13.1) by an uncon-
strained problem of the form

minimize q(c, x) := f (x)+ cP(x), (13.2)

where c is a positive constant and P is a function on En satisfying: (i) P is
continuous, (ii) P(x) � 0 for all x ∈ En, and (iii) P(x) = 0 if and only if x ∈ �.

Suppose � is defined by a number of equality and inequality constraints:

� = {x : hi(x) = 0, i = 1, 2, . . . ,m, gj (x) � 0, j = 1, 2, . . . , p}. (13.3)

Various penalty functions in this case can be constructed.

Example 1 The (lumped) quadratic penalty function:

P(x) = 1

2

m∑
i=1

(hi(x))2 + 1

2

p∑
j=1

(g−j (x))2,

13.1 Penalty Methods 457

where

g−j (x) ≡ min[0, gj (x)], j = 1, 2, . . . , p. (13.4)

This is because in the interior of the constraint region P(x) ≡ 0 and hence P should
be a function only of violated constraints, that is, gj becomes negative.

For the quadratic penalty function, c needs to be increased to infinity to yield a
feasible solution. As c increases, unfortunately, the corresponding structure of the
resulting unconstrained problem becomes increasingly unfavorable for convergence.

Example 2 The (lumped) absolute-value penalty function:

P(x) =
m∑

i=1

|hi(x)| +
p∑

j=1

(−g−j (x)).

For the penalty function, c does not need to increase to infinity to yield a feasible
solution, so that it is called “exact” penalty. Unfortunately, this penalty function is
not differentiable at 0, a very important board-line point.

A general class of penalty functions could be

P(x) =
m∑

i=1

|hi(x)|ε +
p∑

j=1

(−g−j (x))ε

for some constant ε > 0. Again, the penalty function is not differentiable at 0 when
0 < ε ≤ 1, and, otherwise, c needs to be increased to infinity to yield a feasible
solution.

Example 3 The pinpoint or precise penalty: the Lagrangian penalty function

P(x) =
m∑

i=1

wh
i hi(x)+

p∑
j=1

w
g
j gj (x),

where the penalty weights wh
i can be either positive or negative, but w

g

j ≤ 0 since

we penalize only when gj (x) falls below and w
g
j = 0 when gj (x) > 0.

Do such pinpoint penalty weights exist? The answer is not only “yes” but
also they are precisely the negative of the Lagrange multiplier or dual optimal
solution of the original constrained optimization problem. With the knowledge of
the multipliers, one can solve the constrained problem by solving its unconstrained
Lagrangian penalized or relaxation problem (13.2). The next question naturally
arises: what to do if no such knowledge available? The answer would be “learning,”
that is, an alternative primal and dual method that would be discussed in the next
chapter.

458 13 Penalty and Barrier Methods

Fig. 13.1 Plot of cP (x)

The quadratic penalty function cP (x) is illustrated in Fig. 13.1 for the one-
dimensional case with g1(x) = b − x, g2(x) = x − a. The curves would become
lines for absolute-value penalties. For large c it is clear that the minimum point of
problem (13.2) will be in a region where P is small. Thus, for increasing c it is
expected that the corresponding solution points will approach the feasible region �

and, subject to being close, will minimize f . Ideally then, as c → ∞ the solution
point of the penalty problem will converge to a solution of the constrained problem.

The Method

One strategy for solving problem (13.1) is to fixed c at a large positive number
M , which is named the Big-M method, and then solve the penalized unconstrained
problem (13.2) once without dynamically adjusting c.

The other strategy by the penalty function method is this: Let {ck}, k = 1, 2, . . .,
be a sequence tending to infinity such that for each k, ck � 0, ck+1 > ck . For each
k solve problem (13.2) obtaining a solution point xk.

We assume here that, for each ck , problem (13.2) has a solution. This will be true,
for example, if q(c, x) increases unboundedly as |x| → ∞. (Also see Exercise 2 to
see that it is not necessary to obtain the minimum precisely.)

Convergence

The following lemma gives a set of inequalities that follow directly from the
definition of xk and the inequality ck+1 > ck .

Lemma 1

q(ck, xk) � q(ck+1, xk+1) (13.5)

13.1 Penalty Methods 459

P (xk) � P (xk+1) (13.6)

f (xk) � f (xk+1). (13.7)

Proof

q(ck+1, xk+1) = f (xk+1)+ ck+1P(xk+1) � f (xk+1)+ ckP (xk+1)

� f (xk)+ ckP (xk) = q(ck, xk),

which proves (13.5).
We also have

f (xk)+ ckP (xk) � f (xk+1)+ ckP (xk+1) (13.8)

f (xk+1)+ ck+1P(xk+1) � f (xk)+ ck+1P(xk). (13.9)

Adding (13.8) and (13.9) yields

(ck+1 − ck)P (xk+1) � (ck+1 − ck)P (xk),

which proves (13.6).
Also

f (xk+1)+ ckP (xk+1) � f (xk)+ ckP (xk),

and hence using (13.6) we obtain (13.7).

Lemma 2 Let x∗ be a solution to problem (13.1). Then for each k

f (x∗) � q(ck, xk) � f (xk).

Proof

f (x∗) = f (x∗)+ ckP (x∗) � f (xk)+ ckP (xk) � f (xk).

Global convergence of the penalty method, or more precisely verification that any
limit point of the sequence is a solution, follows easily from the two lemmas above.

Theorem Let {xk} be a sequence generated by the penalty method. Then, any limit point
of the sequence is a solution to (13.1).

Proof Suppose the subsequence {xk}, k ∈ K is a convergent subsequence of {xk}
having limit x. Then by the continuity of f , we have

limit
k∈K

f (xk) = f (x). (13.10)

Let f ∗ be the optimal value associated with problem (13.1). Then according to
Lemmas 1 and 2, the sequence of values q(ck, xk) is nondecreasing and bounded

460 13 Penalty and Barrier Methods

above by f ∗. Thus

limit
k∈K

q(ck, xk) = q∗ � f ∗. (13.11)

Subtracting (13.10) from (13.11) yields

limit
k∈K

ckP (xk) = q∗ − f (x). (13.12)

Since P(xk) � 0 and ck →∞, (13.12) implies

limit
k∈K

P(xk) = 0.

Using the continuity of P , this implies P(x) = 0. We therefore have shown that the
limit point x is feasible for (13.1).

To show that x is optimal we note that from Lemma 2, f (xk) � f ∗ and hence

f (x) = limitk∈Kf (xk) � f ∗.

13.2 Barrier Methods

Barrier methods are applicable to problem (13.1) where the constraint set � has a
nonempty interior that is arbitrarily close to any point of �. Intuitively, what this
means is that the set has an interior and it is possible to get to any boundary point
by approaching it from the interior. We shall refer to such a set as robust. Some
examples of robust and nonrobust sets are shown in Fig. 13.2. This kind of set often
arises in conjunction with inequality constraints, where � takes the form

� = {x : gj (x) � 0, j = 1, 2, . . . , p} (13.13)

Barrier methods are also termed interior-point methods. They work by establishing
a barrier on the boundary of the feasible region that prevents a search procedure

Fig. 13.2 Examples

13.2 Barrier Methods 461

from leaving the region. A barrier function is a function B defined on the interior of
� such that: (i) B is continuous, (ii) B(x) is bounded from below, (iii) B(x) → ∞
as x approaches the boundary of �.

Let gj , i = 1, 2, . . . , p be continuous functions on En. Suppose � in (13.13)
is robust, and suppose the interior of � is the set of x’s where gi(x) > 0, i =
1, 2, . . . , p. Two of the most used barrier functions in this case are as follows.

Example 1 The reciprocal barrier function

B(x) =
p∑

j=1

1

gj (x)
,

defined on the interior of �, is a barrier function. It is illustrated in one dimension
for g1 = x − a, g2 = b − x in Fig. 13.3.

Example 2 The (negative) logarithmic barrier function

B(x) = −
p∑

j=1

log[gj (x)].

This is the barrier function commonly used in linear programming interior-point
methods, and it is frequently used more generally as well. It is bounded from below
if � is bounded.

Fig. 13.3 Barrier function

462 13 Penalty and Barrier Methods

Corresponding to the problem (13.1), consider the unconstrained problem

minimize r(c, x) := f (x)+ 1
c
B(x)

subject to x ∈ interior of �,
(13.14)

where c is a positive constant. Traditionally, parameter μ = 1
c

is used for barrier or
interior-point methods as

minimize f (x)+ μB(x)

subject to x ∈ interior of �.
(13.15)

When formulated with c we take c large (going to infinity); while when
formulated with μ we take μ small (going to zero). Either way the result is a
constrained problem, and indeed the constraint is somewhat more complicated than
in the original problem (13.1). The advantage of this problem, however, is that it can
be solved by using an unconstrained search technique. To find the solution one starts
at an initial interior point and then searches from that point using steepest descent
or some other iterative descent method applicable to unconstrained problems. Since
the value of the objective function approaches infinity near the boundary of �, the
search technique (if carefully implemented) will automatically remain within the
interior of �, and the constraint need not be accounted for explicitly. Thus, although
problem (13.14) or (13.15) is from a formal viewpoint a constrained problem, from
a computational viewpoint it is unconstrained.

The Method

The barrier method is quite analogous to the penalty method. One strategy is to fixed
c (or μ) at a large (or small) positive number M , which is named the Big-M method,
and then solve the penalized unconstrained problem (13.14) or (13.15) once without
dynamically adjusting c.

The other strategy is to let {ck} be a sequence tending to infinity such that for
each k, k = 1, 2, . . . , ck � 0, ck+1 > ck. For each k solve problem (13.14), with
c = ck , obtaining the point xk.

Convergence

Virtually the same convergence properties hold for the barrier method as for the
penalty method. We leave to the reader the proof of the following result.

Theorem Any limit point of a sequence {xk} generated by the barrier method is a solution
to problem (13.1).

13.3 Lagrange Multipliers in Penalty and Barrier Methods 463

13.3 Lagrange Multipliers in Penalty and Barrier Methods

Penalty and barrier methods are applicable to nonlinear programming problems
having a very general form of constraint set �. In most situations, however, this set
is not given explicitly but is defined implicitly by a number of functional constraints.
In these situations, the penalty or barrier function is invariably defined in terms of
the constraint functions themselves; and although there are an unlimited number of
ways in which this can be done, some important general implications follow from
this kind of construction.

For economy of notation we consider constraints of the form (13.3). Then, the
penalty function will most naturally be expressed in terms of the auxiliary function
of hi(x) and g−j (x). We consider the general class of penalty functions

P(x) =
m∑

i=1

γ (hi(x))+
p∑

j=1

γ (g−j (x)), (13.16)

where γ (·) is a continuously differentiable function from real number to a nonnega-
tive real numbers, defined in such a way that P satisfies the requirements demanded
of a penalty function.

Lagrange Multipliers in the Penalty Method

In the penalty method we solve, for various ck, the unconstrained problem

minimize q(ck, x) = f (x)+ ckP (x). (13.17)

Most algorithms require that the objective function has continuous first partial
(sub)derivatives. Since we shall, as usual, assume that both f and g ∈ C1, it is
natural to require, then, that the penalty function P ∈ C1. We define, for every j ,

∇g−j (x) =
{
∇gj (x) if gj (x) ≤ 0

0 if gj (x) > 0
= 1gj (x)≤0∇gj (x). (13.18)

where 1· is the indicator function.
In view of this assumption, problem (13.17) will have its solution at a point xk

satisfying the first-order condition

∇f (xk)+ ck

m∑
i=1

γ ′(hi(xk))∇hi(xk)+ ck

p∑
j=1

γ ′(g−j (xk))1gj (xk)≤0∇gj (xk) = 0,

464 13 Penalty and Barrier Methods

which can be written as

∇f (xk)− λT
k ∇h(xk)− μT

k ∇g(xk) = 0, (13.19)

where

(λk)i ≡ −ckγ
′(hi(xk)), ∀i and (μk)j ≡ −ckγ

′(g−j (xk))1gj (xk)≤0, ∀j.
(13.20)

Thus, associated with every c is a Lagrange multiplier vector that is determined after
the unconstrained minimization is performed.

If a solution x∗ to the original problem is a regular point of the constraints (13.3),
then there is a unique Lagrange multiplier vector λ∗ associated with the solution.
The result stated below says that λk → λ∗.

Proposition Suppose that the penalty function method is applied to problem with con-
straints (13.3) using a penalty function of the form (13.16) with γ ∈ C1. Corresponding to
the sequence {xk} generated by this method, define λk and μk by (13.20). If xk → x∗ of the
original constrained problem and stationary solution x∗ is a regular point, then λk → λ∗
and μk → μ∗, the Lagrange multiplier vectors associated with the original constrained
problem.

Proof left to the reader.
As a final observation we note that, for inequality constraints that are active at

x∗ and have positive Lagrange multipliers will be violated at xk because the cor-
responding j th components of −ckγ

′(g−j (xk))1gj (xk)≤0 is nonzero. Therefore, xk

approaches x∗ from outside of the inequality constraint. Thus, γ ′(g−j (xk))1gj (xk)≤0
is negative so that the multiplier (μk)j is positive. Thus, if we assume that the active
constraints are nondegenerate (all Lagrange multipliers are strictly positive), every
active constraint will be approached from the outside, even though the process starts
from inside.

Example 1 Consider the one-variable problem

maximize 5x2

subject to x − 1 = 0.

Applying the penalty method with the quadratic penalty function (γ (y) = y2), we
solve a sequence of unconstrained problems

min 5x2 + k(x − 1)2,

that is, ck = k, k = 1, 2, The solution to the problem is xk = k
5+k

and, using

the definition of (13.20), λk = −2k(xk − 1) = 10k
5+k

. As k → ∞, xk → 1 and
λk → 10.

13.3 Lagrange Multipliers in Penalty and Barrier Methods 465

Now consider the absolute-value penalty γ (y) = |y| �∈ C1. Then we solve a
sequence of problems

min 5x2 + k|x − 1|.

For k = 1, . . . , 10, the solution xk = k
10 , and for all k ≥ 11, xk = 1. To evaluate λ,

we need to define γ ′. Let us have γ ′ = 1 if y > 0 and γ ′ = −1 otherwise. Then we
have, for all k ≥ 1, λk = k. Therefore, one should stop increasing ck and terminate
the penalty method as soon as the solution becomes feasible, that is, k = 10 in this
case. In fact, we have the following result.

Exact Penalty Theorem Suppose that the point x∗ satisfies the second-order sufficiency
conditions for a local minimum of the constrained problem with constraint set given
by (13.3). Let λ∗ and μ∗ be the corresponding Lagrange multipliers. Then for c >

max{|λ∗i |, μ∗j : i = 1, 2, . . . , m, j = 1, 2, . . . , p}, x∗ is also a local minimum
of the unconstrained problem (13.17) with the lumped absolute-value penalty function in
Example 2 of Sect. 13.1.

However, recovering the multipliers from the penalty method would be difficult,
as illustrated in this example.

On the other hand, the pinpoint or Lagrangian penalty method (see Example 3 of
Sect. 13.1) would solve the unconstrained problem

min 5x2 − 10(x − 1),

which directly produces the optimal solution x∗ = 1.

The Hessian Matrix

Since the penalty function method must adopt various (large) values of c, it is
important, in order to evaluate the difficulty of such a problem, to determine
the eigenvalue structure of the Hessian of this modified objective function. We
show here that the structure becomes increasingly unfavorable as c increases. For
simplicity, we consider equality constraints only and the quadratic penalty function.
Then we solve unconstrained problem

minimize q(c, x) = f (x)+ c
2 |h(x)|2 (13.21)

we have for the Hessian, Q, of q (with respect to x)

Q(c, x) = F(x)+ ch(x)T H(x)+ c∇h(x)T ∇h(x),

where F and H, are, respectively, the Hessians of f and h. For a fixed ck we use
the definition of λk = −ckh(xk) given by (13.20) and introduce the rather natural

466 13 Penalty and Barrier Methods

definition

Lk(xk) = F(xk)− λT
k H(xk), (13.22)

which is the Hessian of the corresponding Lagrangian. Then we have

Q(ck, xk) = Lk(xk)+ ck∇h(xk)
T ∇h(xk), (13.23)

which is the desired expression.
The first term on the right side of (13.23) converges to the Hessian of the

Lagrangian of the original constrained problem as xk → x∗, and hence has a
limit that is independent of ck . The second term is a matrix having rank equal to
m, the number of the constraints and having a magnitude tending to infinity. (See
Exercise 8.) This means that the Lipschitz constant would tend to infinity, which is
not good for applying the first-order methods. It is equally bad for Newton’s method
since the matrix becomes singular at the limit—at least n−m of the eigenvalues tend
to zero (or already are zero if Lk(xk) is rank deficient).

Lagrange Multipliers in the Barrier Method

Essentially the same story holds for barrier function. Let us consider con-
straints (13.13) and barrier functions of the form

B(x) = η(g(x)), (13.24)

then Lagrange multipliers and ill-conditioned Hessians are again inevitable. Rather
than parallel the earlier analysis of penalty functions, we illustrate the conclusions
with two examples. However, the problem is redeemable for the logarithmic barrier
function due to its desired property (see (8.66) of Chap. 8) and self-duality nature,
when the Newton’s method is applied to the KKT system of equations.

Example 1 Define

B(x) =
p∑

j=1

1

gj (x)
. (13.25)

The barrier objective

r(ck, x) = f (x)+ 1

ck

p∑
j=1

1

gj (x)

13.3 Lagrange Multipliers in Penalty and Barrier Methods 467

has its minimum at a point xk satisfying

∇f (xk)− 1

ck

p∑
j=1

1

gj (xk)2
∇gj (xk) = 0. (13.26)

Thus, we define μk to be the vector having j th component 1
ck
· 1

gj (xk)2 . Then (13.26)

can be written as

∇f (xk)− μT
k ∇g(xk) = 0.

Again, assuming xk → x∗, the solution of the original constrained problem, we can
show that μk → μ∗, the Lagrange multiplier vector associated with the solution.
This implies that if gj is an active constraint,

1

ckgj (xk)2
→ μ∗j < ∞. (13.27)

Next, evaluating the Hessian R(ck, xk) of r(ck, xk), we have

R(ck, xk) = F(xk)− 1

ck

p∑
j=1

1

gj (xk)2
Gj (xk)+ 1

ck

p∑
j=1

2

gj (xk)3
∇gj (xk)

T ∇gj (xk)

= L(xk)+ 1

ck

p∑
j=1

2

gj (xk)3 ∇gj (xk)
T ∇gj (xk).

As ck →∞ we have

1

ckgj (xk)3
→
{∞ if gj is active at x∗

0 if gj is inactive at x∗

so that we may write, from (13.27),

R(ck, xk)→ L(xk)+
∑
j∈I

2(μk)j

gj (xk)
∇gj (xk)

T ∇gj (xk),

where I is the set of indices corresponding to active constraints. Thus the Hessian
of the barrier objective function has exactly the same structure as that of penalty
objective functions.

468 13 Penalty and Barrier Methods

Example 2 Let us use the logarithmic barrier function

B(x) = −
p∑

j=1

log[gj (x)].

In this case we will define the barrier objective in terms of μ as

r(μ, x) = f (x)− μ

p∑
j=1

log[gj (x)].

The minimum point xμ satisfies

0 = ∇f (xμ)− μ

p∑
j=1

1

gj (xμ)
∇gj (xμ). (13.28)

Defining

(μμ)j = μ
1

gj (xμ)

(13.28) can be written as

∇f (xμ)− μT
μ∇g(xμ) = 0.

Further we expect that μμ → μ∗ as μ→ 0.
The Hessian of r(μ, x) is

R(μ, xμ) = F(xμ)−
p∑

j=1

(μμ)j Gj (xμ)+
p∑

j=1

(μμ)j

gj (xμ)
∇gj (xμ)T ∇gj (xμ).

Hence, for small μ it has the same structure as that found in Example 1.

We comment on the difference between the reciprocal and logarithmic barrier
functions. First, the latter meets the self-concordant property of (8.66) of Chap. 8,
which is desirable when Newton’s method is applied. In other words, the growth
of ill-conditioness of the Hessian structure could be diminished by the faster
convergence of Newton’s method. Second, it also possesses the self-dual property
as illustrated below.

Recall in Example 2 of Chap. 11, the Lagrangian dual of the primal linear
program with the logarithmic barrier function is the dual linear program with the

13.3 Lagrange Multipliers in Penalty and Barrier Methods 469

logarithmic barrier function on dual slack variables, for the LP pair

Primal Dual
minimize cT x maximize yT b
subject to Ax = b, x � 0 subject to yT A � cT .

Now we find what would happen if the reciprocal barrier function were used:

(BP) minimize cT x+ μ

n∑
j=1

1

xj

subject to Ax = b, x > 0.

Since all nonnegative constraints would be redundant, we can omit them and write
the Lagrangian as (y denotes the multipliers for the equality constraints)

l(x, y) = cT x+ μ

n∑
j=1

1

xj

− yT (Ax− b) = (c− AT y)T x+ μ

n∑
j=1

1

xj

+ bT y.

The (LDC) condition is

cj − yT aj − μ/x2
j = 0, or xj =

√
μ√

cj − yT aj

for each j.

Substituting this expression to replace xj in the Lagrangian, we have

φ(y) = l(y) = bT y+√μ

n∑
j=1

√
cj − yT aj .

One can see that the Lagrangian dual itself has no barrier capability.
In the next few sections we address the problem of efficiently solving the

unconstrained or equality constrained problems associated with a penalty or barrier
method. The main difficulty is the extremely unfavorable eigenvalue structure that,
as explained in Sect. 13.3, always accompanies unconstrained problems derived in
this way. Certainly straightforward application of the method of steepest descent is
out of the question!

One method for avoiding slow convergence for these problems is to apply
Newton’s method (or one of its variations), since the order two convergence
of Newton’s method is unaffected by the poor eigenvalue structure. In applying
the method, however, special care must be devoted to the manner by which
the Hessian is inverted, since it is ill-conditioned. Nevertheless, if second-order
information is easily available, Newton’s method offers an extremely attractive and
effective method for solving penalty or barrier optimization problems. When such
information is not readily available, or if data handling and storage requirements of
Newton’s method are excessive, attention naturally focuses on first-order methods.

470 13 Penalty and Barrier Methods

13.4 Newton’s Method for the Logarithmic Barrier
Optimization

In this section, we construct the Karush–Kuhn–Tucker condition system with
the logarithmic barrier function, analog to the central path system for linear
programming. Then apply Newton’s method for solving this system of nonlinear
equations, which becomes one of most popular method for nonlinear optimization.

The KKT Condition System of the Logarithmic Barrier Function

The definition of the central path associated with linear programs is easily extended
to general nonlinear programs. Consider the problem

minimize f (x)

subject to h(x) = 0 ∈ Em, g(x) ≥ 0 ∈ Ep.
(13.29)

We assume that F̊ = {x : h(x) = 0, g(x) > 0} �= φ. Then we use the logarithmic
barrier function to define the problems

minimize f (x)− μ
∑p

j=1 log[gj (x)]
subject to h(x) = 0.

Note that we have not added the penalty on the equality constraints, since Newton’s
method can deal with the nonlinear equations directly. The solution xμ parameter-
ized by μ→ 0 is called the central path; see Chap. 5.

Let y be the Lagrange multiplier vector for the constraint h(x) = 0. Then, the
Lagrangian derivative condition for the problem is

∇f (x)− yT ∇h(x)−
p∑

j=1

1

gj (x)
∇gj (x) = 0.

Define sj = μ
gj (x)

for j = 1, . . . , p, then the complete necessary conditions system
(including the equality constraints) becomes

∇f (x)− yT ∇h(x)− sT ∇g(x) = 0

h(x) = 0.

sj · gj (x) = μ; j = 1, 2, . . . , p.

13.4 Newton’s Method for the Logarithmic Barrier Optimization 471

Then, the Newton method can be directly applied to solving the condition system
as μ is gradually reduced to 0, that is, following the path. This will be a primal–
dual algorithm, that is, updating primal and dual solutions symmetrically and
concurrently, see, Chap. 15.

The KKT System of a “Shifted” Barrier

Often, it is hard to find an initial solution such that g(x0) > 0 so that the barrier
function is not well defined. In practice, one can consider a shifted logarithmic
barrier function

minimize f (x)− μ
∑p

i=1 log[μ+ gi(x)]
subject to h(x) = 0.

For any given initial solution x0, one can choose initial parameter μ0 ≥ 1 −
min{gj (x0), j = 1, . . . , p} to make μ0 + gj (x0) ≥ 1 for all j so that it is in
the domain of the barrier function. The necessary conditions for the shifted-barrier
problem can be written as

∇f (x)− yT ∇h(x)− sT ∇g(x) = 0

h(x) = 0.

sj · (μ+ gj (x)) = μ; j = 1, 2, . . . , p.

Here, μ is a parameter, not a variable, that gradually reduces to zero. Again,
Newton’s method can be directly applied to solving the shifted-barrier condition
system as μ is gradually reduced to 0.

The Interior Ellipsoidal-Trust Region Method with Barrier

In the rest of this section, we show the benefit of the barrier function method for
nonconvex quadratic minimization subject to the nonnegative orthant constraint, the
very problem considered in Sect. 12.7 of the last chapter.

Here, we consider the nonconvex but quadratic function with the fixed barrier
function

q(ε, x) = f (x)− ε

n∑
j=1

log(xj) = 1

2
xT Fx+ cT x− ε

n∑
j=1

log(xj),

472 13 Penalty and Barrier Methods

where ε is a fixed positive small number. At an interior solution x > 0, the transpose
of the gradient vector of q(ε, x) is

g = Fx+ c− ε
1.

x
,

where 1.
x is a component-wise reciprocal operator.

Initiating from x0 = 1, the method would solve, after the affine scaling by Xk

that is the diagonal matrix whose positive diagonal entries are from vector xk,

minimize 1
2 d′T (XkFXk)d′ + (gT

k Xk)d′
subject to |d′|2 ≤ (δ)2(< 1).

Note that now the scaled gradient vector

Xkgk = Xk(Fxk + c)− ε1.

Let the minimum value of f (x) on the nonnegative orthant be z∗. Following the
same analysis, in 4(f (1)−z∗)

ε
iterations we must have

|Xkgk| = |Xk(Fxk + c)− ε · 1| ≤ ε,

which implies that

∇f (xk) = Fxk + c ≥ 0.

This property was not automatically guaranteed if no logarithmic barrier had been
added.

The result can be extended to include affine constraints h(x) = Ax − b = 0,
where each iteration solves

minimize 1
2 d′T (XkFXk)d′ + (gT

k Xk)d′
subject to Ad′ = 0, |d′|2 ≤ (δ)2(< 1).

(13.30)

Theorem Consider the problem minimizing a nonconvex quadratic function subject to
affine constraints Ax − b = 0, x ≥ 0. Let the feasible region be bounded, have an
interior feasible solution x0, and the minimal value be z∗. Then, the interior ellipsoidal-trust
region method generates an ε-first- and second-order stationary solution in O(

f (x0)−z∗
ε

)

iterations. Each iteration of the method solves a ball-constrained quadratic minimization
problem in O(n3 log log(1/ε)) arithmetic operations.

13.5 Newton’s Method for Equality Constrained Optimization 473

13.5 Newton’s Method for Equality Constrained
Optimization

A simple modified Newton’s method can often be quite effective for some penalty
problems. For example, consider the problem having only equality constraints

minimize f (x)

subject to h(x) = 0
(13.31)

with x ∈ En, h(x) ∈ Em, m < n. Applying the standard quadratic penalty method
we solve instead the unconstrained problem

minimize f (x)+ 1
2c|h(x)|2 (13.32)

for some large c. Calling the penalty objective function q(x) we consider the
iterative process

xk+1 = xk − αk[I + c∇h(xk)
T ∇h(xk)]−1∇q(xk)

T , (13.33)

where αk is chosen to minimize q(xk+1). The matrix I + c∇h(xk)
T ∇h(xk) is

positive definite and although quite ill-conditioned it can be inverted efficiently (see
Exercise 11).

According to the Modified Newton Method Theorem (Sect. 10.1) the rate of
convergence of this method is determined by the eigenvalues of the matrix

[I + c∇h(xk)
T ∇h(xk)]−1Q(xk), (13.34)

where Q(xk) is the Hessian of q at xk. In view of (13.23), as c → ∞ the
matrix (13.34) will have m eigenvalues that approach unity, while the remaining
n − m eigenvalues approach the eigenvalues of LM evaluated at the solution x∗
of (13.31). Thus, if the smallest and largest eigenvalues of LM, a and A, are located
such that the interval [a, A] contains unity, the convergence ratio of this modified
Newton’s method will be equal (in the limit of c → ∞) to the canonical ratio
[(A− a)/(A+ a)]2 for problem (13.31).

If the eigenvalues of LM are not spread below and above unity, the convergence
rate will be slowed. If a point in the interval containing the eigenvalues of LM is
known, a scalar factor can be introduced so that the canonical rate is achieved, but
such information is often not easily available.

474 13 Penalty and Barrier Methods

Normalization of Penalty Functions

There is a good deal of freedom in the selection of penalty or barrier functions that
can be exploited to accelerate convergence. We propose here a simple normalization
procedure that together with a two-step cycle of conjugate gradients yields the
canonical rate of convergence. Again for simplicity we illustrate the technique for
the penalty method applied to problem (13.31).

Corresponding to (13.31) we consider the family of quadratic penalty functions

P(x) = 1

2
h(x)T �h(x), (13.35)

where � is a symmetric positive definite m×m matrix. We ask what the best choice
of � might be.

Letting

q(c, x) = f (x)+ cP(x), (13.36)

the Hessian of q turns out to be, using (13.23),

Q(c, xk) = L(xk)+ c∇h(xk)
T �∇h(xk). (13.37)

The m large eigenvalues are due to the second term on the right. The observation
we make is that although the m large eigenvalues are all proportional to c, they are
not necessarily all equal. Indeed, for very large c these eigenvalues are determined
almost exclusively by the second term, and are therefore c times the nonzero
eigenvalues of the matrix ∇h(xk)

T �∇h(xk). We would like to select � so that these
eigenvalues are not spread out but are nearly equal to one another. An ideal choice
for the kth iteration would be

� = [∇h(xk)∇h(xk)
T]−1, (13.38)

since then all nonzero eigenvalues would be exactly equal. However, we do not
allow to change at each step, and therefore compromise by setting

� = [∇h(x0)∇h(x0)
T]−1, (13.39)

where x0 is the initial point of the iteration.
Using this penalty function, the corresponding eigenvalue structure will at any

point look approximately like that shown in Fig. 13.4. The eigenvalues are bunched
into two separate groups. As c is increased the smaller eigenvalues move into the
interval [a, A] where a and A are, as usual, the smallest and largest eigenvalues of
LM at the solution to (13.31). The larger eigenvalues move forward to the right and
spread further apart.

13.5 Newton’s Method for Equality Constrained Optimization 475

Fig. 13.4 Eigenvalue distributions

Using the result of Exercise 11, Chap. 9, we see that if xk+1 is determined from
xk by two conjugate gradient steps, the rate of convergence will be linear at a
ratio determined by the widest of the two eigenvalue groups. If our normalization
is sufficiently accurate, the large-valued group will have the lesser width. In that
case convergence of this scheme is approximately that of the canonical rate for the
original problem. Thus, by proper normalization it is possible to obtain the canonical
rate of convergence for only about twice the time per iteration as required by steepest
descent.

There are, of course, numerous variations of this method that can be used
in practice. � can, for example, be allowed to vary at each step, or it can be
occasionally updated.

Example 3

minimize f (x1, x2, . . . , x10) =
10∑

k=1
kx2

k

subject to 1.5x1 + x2 + x3 + 0.5x4 + 0.5x5 = 5.5
2.0x6 − 0.5x7 − 0.5x8 + x9 − x10 = 2.0
x1 + x3 + x5 + x7 + x9 = 10
x2 + x4 + x6 + x8 + x10 = 15.

is solved by the normalization method presented above. The results for various
values of c and for cycle lengths of one, two, and three are presented in Table 13.1.
(All runs were initiated from the zero vector.)

Table 13.1 Results for Example 3

Number of cycles Value of modified
p (steps per cycle) to convergence No. of steps objective

c = 10
⎧⎪⎨
⎪⎩

1

2

3

28 28 251.2657

9 18 251.2657

5 15 251.2657

c = 100
⎧⎪⎨
⎪⎩

1

2

3

153 153 379.5955

13 26 379.5955

11 33 379.5955

c = 1000
⎧
⎪⎨
⎪⎩

1

2

3

261a 261 402.0903

14 28 400.1687

13 39 400.1687

a Program not run to convergence due to excessive time

476 13 Penalty and Barrier Methods

Inequalities

If there are inequality as well as equality constraints in the problem, the analogous
procedure can be applied to the associated penalty objective function. The unusual
feature of this case is that corresponding to an inequality constraint gi(x) � 0,
the term ∇g−i (x)T ∇g−i (x) used in the iteration matrix will suddenly appear if the
constraint is violated. Thus the iteration matrix is discontinuous with respect to x,
and as the method progresses its nature changes according to which constraints are
violated. This discontinuity does not, however, imply that the method is subject to
jamming, since the result of Exercise 4, Chap. 10 is applicable to this method.

13.6 Conjugate Gradients and Penalty Methods

The partial conjugate gradient method proposed and analyzed in Sect. 9.5 is ideally
suited to penalty or barrier problems having only a few active constraints. If there
are m active constraints, then taking cycles of m + 1 conjugate gradient steps will
yield a rate of convergence that is independent of the penalty constant c. Again,
we consider the problem having only equality constraints (13.31): h(x) = 0 where
x ∈ En, h(x) ∈ Em, m < n. Applying the standard quadratic penalty method, we
solve instead the unconstrained problem

minimize f (x)+ 1
2c|h(x)|2 (13.40)

for some large c. The objective function of this problem has a Hessian matrix
that has m eigenvalues that are of the order c in magnitude, while the remaining
n −m eigenvalues are close to the eigenvalues of the matrix LM , corresponding to
problem (13.31). Thus, letting xk+1 be determined from xk by taking m + 1 steps
of a (nonquadratic) conjugate gradient method, and assuming xk → x, a solution
to (13.40), the sequence {f (xk)} converges linearly to f (x) with a convergence ratio
equal to approximately

(
A− a

A+ a

)2

(13.41)

where a and A are, respectively, the smallest and largest eigenvalues of LM(x).
This is an extremely effective technique when m is relatively small. The

programming logic required is only slightly greater than that of steepest descent,
and the time per iteration is only about m+ 1 times as great as for steepest descent.
The method can be used for problems having inequality constraints as well but it is
advisable to change the cycle length, depending on the number of constraints active
at the end of the previous cycle.

Example 3 was treated by the penalty function approach, and the resulting
composite function was then solved for various values of c by using various cycle

13.7 Penalty Functions and Gradient Projection 477

Table 13.2 Results for Example 3

Number of cycles Value of modified
p (steps per cycle) to convergence No. of steps objective

c = 20
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

3

5

7

90 90 388.565

8 24 388.563

3 15 388.563

3 21 388.563

c = 200
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

3

5

7

230a 230 488.607

21 63 487.446

4 20 487.438

2 14 487.433

c = 2000
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

3

5

7

260a 260 525.238

45a 135 503.550

3 15 500.910

3 21 500.882

a Program not run to convergence due to excessive time

lengths of a conjugate gradient algorithm. In Table 13.2 p is the number of conjugate
gradient steps in a cycle. Thus, p = 1 corresponds to ordinary steepest descent;
p = 5 corresponds, by the theory of Sect. 9.5, to the smallest value of p for which
the rate of convergence is independent of c; and p = 10 is the standard conjugate
gradient method. Note that for p < 5 the convergence rate does indeed depend on
c, while it is more or less constant for p � 5. The value of c’s selected are not
artificially large, since for c = 200 the constraints are satisfied only to within 0.5 %
of their right-hand sides. For problems with nonlinear constraints the results will
most likely be somewhat less favorable, since the predicted convergence rate would
apply only to the tail of the sequence.

13.7 Penalty Functions and Gradient Projection

The penalty function method can be combined with the idea of the gradient
projection method to yield an attractive general purpose procedure for solving
constrained optimization problems. The proposed combination method can be
viewed either as a way of accelerating the rate of convergence of the penalty
function method by eliminating the effect of the large eigenvalues, or as a technique
for efficiently handling the delicate and usually cumbersome requirement in the
gradient projection method that each point be feasible. The combined method
converges at the canonical rate (the same as does the gradient projection method),
is globally convergent (unlike the gradient projection method), and avoids much of
the computational difficulty associated with staying feasible.

478 13 Penalty and Barrier Methods

Underlying Concept

The basic theoretical result that motivates the development of this algorithm is the
Combined Steepest Descent and Newton’s Method Theorem of Sect. 10.7. The idea
is to apply this combined method to a penalty problem. For simplicity we first
consider the equality constrained problem

minimize f (x)

subject to h(x) = 0,
(13.42)

where x ∈ En, h(x) ∈ Em. The associated unconstrained penalty problem that we
consider is

minimize q(x), (13.43)

where

q(x) = f (x)+ 1

2
c|h(x)|2.

At any point xk let M(xk) be the subspace tangent to the surface Sk = {x : h(x) =
h(xk)}. This is a slight extension of the tangent subspaces that we have considered
before, since M(xk) is defined even for points that are not feasible. If the sequence
{xk} converges to a solution xc of problem (13.43), then we expect that M(xk) will in
some sense converge to M(xc). The orthogonal complement of M(xk) is the space
generated by the gradients of the constraint functions evaluated at xk. Let us denote
this space by N(xk). The idea of the algorithm is to take N as the subspace over
which Newton’s method is applied, and M as the space over which the gradient
method is applied. A cycle of the algorithm would be as follows:

1. Given xk , apply one step of Newton’s method over, the subspace N(xk) to obtain
a point wk of the form

wk = xk +∇h(xk)
T uk

uk ∈ Em.

2. From wk , take an ordinary steepest descent step to obtain xk+1.

Of course, we must show how Step 1 can be easily executed, and this is done below,
but first, without drawing out the details, let us examine the general structure of this
algorithm.

The process is illustrated in Fig. 13.5. The first step is analogous to the step
in the gradient projection method that returns to the feasible surface; except that
here the criterion is reduction of the objective function rather than satisfaction of
constraints. To interpret the second step, suppose for the moment that the original

13.7 Penalty Functions and Gradient Projection 479

Fig. 13.5 Illustration of the
method

problem (13.42) has a quadratic objective and linear constraints; so that, conse-
quently, the penalty problem (13.43) has a quadratic objective and N(x), M(x)

and ∇h(x) are independent of x. In that case the first (Newton) step would exactly
minimize q with respect to N , so that the gradient of q at wk would be orthogonal to
N ; that is, the gradient would lie in the subspace M . Furthermore, since ∇q(wk) =
∇f (wk) + ch(wk)∇h(wk), we see that ∇q(wk) would in that case be equal to the
projection of the gradient of f onto M . Hence, the second step is, in the quadratic
case exactly, and in the general case approximately, a move in the direction of the
projected negative gradient of the original objective function.

The convergence properties of such a scheme are easily predicted from the
theorem on the Combined Steepest Descent and Newton’s Method, in Sect. 10.7,
and our analysis of the structure of the Hessian of the penalty objective function
given by (13.23). As xk → xc the rate will be determined by the ratio of largest to
smallest eigenvalues of the Hessian restricted to M(xc).

This leads, however, by what was shown in Sect. 12.8, to approximately the
canonical rate for problem (13.42). Thus this combined method will yield again
the canonical rate as c →∞.

Implementing the First Step

To implement the first step of the algorithm suggested above it is necessary to show
how a Newton step can be taken in the subspace N(xk). We show that, again for
large values of c, this can be accomplished easily.

At the point xk the function b, defined by

b(u) = q(xk + ∇h(xk)
T u) (13.44)

480 13 Penalty and Barrier Methods

for u ∈ Em, measures the variations in q with respect to displacements in N(xk).
We shall, for simplicity, assume that at each point, xk, ∇h(xk) has rank m. We can
immediately calculate the gradient with respect to u,

∇b(u) = ∇q(xk +∇h(xk)
T u)∇h(xk)

T , (13.45)

and the m×m Hessian with respect to u at u = 0,

B = ∇h(xk)Q(xk)∇h(xk)
T . (13.46)

where Q is the n × n Hessian of q with respect to x. From (13.23) we have that at
xk

Q(xk) = Lk(xk)+ c∇h(xk)
T ∇h(xk). (13.47)

And given B, the direction for the Newton step in N would be

dk = −∇h(xk)
T B−1∇c(0)T

= −∇h(xk)
T B−1∇h(xk)∇q(xk)

T . (13.48)

It is clear from (13.46) and (13.47) that exact evaluation of the Newton step
requires knowledge of L(xk) which usually is costly to obtain. For large values of
c, however, B can be approximated by

B c[∇h(xk)∇h(xk)
T]2, (13.49)

and hence a good approximation to the Newton direction is

dk = −1

c
∇h(xk)

T [∇h(xk)∇h(xk)
T]−2∇h(xk)∇q(xk)

T . (13.50)

Thus a suitable implementation of one cycle of the algorithm is:

1. Calculate

dk = −1

c
∇h(xk)

T [∇h(xk)∇h(xk)
T]−2∇h(xk)∇q(xk)

T .

2. Find βk to minimize q(xk + βdk) (using βk = 1 as an initial search point), and
set wk = xk + βkdk .

3. Calculate pk = −∇q(wk)
T .

4. Find αk to minimize q(wk + αpk), and set xk+1 = wk + αkpk .

It is interesting to compare the Newton step of this version of the algorithm with
the step for returning to the feasible region used in the ordinary gradient projection

13.8 Summary 481

method. We have

∇q(xk)
T = ∇f (xk)

T + c∇h(xk)
T h(xk). (13.51)

If we neglect ∇f (xk)
T on the right (as would be valid if we are a long distance from

the constraint boundary) then the vector dk reduces to

dk = −∇h(xk)
T [∇h(xk)∇h(xk)

T]−1h(xk),

which is precisely the first estimate used to return to the boundary in the gradient
projection method. The scheme developed in this section can therefore be regarded
as one which corrects this estimate by accounting for the variation in f .

An important advantage of the present method is that it is not necessary to carry
out the search in detail. If β = 1 yields an improved value for the penalty objective,
no further search is required. If not, one need search only until some improvement
is obtained. At worst, if this search is poorly performed, the method degenerates
to steepest descent. When one finally gets close to the solution, however, β = 1 is
bound to yield an improvement and terminal convergence will progress at nearly the
canonical rate.

Inequality Constraints

The procedure is conceptually the same for problems with inequality constraints.
The only difference is that at the beginning of each cycle the subspace M(xk) is
calculated on the basis of those constraints that are either active or violated at xk ,
the others being ignored. The resulting technique is a descent algorithm in that
the penalty objective function decreases at each cycle; it is globally convergent
because of the pure gradient step taken at the end of each cycle; its rate of
convergence approaches the canonical rate for the original constrained problem as
c →∞; and there are no feasibility tolerances or subroutine iterations required.

13.8 Summary

Penalty methods approximate a constrained problem by an unconstrained problem
that assigns high cost to points that are far from the feasible region. As the
approximation is made more exact (by letting the parameter c tend to infinity)
the solution of the unconstrained penalty problem approaches the solution to the
original constrained problem from outside the active constraints. Barrier methods,
on the other hand, approximate a constrained problem by an (essentially) uncon-
strained problem that assigns high cost to being near the boundary of the feasible
region, but unlike penalty methods, these methods are applicable only to problems

482 13 Penalty and Barrier Methods

having a robust feasible region. As the approximation is made more exact, the
solution of the unconstrained barrier problem approaches the solution to the original
constrained problem from inside the feasible region.

The objective functions of all penalty and barrier methods of the form P(x) =
γ (h(x)), B(x) = η(g(x)) are ill-conditioned. If they are differentiable, then as
c → ∞ the Hessian (at the solution) is equal to the sum of L, the Hessian of
the Lagrangian associated with the original constrained problem, and a matrix of
rank r that tends to infinity (where r is the number of active constraints). This is a
fundamental property of these methods, but it is remediable by the fast convergence
of Newton’s method, especially applied to the logarithmic barrier function.

Effective exploitation of differentiable penalty and barrier functions requires that
schemes be devised that eliminate the effect of the associated large eigenvalues. For
this purpose the three general principles developed in earlier chapters, The Partial
Conjugate Gradient Method, The Modified Newton Method, and The Combination
of Steepest Descent and Newton’s Method, when creatively applied, all yield
methods that converge at approximately the canonical rate associated with the
original constrained problem.

It is necessary to add a point of qualification with respect to some of the algo-
rithms introduced in this chapter, lest it be inferred that they are offered as panaceas
for the general programming problem. As has been repeatedly emphasized, the ideal
study of convergence is a careful blend of analysis, good sense, and experimentation.
The rate of convergence does not always tell the whole story, although it is often a
major component of it. Although some of the algorithms presented in this chapter
asymptotically achieve the canonical rate of convergence (at least approximately),
for large c the points may have to be quite close to the solution before this rate
characterizes the process. In other words, for large c the process may converge
slowly in its initial phase, and, to obtain a truly representative analysis, one must
look beyond the first-order convergence properties of these methods. For this reason
many people find Newton’s method attractive, although the work at each step can
be substantial.

Overall, we strongly suggest using the logarithmic barrier function over others,
for the reasons demonstrated in this chapter. We also recommend adapting the
Lagrangian penalty function over others, which will be discussed in detail next.

13.9 Exercises

1. Show that if q(c, x) is continuous (with respect to x) and q(c, x) → ∞ as
|x| → ∞, then q(c, x) has a minimum.

2. Suppose problem (13.1), with f continuous, is approximated by the penalty
problem (13.2), and let {ck} be an increasing sequence of positive constants
tending to infinity. Define q(c, x) = f (x) + cP (x), and fix ε > 0. For each k

13.9 Exercises 483

let xk be determined satisfying

q(ck, xk) � [min
x

q(ck, x)] + ε.

Show that if x∗ is a solution to (13.1), any limit point, x, of the sequence {xk} is
feasible and satisfies f (x) � f (x∗)+ ε.

3. Construct an example problem and a penalty function such that, as c →∞, the
solution to the penalty problem diverges to infinity.

4. Combined penalty and barrier method. Consider a problem of the form

minimize f (x)

subject to x ∈ S ∩ T

and suppose P is a penalty function for S and B is a barrier function for T .
Define

d(c, x) = f (x)+ cP(x)+ 1

c
B(x).

Let {ck} be a sequence ck →∞, and for k = 1, 2, . . . let xk be a solution to

minimize d(ck, x)

subject to x ∈ interior of T . Assume all functions are continuous, T is compact
(and robust), the original problem has a solution x∗, and that S∩ [interior of T]
is not empty. Show that

(a) limit
k∈∞ d(ck, xk) = f (x∗).

(b) limit
k∈∞ ckP (xk) = 0.

(c) limit
k∈∞

1
ck

B(xk) = 0.

5. Prove the Theorem at the end of Sect. 13.2.
6. Find the central path for the problem of minimizing x2

1 + 2x2
2 subject to x1 +

x2 = 1, (x1, x2) � 0 described in Sect. 13.4.
7. Derive the KKT system of shifted-barrier optimization problem described in

Sect. 13.4.
8. Consider a penalty function for the equality constraints

h(x) = 0, h(x) ∈ Em,

having the form

P(x) = γ (h(x)) =
m∑

i=1

w(hi(x)),

484 13 Penalty and Barrier Methods

where w is a function whose derivative w′ is analytic and has a zero of order
s � 1 at zero.

(a) Show that corresponding to (13.23) we have

Q(ck, xk) = Lk(xk)+ ck

m∑
i=1

{w′′(hi(xk))}∇hi(xk)
T ∇hi(xk).

(b) Show that as ck →∞, m eigenvalues of Q(ck, xk) have magnitude on the
order of (ck)

1/s .

9. Corresponding to the problem

minimize f (x)

subject to g(x) � 0,

consider the sequence of unconstrained problems

minimize f (x)+ [−g−(x)+ 1]k − 1,

and suppose xk is the solution to the kth problem.

(a) Find an appropriate definition of a Lagrange multiplier λk to associate
with xk .

(b) Find the limiting form of the Hessian of the associated objective function,
and determine how fast the largest eigenvalues tend to infinity.

10. Morrison ’s method. Suppose the problem

minimize f (x)

subject to h(x) = 0
(13.52)

has solution x∗. Let M be an optimistic estimate of f (x∗), that is, M � f (x∗).
Define v(M, x) = [f (x)−M]2+|h(x)|2 and define the unconstrained problem

minimize v(M, x). (13.53)

Given Mk � f (x∗), a solution xMk to the corresponding problem (13.53) is
found, then Mk is updated through

Mk+1 = Mk + [v(Mk, xMk)]1/2 (13.54)

and the process repeated.

(a) Show that if M = f (x∗), a solution to (13.53) is a solution to (13.52).
(b) Show that if xM is a solution to (13.53), then f (xM) � f (x∗).

13.9 Exercises 485

(c) Show that if Mk � f (x∗) then Mk+1 determined by (13.54) satisfies
Mk+1 � f (x∗).

(d) Show that Mk → f (x∗).
(e) Find the Hessian of v(M, x) (with respect to x∗). Show that, to within

a scale factor, it is identical to that associated with the standard penalty
function method.

11. Let A be an m× n matrix of rank m. Prove the matrix identity

[I + AT A]−1 = I − AT [I + AAT]−1A

and discuss how it can be used in conjunction with the method of Sect. 13.4.
12. Show that in the limit of large c, a single cycle of the normalization method of

Sect. 13.5 is exactly the same as a single cycle of the combined penalty function
and gradient projection method of Sect. 13.7.

13. Suppose that at some step k of the combined penalty function and gradient
projection method, the m × n matrix ∇h(xk) is not of rank m. Show how
the method can be continued by temporarily executing the Newton step over
a subspace of dimension less than m.

14. For a problem with equality constraints, show that in the combined penalty
function and gradient projection method the second step (the steepest descent
step) can be replaced by a step in the direction of the negative projected gradient
(projected onto Mk) without destroying the global convergence property and
without changing the rate of convergence.

15. Develop a method that is analogous to that of Sect. 13.7, but which is a
combination of penalty functions and the reduced gradient method. Establish
that the rate of convergence of the method is identical to that of the reduced
gradient method.

16. Prove the Exact Penalty Theorem of Sect. 13.3.
17. Solve the problem

minimize x2 + xy+ y2 − 2y

subject to x + y = 2

three ways analytically

(a) with the necessary conditions.
(b) with a quadratic penalty function.
(c) with an exact penalty function.

18. (a) Construct a necessary and sufficient condition on solving the ball-
constrained problem (13.30). (b) Develop a numerical procedure to solve it
using a Newton line search method.

486 13 Penalty and Barrier Methods

References

13.1 The penalty approach to constrained optimization is generally attributed to
Courant [C8]. For more details than presented here, see Butler and Martin
[B26] or Zangwill [Z1].

13.2 The barrier method is due to Carroll [C1], but was developed and popularized
by Fiacco and McCormick [F4, F5] who proved the general effectiveness of
the method. Also see Frisch [F19].

13.3 It has long been known that penalty problems are solved slowly by steepest
descent, and the difficulty has been traced to the ill-conditioning of the
Hessian. The explicit characterization given here is a generalization of that
in Luenberger [L10]. For the geometric interpretation, see Luenberger [L8].
The fact that the absolute-value penalty function is exact was discovered by
Zangwill [Z1], Fletcher [F7] and Maratos [M1]. The fact that c > |λ| is
sufficient for exactness was pointed out by Luenberger [L12]. Line search
methods have been developed for nonsmooth functions. See Lemarechal and
Mifflin [L3]. The dual of the reciprocal barrier function is new.

13.4 The KKT system and central path for nonlinear programming was analyzed by
Nesterov and Nemirovskii [N2], Jarre [J2], den Hertog [H6], and Andersen
[8]. The “shifted” barrier and analyses can be found in Wachter and L. T.
Biegler [WB] and Hinder’s Ph.D. thesis [OH]. The materials on interior-trust
region method for nonconvex QP are taken from Ye [Y3].

13.5 Most previous successful implementations of penalty or barrier methods have
employed Newton’s method to solve the unconstrained problems and thereby
have largely avoided the effects of the ill-conditioned Hessian. See Fiacco and
McCormick [F4] for some suggestions. The technique at the end of the section
is new. The normalization method was first presented in Luenberger [L13].

13.7 See Luenberger [L10], for further analysis of this method.
13.9 For analysis along the lines of Exercise 8, see Lootsma [L7]. For the functions

suggested in Exercises 8 and 9, see Levitin and Polyak [L5]. For the method
of Exercise 10, see Morrison [M8].

Chapter 14
Local Duality and Dual Methods

We first derive a local duality theory for constrained nonconvex optimization, which
is based on our earlier global duality theory and the Lagrangian relaxations. The
variables of the local dual are again the Lagrange multipliers associated with the
constraints in the primal problem—the original constrained optimization problem
but restricted in the neighborhood of a primal solution under consideration.

Thus, dual methods are based on the viewpoint that it is the Lagrange multipliers
which are the fundamental unknowns associated with a constrained problem; once
these multipliers are known determination of the solution point is simple (at least
in some situations). Dual methods, therefore, do not attack the original constrained
problem directly but instead attack an alternate problem, the dual problem, whose
unknowns are the Lagrange multipliers of the first problem. For a problem with n

variables and m equality constraints, dual methods thus work in the m-dimensional
space of Lagrange multipliers. Because Lagrange multipliers measure sensitivities
and hence often have meaningful intuitive interpretations as prices associated with
constraint resources, searching for these multipliers, is often, in the context of a
given practical problem, as appealing as searching for the values of the original
problem variables.

The study of dual methods, and more particularly the introduction of the dual
problem, precipitates some extensions of earlier concepts. One interesting feature of
this chapter is the calculation of the Hessian of the dual problem and the discovery
of a dual canonical convergence ratio associated with a constrained problem that
governs the convergence of steepest ascent applied to the dual.

The convergence ratio theory leads to a popular method, the method of multipli-
ers based on the augmented Lagrangian, in which the Hessian condition would be
significantly improved to facilitate faster convergence.

The alternate direction method of multipliers is based on an idea resembling
that in the coordinate descent method. Here, the gradient of the dual is calculated
approximately in a block-coordinate fashion using primal variables. This method is
particularly effective for large-scale optimization. It can be interpreted as a learning

© Springer Nature Switzerland AG 2021
D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
https://doi.org/10.1007/978-3-030-85450-8_14

487

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85450-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-85450-8_14

488 14 Local Duality and Dual Methods

algorithm to construct the “pinpoint” penalty weight on each individual constraint
for applying the Lagrangian penalty method discussed in the last chapter.

Cutting plane algorithms, exceedingly elementary in principle, develop a series
of ever-improving approximating linear programs, whose solutions converge to
the solution of the original problem. The methods differ only in the manner
by which an improved approximating problem is constructed once a solution to
the old approximation is known. The theory associated with these algorithms is,
unfortunately, scant and their convergence properties are not particularly attractive.
They are, however, often very easy to implement.

14.1 Local Duality and the Lagrangian Method

In practice the mechanics of duality are frequently carried out locally, by setting
derivatives to zero, or moving in the direction of a gradient. For these operations
the beautiful global theory can in large measure be replaced by a weaker but often
more useful local theory. This theory requires a minimum of convexity assumptions
defined locally. We present such a theory in this section, since it is in keeping
with the spirit of the earlier chapters and is perhaps the simplest way to develop
computationally useful duality results.

As often done before for convenience, we again consider nonlinear programming
problems of the form

minimize f (x) (14.1)

subject to h(x) = 0,

where x ∈ En, h(x) ∈ En and f, h ∈ C2. Global convexity is not assumed here.
Everything we do can be easily extended to problems having inequality as well as
equality constraints, for the price of a somewhat more involved notation.

We focus attention on a local solution x∗ of (14.1). Assuming that x∗ is a regular
point of the constraints, then, as we know, there will be a corresponding Lagrange
multiplier vector λ∗ such that

∇f (x∗)− (λ∗)T ∇h(x∗) = 0, (14.2)

and the Hessian of the Lagrangian l(x,λ∗) = f (x)− (λ∗)T h(x)

L(x∗) = F(x∗)− (λ∗)T H(x∗) (14.3)

must be positive semidefinite on the tangent subspace

M = {x : ∇h(x∗)x = 0}.

14.1 Local Duality and the Lagrangian Method 489

At this point we introduce the special local convexity assumption necessary for
the development of the local duality theory. Specifically, we assume that the Hessian
L(x∗) is positive definite. Of course, it should be emphasized that by this we mean
L(x∗) is positive definite on the whole space En, not just on the subspace M . The
assumption guarantees that the Lagrangian l(x,λ∗) is locally convex at x∗.

With this assumption, the point x∗ is not only a local solution to the constrained
problem (14.1); it is also a local solution to the unconstrained problem

minimize l(x,λ∗) = f (x)− (λ∗)T h(x), (14.4)

since it satisfies the first- and second-order sufficiency conditions for a local
minimum point. Furthermore, for any λ sufficiently close to λ∗ the function l(x,λ)

will have a local minimum point at a point x near x∗. This follows by noting that,
by the Implicit Function Theorem, the equation

∇f (x)− λT ∇h(x) = 0 (14.5)

has a solution x near x∗ when λ is near λ∗, because L∗ is nonsingular; and by
the fact that, at this solution x, the Hessian F(x) − λT H(x) is positive definite.
Thus locally there is a unique correspondence between λ and x through solution of
the unconstrained problem

minimize l(x,λ) = f (x)− λT h(x). (14.6)

Furthermore, this correspondence is continuously differentiable.
Near λ∗ we define the dual function φ by the equation

φ(λ) = min
x∈N(x∗)

[l(x,λ) = f (x)− λT h(x)], (14.7)

where here it is understood that the minimum is taken locally in the neighborhood,
N(x∗), of x∗. We are then able to show (and will do so below) that locally the origi-
nal constrained problem (14.1) is equivalent to unconstrained local maximization of
the dual function φ with respect to λ. Hence we establish an equivalence between a
constrained problem in x and an unconstrained problem in λ.

To establish the duality relation we must prove two important lemmas. In
the statements below we denote by x(λ) the unique solution to (14.6) in the
neighborhood of x∗.

Lemma 1 The dual function φ has gradient

∇φ(λ) = −h(x(λ))T (14.8)

Proof We have explicitly, from (14.7),

φ(λ) = f (x(λ))− λT h(x(λ)).

490 14 Local Duality and Dual Methods

Thus

∇φ(λ) = [∇f (x(λ))− λT ∇h(x(λ))]∇x(λ)− h(x(λ))T .

Since the first term on the right vanishes by definition of x(λ), we obtain (14.8).

Lemma 1 is of extreme practical importance, since it shows that the gradient of
the dual function is simple to calculate. Once the dual function itself is evaluated,
by minimization with respect to x, the corresponding h(x)T , which is the gradient,
can be evaluated without further calculation.

The Hessian of the dual function can be expressed in terms of the Hessian of the
Lagrangian. We use the notation L(x, λ) = F(x) − λT H(x), explicitly indicating
the dependence on λ. (We continue to use L(x∗) when λ = λ∗ is understood.) We
then have the following lemma.

Lemma 2 The Hessian of the dual function is

�(λ) = −∇h(x(λ))L−1(x(λ), λ)∇h(x(λ))T . (14.9)

Proof The Hessian is the derivative of the gradient. Thus, by Lemma 1,

�(λ) = −∇h(x(λ))∇x(λ). (14.10)

By definition we have

∇f (x(λ))− λT ∇h(x(λ)) = 0,

and differentiating this with respect to λ we obtain

L(x(λ), λ)∇x(λ)−∇h(x(λ))T = 0.

Solving for ∇x(λ) and substituting in (14.10) we obtain (14.9).

Since L−1(x(λ)) is positive definite, and since ∇h(x(λ)) is of full rank near x∗,
we have as an immediate consequence of Lemma 2 that the m× m Hessian of φ is
negative definite. As might be expected, this Hessian plays a dominant role in the
analysis of dual methods.

Local Duality Theorem Suppose that the problem

minimize f (x) (14.11)

subject to h(x) = 0

has a local solution at x∗ with corresponding value r∗ and Lagrange multiplier λ∗. Suppose
also that x∗ is a regular point of the constraints and that the corresponding Hessian of the
Lagrangian L∗ = L(x∗) is positive definite. Then the dual problem

maximize φ(λ) (14.12)

14.1 Local Duality and the Lagrangian Method 491

has a local solution at λ∗ with corresponding value r∗ and x∗ as the point corresponding
to λ∗ in the definition of φ.

Proof It is clear that x∗ corresponds to λ∗ in the definition of φ. Now at λ∗ we have
by Lemma 1

∇φ(λ∗) = −h(x∗)T = 0,

and by Lemma 2 the Hessian of φ is negative definite. Thus λ∗ satisfies the first-
and second-order sufficiency conditions for an unconstrained maximum point of φ.
The corresponding value φ(λ∗) is found from the definition of φ to be r∗.

Example 1 Consider the problem in two variables

minimize − xy

subject to (x − 3)2 + y2 = 5.

The first-order necessary conditions are

−y − (2x − 6)λ = 0

−x − 2yλ = 0

together with the constraint. These equations have a solution at

x = 4, y = 2, λ = −1.

The Hessian of the corresponding Lagrangian is

L =
[

2 −1
−1 2

]
.

Since this is positive definite, we conclude that the solution obtained is a local
minimum. (It can be shown, in fact, that it is the global solution.)

Since L is positive definite, we can apply the local duality theory near this
solution. We define

φ(λ) = min{−xy − λ[(x − 3)2 + y2 − 5]},

which leads to

φ(λ) = −4λ− 4λ3 + 80λ5

(4λ2 − 1)2

valid for λ < −1
2 . It can be verified that φ has a local maximum at λ = −1.

492 14 Local Duality and Dual Methods

Inequality Constraints

For problems having inequality constraints as well as equality constraints the above
development requires only minor modification. Consider the problem

minimize f (x)

subject to h(x) = 0 (14.13)

g(x) ≥ 0,

where g(x) ∈ Ep, g ∈ C2 and everything else is as before. Suppose x∗ is a local
solution of (14.13) and is a regular point of the constraints. Then, as we know, there
are Lagrange multipliers λ∗ and μ∗ ≥ 0 such that

∇f (x∗)− (λ∗)T ∇h(x∗)− (μ∗)T ∇g(x∗) = 0 (14.14)

(μ∗)T g(x∗) = 0. (14.15)

We impose the local convexity assumptions that the Hessian of the Lagrangian

L(x∗) = F(x∗)− (λ∗)T H(x∗)− (μ∗)T G(x∗) (14.16)

is positive definite (on the whole space).
For λ and μ ≥ 0 near λ∗ and μ∗ we define the dual function

φ(λ, μ) = min
x∈N(x∗)

[l(x,λ,μ) = f (x)− λT h(x)− μT g(x)], (14.17)

where the minimum is taken locally near x∗. Then, it is easy to show, paralleling the
development above for equality constraints, that φ achieves a local maximum with
respect to λ, μ ≥ 0 at λ∗, μ∗.

Partial Duality

It is not necessary to include the Lagrange multipliers of all the constraints of a
problem in the definition of the dual function. In general, if the local convexity ass-
umption holds, local duality can be defined with respect to any subset of functional
constraints. Thus, for example, in problem (14.13) we might define the dual function
with respect to only the equality constraints. In this case we would define

φ(λ) = min
g(x)≥0

{f (x)− λT h(x)}, (14.18)

where the minimum is taken locally near the solution x∗ but constrained by the
remaining constraints g(x) ≥ 0. Again, the dual function defined in this way will

14.1 Local Duality and the Lagrangian Method 493

achieve a local maximum at the optimal Lagrange multiplier λ∗. The partial dual
is especially useful when constraints g(x) ≥ 0 are simple such as x ≥ 0 or in a
box, where many efficient algorithms are available, such as the steepest descent
projection and interior ellipsoidal-trust region methods developed in the earlier
chapters.

The Lagrangian Method: Dual Steepest Ascent

The method that suggests itself immediately is the method of steepest ascent. It can
be implemented by noting that, according to Lemma 1. Section 14.1, the gradient
of φ is available almost without cost once φ itself is evaluated, and any of the
standard algorithms discussed in Chaps. 7 through 10 can be used for solving the
unconstrained Lagrangian problem to evaluate the dual gradient vector. The iterative
scheme is simply, starting from any initial pairs (x0,λ0,μ0(≥ 0)),

xk+1 : = arg minx l(x,λk,μk),

λk+1 : = λk − 1
c

h(xk+1),

μk+1 : = max{0, μk − 1
c

g(xk+1)}.
(14.19)

Here, c is the first-order Lipschitz constant of the dual function φ(λ, μ). One
can also use the partial Lagrangian when g is simple so that the dual is a pure
unconstrained maximization problem. Moreover, techniques such as line search,
accelerated steepest descent, conjugate gradient, etc. are also applicable here.

Without some special properties, however, the method as a whole can be costly
to execute, since every evaluation of φ requires the solution of an unconstrained
problem in the unknown x. Nevertheless, as shown in the next section, many
important problems do have structures which are well-suited to this approach (or
even have a closed-form solution for xk+1).

The method of steepest ascent, and other gradient-based algorithms, when
applied to the dual problem will have canonical convergence speeds identical to
those discussed for solving unconstrained or simple conic-constrained problems in
Chaps. 8 through 10. In particular, if the dual objective is strongly concave, the
convergence rate is governed by the eigenvalue structure of the Hessian of the
dual function φ. At the Lagrange multiplier λ∗ corresponding to a solution x∗ this
Hessian is (according to Lemma 2, Sect. 13.1)

� = −∇h(x∗)(L∗)−1∇h(x∗)T .

This expression shows that � is in some sense a restriction of the matrix (L∗)−1

to the subspace spanned by the gradients of the constraint functions, which is
the orthogonal complement of the tangent subspace M . This restriction is not the
orthogonal restriction of (L∗)−1 onto the complement of M since the particular

494 14 Local Duality and Dual Methods

representation of the constraints affects the structure of the Hessian. We see,
however, that while the convergence of primal methods is governed by the restriction
of L∗ to M , the convergence of dual methods is governed by a restriction of (L∗)−1

to the orthogonal complement of M .
The dual canonical convergence rate associated with the original constrained

problem, which is the rate of convergence of steepest ascent applied to the dual,
is (B − b)2/(B + b)2 where b and B are, respectively, the smallest and largest
eigenvalues of

−� = ∇h(x∗)(L∗)−1∇h(x∗)T .

For locally convex programming problems, this rate is as important as the primal
canonical rate.

Preconditioning or Scaling

We conclude this section by pointing out a kind of complementarity that exists
between the primal and dual rates. Suppose one calculates the primal and dual
canonical rates associated with the locally convex constrained problem

minimize f (x)

subject to h(x) = 0.

If a change of primal variables x is introduced, the primal rate will in general change
but the dual rate will not. On the other hand, if the constraints are transformed (by
replacing them by Th(x) = 0 where T is a nonsingular m×m matrix), the dual rate
will change but the primal rate will not.

14.2 Separable Problems and Their Duals

A structure that arises frequently in mathematical programming applications is that
of the separable problem:

minimize
q∑

i=1

fi(xi) (14.20)

subject to
q∑

i=1

hi (xi) = 0 (14.21)

q∑
i=1

gi (xi) ≥ 0. (14.22)

14.2 Separable Problems and Their Duals 495

In this formulation the components of the n-vector x are partitioned into q disjoint
groups, x = (x1, x2, . . . , xq) where the groups may or may not have the same
number of components. Both the objective function and the constraints separate
into sums of functions of the individual groups. For each i, the functions fi, hi ,
and gi are twice continuously differentiable functions of dimensions 1, m, and p,
respectively.

Example 1 Consider the social problem of the Fisher market introduced in
Sect. 11.6 of Chap. 11:

maximize
∑
i∈B

wi log(uT
i xi)

subject to
∑
i∈B

xi = s̄ (14.23)

xi ≥ 0, ∀i ∈ B.

In the example x is partitioned into its individual subvector xi representing the
product allocations to agent or buyer i.

Example 2 Problems involving a series of decisions made at distinct times are often
separable. For illustration, consider the problem of scheduling water release through
a dam to produce as much electric power as possible over a given time interval
while satisfying constraints on acceptable water levels. A discrete-time model of
this problem is to

maximize
T∑

t=1

f (y(t), u(t))

subject to y(t) = y(t − 1)− u(t)+ s(t), t = 1, . . . , T

c � y(t) � d, t = 1, . . . , T

0 � u(t), t = 1, . . . , T .

Here state variable y(t) represents the water volume behind the dam at the end of
period t , control variable u(t) represents the volume flow through the dam during
period t , and data s(t) is the volume flowing into the lake behind the dam during
period t from upper streams. The function f gives the power generation, and c and
d are bounds on lake volume. The initial volume y(0) is given.

In this example we consider x as the 2T -dimensional vector of unknowns
y(t), u(t), t = 1, 2, . . . , T . This vector is partitioned into the pairs xt =
(y(t), u(t)). The objective function is then clearly in separable form. The con-
straints can be viewed as being in the form (14.21) with ht (xt) having dimension T

and such that ht (xt) is identically zero except in the T − 1 and T + 1 components.

496 14 Local Duality and Dual Methods

Many dynamic control and planning problems can be cast in this separable form
with time series decisions.

Decomposition

Separable problems are ideally suited to dual methods, because the required
unconstrained minimization decomposes into small subproblems. To see this we
recall that the generally most difficult aspect of a dual method is evaluation of
the dual function. For a separable problem, if we associate λ with the equality
constraints (14.21) and μ � 0 with the inequality constraints (14.22), the required
dual function is

φ(λ, μ) = min
q∑

i=1

(
fi(xi)− λT hi (xi)− μT gi (xi)

)
.

This minimization problem decomposes into the q separate problems

min
xi

fi (xi)− λT hi (xi)− μT gi (xi).

The solution of these subproblems can usually be accomplished relatively effi-
ciently, since they are of smaller dimension than the original problem.

Example 3 In Example 1 using duality with respect to the product capacity con-
straints, the ith subproblem becomes, for multipliers or product prices p,

max
xi�0

[wi log(uT
i xi)− pT xi],

which is the ith buyer’s optimization problem. It can be interpreted as setting
market prices p and then maximizing the total utility value, accounting for the dollar
expenditure, for each of the buyers.

Example 4 In Example 2 using duality with respect to the equality constraints we
denote the dual variables by λ(t), t = 1, 2, . . . , T . The t th subproblem becomes

max
c�y(t)�d

0�u(t)

{ f (y(t), u(t))+ [λ(t + 1)− λ(t)]y(t)− λ(t)[u(t)− s(t)] }

which is a two-dimensional optimization problem. Selection of λ ∈ EN decom-
poses the problem into separate problems for each time period. The variable λ(t)

14.2 Separable Problems and Their Duals 497

can be regarded as a value, measured in units of power, for water at the beginning of
period t . The t th subproblem can then be interpreted as that faced by an entrepreneur
who leased the dam for one period. He can buy water for the dam at the beginning
of the period at price λ(t) and sell what he has left at the end of the period at price
λ(t + 1). His problem is to determine y(t) and u(t) so that his net profit, accruing
from sale of generated power and purchase and sale of water, is maximized.

Example 5 (The Hanging Chain) Consider again the problem of finding the equi-
librium position of the hanging chain considered in Example 3, Sect. 11.2, and
Example in Sect. 12.6. The problem is

minimize
n∑

i=1

ciyi

subject to
n∑

i=1

yi = 0

n∑
i=1

√
1− y2

i = L,

where ci = n − i + 1
2 , L = 16. This problem is locally convex, since as shown

in Sect. 12.6 the Hessian of the Lagrangian is positive definite. The dual function is
accordingly

φ(λ, μ) = min
n∑

i=1

{
ciyi − λyi − μ

√
1− y2

i

}
+ Lμ.

Since the problem is separable, the minimization divides into a separate minimiza-
tion for each yi , yielding the equations

ci − λ+ μyi√
1− y2

i

= 0

or

(ci − λ)2(1− y2
i) = μ2y2

i .

This yields

yi = −(ci − λ)

[(ci − λ)2 + μ2]1/2 . (14.24)

The above represents a local minimum point provided μ > 0; and the minus sign
must be taken for consistency.

498 14 Local Duality and Dual Methods

Table 14.1 Results of dual
of chain problem

Final solution

λ = 10.00048

Iteration Value μ = 6.761136

0 −200.00000 y1 = −0.8147154

1 −66.94638 y2 = −0.7825940

2 −66.61959 y3 = −0.7427243

3 −66.55867 y4 = −0.6930215

4 −66.54845 y5 = −0.6310140

5 −66.54683 y6 = −0.5540263

6 −66.54658 y7 = −0.4596696

7 −66.54654 y8 = −0.3467526

8 −66.54653 y9 = −0.2165239

9 −66.54653 y10 = −0.0736802

The dual function is then

φ(λ, μ) =
n∑

i=1

{
−(ci − λ)2

[(ci − λ)2 + μ2]1/2 − μ

[
μ2

[(ci − λ)2 + μ2]
]1/2}

+ Lμ

or finally, using
√

μ2 = μ for μ > 0,

φ(λ, μ) = Lμ−
n∑

i=1

√
(ci − λ)2 + μ2.

The correct values of λ and μ can be found by maximizing φ(λ, μ). One way to do
this is to use steepest ascent. The results of this calculation, starting at λ = μ = 0,
are shown in Table 14.1. The values of yi can then be found from (14.24).

14.3 The Augmented Lagrangian and Interpretation

One of the most effective general classes of nonlinear programming methods
is the augmented Lagrangian methods, alternatively referred to as methods of
multiplier. These methods can be viewed as a combination of penalty functions
and local duality methods; the two concepts work together to eliminate many of the
disadvantages associated with either method alone. The augmented Lagrangian for
the equality constrained problem

minimize f (x)

subject to h(x) = 0, x ∈ � (14.25)

14.3 The Augmented Lagrangian and Interpretation 499

is the function

lc(x, λ) = f (x)− λT h(x)+ c

2
|h(x)|2

for some positive constant c. We shall briefly indicate how the augmented Lag-
rangian can be viewed as either a special penalty function or as the basis for a dual
problem. These two viewpoints are then explored further in this and the next section.

From a penalty function viewpoint the augmented Lagrangian, for a fixed value
of the vector λ, is simply the Lagrange penalty function for the problem

minimize f (x)+ 1

2
c|h(x)|2

subject to h(x) = 0, x ∈ � (14.26)

This problem is clearly equivalent to the original problem (14.25), since combina-
tions of the constraints adjoined to f (x) do not affect the minimum point or the
minimum value.

A typical step of an augmented Lagrangian method starts with a vector λk . Then
x(λk) is found as the minimum point of

x(λk) = arg min f (x)− λT
k h(x)+ 1

2
c|h(x)|2 subject to x ∈ �. (14.27)

Next λk is updated to λk+1, where a standard method for the update is

λk+1 = λk − ch(x(λk)),

which would be the steepest dual ascent step of the dual function of (14.26) with
stepsize c.

Indeed, from the viewpoint of duality theory, the augmented Lagrangian is
simply the standard Lagrange penalty function for the problem (14.26). This
problem is equivalent to the original problem (14.25), since the addition of the term
1
2c|h(x)|2 to the objective does not change the optimal value, the optimum solution
point, nor the Lagrange multiplier. However, whereas the original Lagrangian may
not be convex near the solution, and hence the standard duality method cannot be
applied, the term 1

2c|h(x)|2 tends to “convexify” the Lagrangian. For sufficiently
large c, the Lagrangian will indeed be locally convex. Thus the duality method can
be employed, and the corresponding dual problem can be solved by an iterative
process in λ. This viewpoint leads to the development of additional multiplier
adjustment processes, which would be discussed further in the next subsection.

Although the main iteration in augmented Lagrangian methods is with respect to
λ, the penalty parameter c may also be adjusted during the process. As in ordinary
penalty function methods, the sequence of c’s is usually preselected; c is either held
fixed, is increased toward a finite value, or tends (slowly) toward infinity. Since in
this method it is not necessary for c to go to infinity, and in fact it may remain

500 14 Local Duality and Dual Methods

of relatively modest value, the ill-conditioning usually associated with the penalty
function approach is mediated.

The Penalty Viewpoint

We begin our more detailed analysis of augmented Lagrangian methods by showing
that if the penalty parameter c is sufficiently large, the augmented Lagrangian has
a local minimum point near the true optimal point. This follows from the following
simple lemma. (Again, we consider � = En for simplicity.)

Lemma Let A and B be n× n symmetric matrices. Suppose that B is positive semidefinite
and that A is positive definite on the subspace Bx = 0. Then there is a c∗ such that for all
c ≥ c∗the matrix A+ cB is positive definite.

Proof Suppose to the contrary that for every k there were an xk with |xk| = 1 such
that xT

k (A + kB)xk ≤ 0. The sequence {xk} must have a convergent subsequence
converging to a limit x. Now since xT

k Bxk ≥ 0, it follows that xT Bx = 0. It also
follows that xT Ax ≤ 0. However, this contradicts the hypothesis of the lemma.

This lemma applies directly to the Hessian of the augmented Lagrangian
evaluated at the optimal solution pair x∗, λ∗. We assume as usual that the second-
order sufficiency conditions for a constrained minimum hold at x∗, λ∗. The Hessian
of the augmented Lagrangian evaluated at the optimal pair x∗, λ∗ is

Lc(x∗, λ∗) = F(x∗)− (λ∗)T H(x∗)+ c∇h(x∗)T ∇h(x∗)

= L(x∗)+ c∇h(x∗)T ∇h(x∗).

The first term, the Hessian of the normal Lagrangian, is positive definite on the
subspace ∇h(x∗)x = 0. This corresponds to the matrix A in the lemma. The matrix
∇h(x∗)T ∇h(x∗) is positive semidefinite and corresponds to B in the lemma. It
follows that there is a c∗ such that for all c > c∗, Lc(x∗, λ∗) is positive definite.
This leads directly to the first basic result concerning augmented Lagrangian.

Proposition 1 Assume that the second-order sufficiency conditions for a local minimum
are satisfied at x∗, λ∗. Then there is a c∗ such that for all c ≥ c∗, the augmented
Lagrangian lc(x, λ∗) has a local minimum point at x∗.

By a continuity argument the result of the above proposition can be extended
to a neighborhood around x∗, λ∗. That is, for any λ near λ∗, the augmented
Lagrangian has a unique local minimum point near x∗. This correspondence defines
a continuous function. If a value of λ can be found such that h(x(λ)) = 0, then that
λ must in fact be λ∗, since x(λ) satisfies the necessary conditions of the original
problem. Therefore, the problem of determining the proper value of λ can be viewed

14.3 The Augmented Lagrangian and Interpretation 501

as one of solving the equation h(x(λ)) = 0. For this purpose the iterative process

λk+1 = λk − ch(x(λk)),

is a method of successive approximation. This process will converge linearly in a
neighborhood around λ∗, although a rigorous proof is somewhat complex. We shall
give more definite convergence results when we consider the duality viewpoint.

Example 1 Consider the simple quadratic problem

minimize 2x2 + 2xy + y2 − 2y

subject to x = 0.

The augmented Lagrangian for this problem is

lc(x, y, λ) = 2x2 + 2xy + y2 − 2y − λx + 1

2
cx2.

The minimum of this can be found analytically to be x = −(2 − λ)/(2 + c), y =
(4+ c− λ)/(2+ c). Since h(x, y) = x in this example, it follows that the iterative
process for λk is

λk+1 = λk + c(2− λk)

2+ c

or

λk+1 =
(

2

2+ c

)
λk + 2c

2+ c
.

This converges to λ = 2 for any c > 0. The coefficient 2/(2 + c) governs the rate
of convergence, and clearly, as c is increased the rate improves.

Geometric Interpretation

The augmented Lagrangian method can be interpreted geometrically in terms of
a parametric primal function for the ordinary quadratic penalty function and the
absolute-value penalty function. Consider again the primal function ω(y) defined as

ω(y) = min{f (x) : h(x) = y},

where the minimum is understood to be taken locally near x∗. We remind the reader
that ω(0) = f (x∗) and that ∇ω(0)T = λ∗. The minimum of the augmented

502 14 Local Duality and Dual Methods

Fig. 14.1 Primal function and augmented Lagrangian

Lagrangian at step k can be expressed in terms of the primal function as follows:

min lc(x, λk) = min
x
{f (x)− λT

k h(x)+ 1

2
c|h(x)|2}

= min
x,y
{f (x)− λT

k y+ 1

2
c|y|2 : h(x) = y} (14.28)

= min
y
{ω(y)− λT

k y+ 1

2
c|y|2},

where the minimization with respect to y is to be taken locally near y = 0.
This minimization is illustrated geometrically for the case of a single constraint
in Fig. 14.1. The lower curve represents ω(y), and the upper curve represents
ω(y) + 1

2c|y|2. The minimum point yk of (14.24) occurs at the point where this
upper curve has slope equal to −λk. It is seen that for c sufficiently large this curve
will be convex at y = 0. If λk is close to λ∗, it is clear that this minimum point will
be close to 0; it will be exact if λk = λ∗.

The process for updating λk is also illustrated in Fig. 14.1. Note that in general,
if x(λk) minimizes lc(x, λk), then yk = h(x(λk)) is the minimum point of ω(y)−

14.4 The Augmented Lagrangian Method of Multipliers 503

λT
k y+ 1

2c|y|2. At that point we have as before

∇ω(yk)
T + cyk = λk

or equivalently,

∇ω(yk)
T = λk − cyk = λk − ch(x(λk)).

It follows that for the next multiplier we have

λk+1 = λk − ch(x(λk)) = ∇ω(yk)
T ,

as shown in Fig. 14.1 for the one-dimensional case. In the figure the next point yk+1
is the point where ω(y) + 1

2c|y|2 has slope λk+1, which will yield a positive value
of yk+1 in this case. It can be seen that if λk is sufficiently close to λ∗, then λk+1
will be even closer, and the iterative process will converge.

14.4 The Augmented Lagrangian Method of Multipliers

In the augmented Lagrangian method (the method of multipliers), the primary
iteration is with respect to λ, and therefore it is most natural to consider the method
from the dual viewpoint. This is in fact the more powerful viewpoint and leads to
improvements in the algorithm.

As we observed earlier, the constrained problem

minimize f (x)

subject to h(x) = 0, x ∈ � (14.29)

is equivalent to the problem

minimize f (x)+ 1

2
c|h(x)|2

subject to h(x) = 0, x ∈ � (14.30)

in the sense that the solution points, the optimal values, and the Lagrange multipliers
are the same for both problems. However, as spelled out by Proposition 1 of the pre-
vious section, whereas problem (14.29) may not be locally convex, problem (14.30)
is locally convex for sufficiently large c; specifically, the Hessian of the Lagrangian
is positive definite at the solution pair x∗, λ∗. Thus local duality theory is applicable
to problem (14.30) for sufficiently large c.

504 14 Local Duality and Dual Methods

To apply the dual method to (14.30), we define the dual function

φ(λ) = min

{
f (x)− λT h(x)+ 1

2
c|h(x)|2

}
(14.31)

in a region near x∗, λ∗. If x(λ) is the vector minimizing the right-hand side
of (14.31), then as we have seen in Sects. 14.1 and 14.3, −h(x(λ)) is the gradient
and 1

c
is the Lipschitz constant of φ. Thus the iterative process

λk+1 = λk − ch(x(λk))

used in the basic augmented Lagrangian method is seen to be a steepest ascent
iteration for maximizing the dual function φ. It is a simple form of steepest ascent,
using a constant stepsize c.

Although the stepsize c is a good choice (as will become even more evident
later), it is clearly advantageous to apply the algorithmic principles of optimization
developed previously by selecting the stepsize so that the new value of the dual
function satisfies an ascent criterion. This can extend the range of convergence of
the algorithm.

The rate of convergence of the optimal steepest ascent method (where the stepsize
is selected to maximize φ in the gradient direction) is determined by the eigenvalues
of the Hessian of φ. The Hessian of φ is found from (14.9) to be

∇h(x(λ))[L(x(λ), λ)+ c∇h(x(λ))T ∇h(x(λ))]−1∇h(x)T . (14.32)

The eigenvalues of this matrix at the solution point x∗, λ∗ determine the conver-
gence rate of the method of steepest ascent.

To analyze the eigenvalues we make use of the matrix identity

cB(A+ cBT B)−1BT = I − (I + cBA−1BT)−1,

which is a generalization of the Sherman-Morrison formula. (See Sect. 10.4.) It
is easily seen from the above identity that the matrices B(A + cBT B)−1BT and
(BA−1BT) have identical eigenvectors. One way to see this is to multiply both sides
of the identity by (I + cBA−1BT) on the right to obtain

cB(A+ cBT B)−1BT (I+ cBA−1BT) = cBA−1BT .

Suppose both sides are applied to an eigenvector e of BA−1BT having eigenvalue
w. Then we obtain

cB(A+ cBT B)−1BT (1+ cw)e = cwe.

14.4 The Augmented Lagrangian Method of Multipliers 505

It follows that e is also an eigenvector of B(A + cBT B)−1BT , and if u is the
corresponding eigenvalue, the relation

cu(1+ cw) = cw

must hold. Therefore, the eigenvalues are related by

u = w

1+ cw
<

1

c
. (14.33)

Therefore, the largest eigenvalue of the negative Hessian of the dual function is
bounded by 1

c
, which makes the first-order Lipschitz constant of the dual objective

function known. This is significant for applying the dual gradient-based method,
because, although the dual objective is an implicit function, one is able to evaluate
its numerical gradient vector and know the stepsize precisely.

The above relations apply directly to the Hessian (14.32) through the
associations A = L(x∗, λ∗) and B = ∇h(x∗). Note that the matrix
∇h(x∗)L(x∗, λ∗)−1∇h(x∗)T , corresponding to BA−1BT above, is the Hessian
of the dual function of the original problem (14.29). As shown in Sect. 14.1 the
eigenvalues of this matrix determine the rate of convergence for the ordinary dual
method. Let w and W be the smallest and largest eigenvalues of this matrix.
From (14.33) it follows that the ratio of smallest to largest eigenvalues of the
Hessian of the dual for the augmented problem is

1
W
+ c

1
w
+ c

.

This shows explicitly how the rate of convergence of the multiplier method depends
on c. As c goes to infinity, the ratio of eigenvalues goes to unity, implying arbitrarily
fast convergence.

Other unconstrained optimization techniques may be applied to the maximization
of the dual function defined by the augmented Lagrangian; conjugate gradient
methods, Newton’s method, and quasi-Newton methods can all be used. The use
of Newton’s method requires evaluation of the Hessian matrix (14.32). For some
problems this may be feasible, but for others some sort of approximation is
desirable. One approximation is obtained by noting that for large values of c, the
Hessian (14.32) is approximately equal to (1/c)I. Using this value for the Hessian
and h(x(λ)) for the gradient, we are led to the iterative scheme

λk+1 = λk − ch(x(λk)),

which is exactly the simple method of multipliers originally proposed.
We might summarize the above observations by the following statement relating

primal and dual convergence rates. If a penalty term is incorporated into a problem,
the condition number of the primal problem becomes increasingly poor as c → ∞

506 14 Local Duality and Dual Methods

but the condition number of the dual becomes increasingly good. To apply the dual
method, however, an unconstrained penalty problem of poor condition number must
be solved at each step. Therefore, the practical performance of the method depends
on a careful and adaptive selection of c to balance the two conditions.

Inequality Constraints

The advantage of augmented Lagrangian methods is mostly in dealing with
equalities. But certain inequality constraints can be easily incorporated. Let us
consider the problem with p inequality constraints:

minimize f (x)

subject to g(x) ≥ 0. (14.34)

We assume that this problem has a well-defined solution x∗, which is a regular
point of the constraints and which satisfies the second-order sufficiency conditions
for a local minimum as specified in Sect. 11.5. This problem can be written as an
equivalent problem with equality constraints:

minimize f (x)

subject to g(x)− u = 0, u ≥ 0. (14.35)

Through this conversion we can hope to simply apply the theory for equality
constraints to problems with inequalities.

In order to do so we must insure that (14.35) satisfies the second-order sufficiency
conditions of Sect. 11.4. These conditions will not hold unless we impose a strict
complementarity assumption that gj (x∗) = 0 implies μ∗j > 0 as well as the
usual second-order sufficiency conditions for the original problem (14.34). (See
Exercise 7.)

With these assumptions we define the (partial) dual function corresponding to the
augmented Lagrangian method as

φ(μ) = min
u≥0, x

f (x)− μT [g(x)− u] + 1

2
c|g(x)− u|2. (14.36)

The minimization with respect to u in (14.36) can be carried out analytically, and
this will lead to a definition of the dual function that only involves minimization
with respect to x. The variable uj enters the objective of the dual only through the
univariate quadratic expression

Pj = −μj [gj (x)− uj] + 1

2
c[gj(x)− uj]2. (14.37)

14.4 The Augmented Lagrangian Method of Multipliers 507

It is this expression that we must minimize with respect to uj ≥ 0. This is easily
accomplished by differentiation: If uj > 0, the derivative must vanish; if uj = 0,
the derivative must be nonnegative. The derivative is zero at zj = gj (x) − μj /c.
Thus we obtain the solution

uj =
{

gj (x)− μj

c
, if gj (x)− μj

c
≥ 0

0, otherwise

or equivalently,

uj = max
{

0, gj (x)− μj

c

}
. (14.38)

We now substitute this into (14.37) in order to obtain an explicit expression for the
minimum of Pj .

For uj = 0, we have

Pj = 1

2c

(
−2μjcgj (x)+ c2gj (x)2

)

= 1

2c

(
[cgj (x)− μj]2 − μ2

j

)
.

For uj = gj (x)− μj/c we have

Pj = −μ2
j/2c.

These can be combined into the formula

Pj = 1

2c

(
[max{0, cgj (x)− μj }]2 − μ2

j

)
.

In view of the above, let us define the function of two scalar arguments t and μ:

Pc(t, μ) = 1

2c

(
[max{0, ct − μ}]2 − μ2

)
. (14.39)

For a fixed μ > 0, this function is shown in Fig. 14.2. Note that it is a smooth
function with derivative with respect to t equal to μ at t = 0.

The dual function for the inequality problem can now be written as

φ(μ) = min
x

⎛
⎝f (x)+

p∑
j=1

Pc(gj (x), μj)

⎞
⎠ . (14.40)

508 14 Local Duality and Dual Methods

Fig. 14.2 Penalty function for inequality problem

Thus inequality problems can be treated by adjoining to f (x) a special penalty
function (that depends on μ). The Lagrange multiplier μ can then be adjusted to
maximize φ, just as in the case of equality constraints.

14.5 The Alternating Direction Method of Multipliers

Consider the convex minimization model with linear/affine constraints and an
objective function which is the sum of two separable functions with two blocks
of variables:

minimize f1(x1)+ f2(x2)

subject to A1x1 + A2x2 = b,

x1 ∈ Ω1, x2 ∈ Ω2,

(14.41)

where Ai ∈ Em×ni (i = 1, 2), b ∈ Em, Ωi ⊂ Eni (i = 1, 2) are closed convex sets;
and fi : Eni → E (i = 1, 2) are convex functions on Ωi , respectively. Then, the
augmented Lagrangian function for (14.41) would be

lc(x1, x2,λ) = f1(x1)+ f2(x2)−λT (A1x1 +A2x2 − b)+ c

2
|A1x1 +A2x2 − b|2.

Throughout this section, we assume problem (14.41) has at least one optimal
solution.

In contrast to the method of multipliers in the last section, the alternating direc-
tion method of multipliers (ADMM) is to (approximately) minimize lc(x1, x2,λ) in

14.5 The Alternating Direction Method of Multipliers 509

an alternative order:

x1
k+1 : = arg minx1∈Ω1

lc(x1, x2
k,λk),

x2
k+1 : = arg minx2∈Ω2

lc(x1
k+1, x2,λk),

λk+1 : = λk − c(A1x1
k+1 + A2x2

k+1 − b).

(14.42)

The idea is that each of the smaller-block minimization problems can be solved
more efficiently or even in closed-forms for certain cases.

Example 1 By introducing auxiliary variables yi’s to Example 1 of Sect. 14.2, one
can reformulate the social optimization problem as

maximize
∑

i wi log(uT
i xi) (Multipliers)

subject to
∑

i∈B yi = s̄ (λ)

xi − yi = 0, ∀i ∈ B (pi)

xi ≥ 0, ∀i ∈ B.

Then, apply the ADMM method to solve the problem with all variable xi’s as the
first block and all variable yi’s as the second block.

When solve the first-block problem of xi’s, each xi can be optimized indepen-
dently. That is, since the ith subproblem is, where pi and yi are fixed,

max
xi�0

[wi log(uT
i xi)− pT

i (xi − yi)− c

2
|xi − yi |2],

which does not rely on other information, all xi’s can be optimized in a distributed
fashion. The second-block problem involving yi’s is unconstrained quadratic opti-
mization with a simple Hessian structure, which actually has a closed-form formula.

Convergence Speed Analysis

We present a convergence speed analysis of the ADMM. For simplicity, we shall
let Ωi be Eni and fi be differentiable (locally) convex functions [the result is also
valid for the ADMM applied to the aforementioned more general problem (14.41)].
Then, any optimal solution and multiplier (x1∗, x2∗,λ∗) satisfy

∇f1(x1∗)T − AT
1 λ∗ = 0, ∇f2(x2∗)T − AT

2 λ∗ = 0, A1x1∗ + A2x2∗ − b = 0,

(14.43)

and these conditions are also sufficient.

510 14 Local Duality and Dual Methods

We first establish a key lemma.

Lemma 1 Let di
k = Ai(xi

k − xi∗), i = 1, 2, and dλ
k = λk − λ∗; and {x1

k, x2
k,λk} be the

sequence generated by ADMM (14.42). Then, it holds that

c

∣∣∣A2(x2
k+1 − x2

k)

∣∣∣
2 + 1

c
|λk+1 − λk |2 ≤

(
c

∣∣∣A2d2
k

∣∣∣
2 + 1

c

∣∣dλ
k

∣∣2
)

−
(

c

∣∣∣A2d2
k+1

∣∣∣
2 + 1

c

∣∣dλ
k+1

∣∣2
)

.

Proof From the first-order optimality conditions of (14.42), we have

⎧⎪⎪⎨
⎪⎪⎩

∇f1(x1
k+1)

T + AT
1 [−λk + c(A1x1

k+1 + A2x2
k − b)] = 0,

∇f2(x2
k+1)

T + AT
2 [−λk + c(A1x1

k+1 + A2x2
k+1 − b)] = 0,

λk+1 = λk − c(A1x1
k+1 + A2x2

k+1 − b).

(14.44)

Substituting the last equation into other equations in (14.44), we obtain

⎧
⎪⎪⎨
⎪⎪⎩

∇f1(x1
k+1)

T − AT
1 λk+1 = −cAT

1 A2(x2
k − x2

k+1),

∇f2(x2
k+1)

T − AT
2 λk+1 = 0,

A1x1
k+1 + A2x2

k+1 − b = −1
c

(λk+1 − λk).

(14.45)

Moreover, the convexity of fi , i = 1, 2, implies

(∇f1(x1
k+1)−∇f1(x1∗))(x1

k+1−x1∗) ≥ 0 and (∇f2(x2
k+1)−∇f2(x2∗))(x2

k+1−x2∗) ≥ 0.

On the other hand, from (14.43) and (14.45),

∇f1(x1
k+1)

T −∇f1(x1∗)T = ∇f1(x1
k+1)

T −AT
1 λ∗ = AT

1 dλ
k+1− cAT

1 A2(x2
k−x2

k+1)

∇f2(x2
k+1)

T − ∇f2(x2∗)T = ∇f2(x2
k+1)− AT

2 λ∗ = AT
2 dλ

k+1

and

0 = A1x1
k+1+A2x2

k+1−b+ 1

c
(λk+1−λk) = A1d1

k+1+A2d2
k+1−

1

c
(λk −λk+1).

14.5 The Alternating Direction Method of Multipliers 511

Thus,

0 ≤
⎛
⎜⎝

d1
k+1

d2
k+1

dλ
k+1

⎞
⎟⎠

T ⎛
⎜⎝
∇f1(x1

k+1)T − ∇f1(x1∗)T
∇f2(x2

k+1)T − ∇f2(x2∗)T
0

⎞
⎟⎠ (convexity of f1 and f2)

=
⎛
⎜⎝

d1
k+1

d2
k+1

dλ
k+1

⎞
⎟⎠

T ⎛
⎜⎝

AT
1 dλ

k+1 − cAT
1 A2(x2

k
− x2

k+1)

AT
2 dλ

k+1
−A1d1

k+1 −A2d2
k+1 + 1

c (λk − λk+1)

⎞
⎟⎠ (substitutions from above)

=
⎛
⎜⎝

d1
k+1

d2
k+1

dλ
k+1

⎞
⎟⎠

T ⎛
⎜⎝

⎡
⎢⎣

AT
1 dλ

k+1
AT

2 dλ
k+1

−A1d1
k+1 − A2d2

k+1

⎤
⎥⎦+

⎡
⎢⎣
−cAT

1 A2(x2
k
− x2

k+1)

0
1
c (λk − λk+1)

⎤
⎥⎦

⎞
⎟⎠

=
⎛
⎜⎝

d1
k+1

d2
k+1

dλ
k+1

⎞
⎟⎠

T ⎛
⎜⎝
−cAT

1 A2(x2
k
− x2

k+1)

0
1
c (λk − λk+1)

⎞
⎟⎠ =

(
−A1d1

k+1
dλ
k+1

)T (
cA2(x2

k − x2
k+1)

1
c (λk − λk+1)

)

(14.46)

Again from −A1d1
k+1 = −1

c
(λk − λk+1)+ A2d2

k+1, inequality (14.46) implies

0 ≤
(−1

c
(λk − λk+1)+ A2d2

k+1
dλ

k+1

)T (
cA2(x2

k − x2
k+1)

1
c
(λk − λk+1)

)

=
(

A2d2
k+1

dλ
k+1

)T (
cA2(x2

k − x2
k+1)

1
c
(λk − λk+1)

)
+ (−λk + λk+1)

T A2(x2
k − x2

k+1)

Since ∇f2(x2
k) = λT

k A2, from (14.45), holds for every k ≥ 1, it follows from the
convexity of f2 that

(−λk + λk+1)
T A2(x2

k − x2
k+1) = −(∇f2(x2

k)−∇f2(x2
k+1))(x

2
k − x2

k+1) ≤ 0.

Thus,

(
A2d2

k+1

dλ
k+1

)T (
cA2(x2

k − x2
k+1)

1
c
(λk − λk+1)

)
≥ 0 or

(√
cA2d2

k+1
1√
c
dλ

k+1

)T (√
cA2(x2

k+1 − x2
k)

1√
c
(λk+1 − λk)

)
≤ 0.

Representing the left vector by u and the right one by v in the last inequality, we
have

0 ≥ uT v = 1

2
(|u|2 + |v|2 − |u− v|2).

512 14 Local Duality and Dual Methods

Noting

u− v =
(√

cA2d2
k+1

1√
c
dλ

k+1

)
−
(√

cA2(x2
k+1 − x2

k)
1√
c
(λk+1 − λk)

)
=
(√

cA2d2
k

1√
c
dλ

k

)
,

and

|v|2 ≤ |u− v|2 − |u|2,

we obtain the desired result in Lemma 1.

Taking the sum from iterate 0 to iterate k for the inequality in Lemma 1, we
obtain

k∑
t=0

(
c

∣∣∣A2(x2
t+1 − x2

t)

∣∣∣
2 + 1

c
|λt+1 − λt |2

)
≤ c

∣∣∣A2x2
0 − A2x2∗

∣∣∣
2 + 1

c
|λ0 − λ∗|2 .

Thus, we have

min
0≤t≤k

{
c

∣∣∣A2(x
2
t+1 − x2

t)

∣∣∣2 + 1

c

∣∣λt+1 − λt

∣∣2
}
≤ 1

k

(
c

∣∣∣A2(x
2
0 − x2∗)

∣∣∣2 + 1

c
|λ0 − λ∗|2

)
.

Therefore, from (14.45) we have

Theorem 1 After k iterations of the ADMM method, there must be at least one iterate
0 ≤ k̄ ≤ k such that

∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝
∇f1(x1

k̄+1
)T + AT

1 λk̄+1

∇f2(x2
k̄+1

)T + AT
2 λk̄+1

A1x1
k̄+1

+ A2x2
k̄+1

− b

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣

2

≤ 1+ |A1|
k

(
c ·
∣∣∣A2(x2

0 − x2∗)
∣∣∣
2 + 1

c
· |λ0 − λ∗|2

)
,

that is, (x1
k̄+1

, x2
k̄+1

, λk̄+1) has its optimality condition error square bounded by the
quantity on the right-hand side that converges to 0 arithmetically as k →∞.

Again, in practice, one needs to carefully select c to balance the convergence
of the primal feasibility and the dual condition. In general, larger c would help to
achieve the primal solution accuracy and smaller c would help the dual solution
accuracy.

14.6 The Multi-Block Extension of the Alternating Direction Method of. . . 513

14.6 The Multi-Block Extension of the Alternating Direction
Method of Multipliers

It is natural to consider the ADMM method for solving problems with more than
two blocks:

minimize f1(x1)+ f2(x2)+ f3(x3)

subject to A1x1 + A2x2 + A3x3 = b,

x1 ∈ Ω1, x2 ∈ Ω2, x3 ∈ Ω3,

(14.47)

where Ai ∈ Em×ni (i = 1, 2, 3), b ∈ Em, Ωi ⊂ Eni (i = 1, 2, 3) are closed convex
sets; and fi : Eni → E (i = 1, 2, 3) are convex functions on Ωi , respectively. With
the same philosophy as the ADMM to take advantage of the separable structure, one
could consider the procedure

x1
k+1 : = arg min

x1∈Ω1

lc(x
1, x2

k, x3
k,λk),

x2
k+1 : = arg min

x2∈Ω2

lc(x1
k+1, x2, x3

k,λk), (14.48)

x3
k+1 : = arg min

x3∈Ω3

lc(x1
k+1, x2

k+1, x3,λk),

λk+1 : = λk − c(A1x1
k+1 + A2x2

k+1 + A3x3
k+1 − b),

where the augmented Lagrangian function

lc(x1, x2, x3,λ) =
3∑

i=1

fi(xi)− λT
(3∑
i=1

Aixi − b
)+ c

2

∣∣
3∑

i=1

Aixi − b
∣∣2.

Unfortunately, unlike the convergence property for solving two-block problems,
such a direct extension of ADMM may not converge for problems with three blocks.
Indeed, consider the following linear homogeneous equation with three variables

(A1, A2, A3)

⎛
⎝

x1

x2

x3

⎞
⎠ =

⎛
⎝

1 1 1
1 1 2
1 2 2

⎞
⎠
⎛
⎝

x1

x2

x3

⎞
⎠ = 0. (14.49)

This can be treated as a convex optimization problem with the null objective
function f1(x

1) = f2(x
2) = f3(x

3) ≡ 0 or any linear objective subject to the
three linear equality constraints. The unique optimal solution of the example is
x1 = x2 = x3 = 0. Let c = 1 and each block contain one variable. Then, simple
calculation will show that the direct extension of ADMM (14.48) is divergent from
any general position points pair x0 ∈ E3 and λ0 ∈ E3, and the iterates diverge
to ∞; see Fig. 14.3, where the number of iterations is limited to 500. Note that the

514 14 Local Duality and Dual Methods

0 100 200 300 400 500
Iteration

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Ab
so

lu
te

 E
rro

r

105

Fig. 14.3 The iterative solutions diverge to∞ but the optimal solution is the origin.

convergence of ADMM (14.48) applied to solving the linear equations with a null
objective is independent of the selection of the penalty parameter c. We conclude:

Theorem 2 For the three-block convex minimization problem (14.47), there exists an
example such that the direct extension of ADMM (14.48) would diverge for any penalty
parameter c > 0, starting from any random initial point, with probability one.

Several schemes have been developed to overcome this phenomenon, and we list
a few of them below.

Example 1 (Variable Splitting) Reformulate the original problem by introducing
auxiliary variables

minimize f1(x1)+ f2(x2)+ f3(x3)

subject to y1 + y2 + y3 = b,

y1 − A1x1 = 0, y2 − A2x2 = 0, y3 − A3x3 = 0,

x1 ∈ Ω1, x2 ∈ Ω2, x3 ∈ Ω3.

Then, xi , i = 1, 2, 3, are now decoupled and can be updated independently as a
single block of variables when yi and λ are fixed. When xi and λ are fixed, the
update on yi , i = 1, 2, 3, as a single block is straightforward due to its separable
structure. This reformulation essentially reduces the multi-block problem to a two-
block problem whose convergence is guaranteed.

14.7 ∗Cutting Plane Methods 515

0

Ab
so

lu
te

 E
rro

r

0 100 200 300 400 500 0 10050 150 200 250 300 0 10050 150 200 250 300
Iteration: Variable-Splitting Method Iteration: Double-Sweeping Method Iteration: Random Permutation Method

0.3
0.35

0.45
0.4

0.1
0.15

0.05

0.25
0.2

0.5

Ab
so

lu
te

 E
rro

r

Ab
so

lu
te

 E
rro

r

3

3.5

1

1.5

0

0.5

1

1.5

0

0.5

2.5

2

Fig. 14.4 The performance of the three multi-block ADMM on the “diverging” example.

Example 2 (Double Sweeping) Do double sweep as discussed in Sect. 8.8 of
Chap. 8. In the updating procedure of (14.48) one searches over x1, x2, x3, in that
order, and then immediately comes back in the order x2, x1. Finally one updates the
multipliers the same as before to complete the iteration.

Example 3 (Random Permutation) In each iteration of the updating procedure
of (14.48), draw a random permuted order {σ(1), σ (2), σ (3)}. Then update the
variables xσ(1), xσ(2), xσ(3), in that order. It is equivalent to randomly sampling
one from {1, 2, 3} without replacement until all three blocks are updated. At that
point, there is no need to sweep back so that the amount of work in each iteration
is identical to the original ADMM method. Finally one updates the multipliers the
same as before to complete the iteration.

Note that one needs to draw a random permuted order in every iteration, so that
the variable-updating order is “fair” to each block. Therefore, the iterative solution
sequence generated by the method is a random sequence, and the method is a
randomized procedure.

The performances of the three methods are displayed in Fig. 14.4, where the
random permutation method performs very well. In fact, one can prove, as long
as solving convex quadratic problems (even if the objective is not separable) subject
to affine equality constraints, that the random permutation method generates a
sequence of solutions linearly converging to the optimal solution in expectation, and
the result remains true for any number of blocks. This illustrates that randomization
could increase the robustness of algorithms.

14.7 ∗Cutting Plane Methods

Cutting plane methods are applied to problems having the general form

minimize cT x

subject to x ∈ S, (14.50)

516 14 Local Duality and Dual Methods

where S ⊂ En is a closed convex set. Problems that involve minimization of a
convex function over a convex set, such as the problem

minimize f (y)

subject to y ∈ R, (14.51)

where R ⊂ En−1 is a convex set and f is a convex function, can be easily converted
to the form (14.50) by writing (14.51) equivalently as

minimize r

subject to f (y)− r � 0, y ∈ R (14.52)

which, with x = (r, y) ∈ En, is a special case of (14.50).

General Form of Algorithm

The general form of a cutting-plane algorithm for problem (14.50) is as follows:
Given a polytope Pk ⊃ S

Step 1. Minimize cT x over Pk obtaining a point xk in Pk . If xk ∈ S, stop; xk is
optimal. Otherwise,

Step 2. Find a hyperplane Hk separating the point xk from S, that is, find ak ∈
En, bk ∈ E1 such that S ⊂ {x : aT

k x � bk}, xk ∈ {x : aT
k x > bk}. Update

Pk to obtain Pk+1 including as a constraint aT
k x � bk .

The process is illustrated in Fig. 14.5.
Specific algorithms differ mainly in the manner in which the hyperplane that

separates the current point xk from the constraint set S is selected. This selection is,

Fig. 14.5 Cutting plane
method

14.7 ∗Cutting Plane Methods 517

of course, the most important aspect of the algorithm, since it is the deepness of the
cut associated with the separating hyperplane, the distance of the hyperplane from
the current point, that governs how much improvement there is in the approximation
to the constraint set, and hence how fast the method converges.

Specific algorithms also differ somewhat with respect to the manner by which
the polytope is updated once the new hyperplane is determined. The most straight-
forward procedure is to simply adjoin the linear inequality associated with that hyp-
erplane to the ones determined previously. This yields the best possible updated
approximation to the constraint set but tends to produce, after a large number of
iterations, an unwieldy number of inequalities expressing the approximation. Thus,
in some algorithms, older inequalities that are not binding at the current point are
discarded from further consideration.

The general cutting plane algorithm can be regarded as an extended application
of duality in linear programming, and although this viewpoint does not particularly
aid in the analysis of the method, it reveals the basic interconnection between cutting
plane and dual methods. The foundation of this viewpoint is the fact that S can be
written as the intersection of all the half-spaces that contain it; thus

S = {x : aT
i x ≤ bi, i ∈ I },

where I is an (infinite) index set corresponding to all half-spaces containing S.
With S viewed in this way problem (14.50) can be thought of as an (infinite) linear
programming problem.

Corresponding to this linear program there is (at least formally) the dual problem

maximize
∑
i∈I

λibi

subject to
∑
i∈l

λiai = c (14.53)

λi � 0, i ∈ I.

Selecting a finite subset of I , say I , and forming

P = {x : aT
i x � bi, i ∈ I }

gives a polytope that contains S. Minimizing cT x over this polytope yields a point
and a corresponding subset of active constraints IA. The dual problem with the
additional restriction λi = 0 for i �∈ IA will then have a feasible solution, but
this solution will in general not be optimal. Thus, a solution to a polytope problem
corresponds to a feasible but non-optimal solution to the dual. For this reason the
cutting plane method can be regarded as working toward optimality of the (infinite
dimensional) dual.

518 14 Local Duality and Dual Methods

Kelley’s Convex Cutting Plane Algorithm

The convex cutting plane method was developed to solve convex programming
problems of the form

minimize f (x) (14.54)

subject to gi(x) � 0, i = 1, 2, . . . , p,

where x ∈ En and f and the gi ’s are differentiable convex functions. As indicated
in the last section, it is sufficient to consider the case where the objective function is
linear; thus, we consider the problem

minimize cT x (14.55)

subject to g(x) � 0

where x ∈ En and g(x) ∈ Ep is convex and differentiable.
For g convex and differentiable we have the fundamental inequality

g(x) � g(w)+∇g(w)(x− w) (14.56)

for any x, w. We use this equation to determine the separating hyperplane.
Specifically, the algorithm is as follows:

Let S = {x : g(x) � 0} and let P be an initial polytope containing S and such
that cT x is bounded on P . Then

Step 1. Minimize cT x over P obtaining the point x = w. If g(w) � 0, stop; w is
an optimal solution. Otherwise,

Step 2. Let i be an index maximizing gi(w). Clearly gi(w) > 0. Define the new
approximating polytope to be the old one intersected with the half-space

{x : gi(w)+ ∇gi(w)(x− w) � 0}. (14.57)

Return to Step 1.

The set defined by (14.57) is actually a half-space if ∇gi(w) �= 0. However,
∇gi(w) = 0 would imply that w minimizes gi which is impossible if S is nonempty.
Furthermore, the half-space given by (14.57) contains S, since if g(x) � 0 then
by (14.56) gi(w) + ∇gi(w)(x − w) � gi(x) � 0. The half-space does not contain
the point w since gi(w) > 0. This method for selecting the separating hyperplane
is illustrated in Fig. 14.6 for the one-dimensional case. Note that in one dimension,
the procedure reduces to Newton’s method.

Calculation of the separating hyperplane is exceedingly simple in this algorithm,
and hence the method really amounts to the solution of a series of linear pro-
gramming problems. It should be noted that this algorithm, valid for any convex

14.7 ∗Cutting Plane Methods 519

Fig. 14.6 Convex cutting
plane

programming problem, does not involve any line searches. In that respect it is also
similar to Newton’s method applied to a convex function.

Convergence

Under fairly mild assumptions on the convex function, the convex cutting plane
method is globally convergent. It is possible to apply the general convergence
theorem to prove this, but somewhat easier, in this case, to prove it directly.

Theorem Let the convex functions gi, i = 1, 2, . . . , p be continuously differentiable,
and suppose the convex cutting plane algorithm generates the sequence of points {wk}. Any
limit point of this sequence is a solution to problem (14.55).

Proof Suppose {wk}, k ∈ K is a subsequence of {wk} converging to w. By
taking a further subsequence of this, if necessary, we may assume that the index
i corresponding to Step 2 of the algorithm is fixed throughout the subsequence.
Now if k ∈ K, k′ ∈ K and k′ > k, then we must have

gi(wk)+∇gi(wk)(wk′ − wk) � 0,

which implies that

gi(wk) ≤ |∇gi(wk)||wk′ − wk|. (14.58)

Since |∇gi(wk)| is bounded with respect to k ∈ K , the right-hand side of (14.58)
goes to zero as k and k′ go to infinity. The left-hand side goes to gi(w). Thus gi(w) �
0 and we see that w is feasible for problem (14.55).

If f ∗ is the optimal value of problem (14.55), we have cT wk � f ∗ for each k

since wk is obtained by minimizing over a set containing S. Thus, by continuity,
cT w � f ∗ and hence w is an optimal solution.

As with most algorithms based on linear programming concepts, the rate of
convergence of cutting plane algorithms has not yet been satisfactorily analyzed.

520 14 Local Duality and Dual Methods

Preliminary research shows that these algorithms converge arithmetically, that is, if
x∗ is optimal, then |xk − x∗|2 � c/k for some constant c. This is an exceedingly
poor type of convergence. This estimate, however, may not be the best possible and
indeed there are indications that the convergence is actually geometric but with a
ratio that goes to unity as the dimension of the problem increases.

Modifications

We now describe the supporting hyperplane algorithm (an alternative method
for determining a cutting plane) and examine the possibility of dropping from
consideration some old hyperplanes so that the linear programs do not grow too
large. The convexity requirements are less severe for this algorithm. It is applicable
to problems of the form

minimize cT x

subject to g(x) � 0,

where x ∈ En, g(x) ∈ Ep, the gi ’s are continuously differentiable, and the
constraint region S defined by the inequalities is convex. Note that convexity of
the functions themselves is not required. We also assume the existence of a point
interior to the constraint region, that is, we assume the existence of a point y such
that g(y) < 0, and we assume that on the constraint boundary gi(x) = 0 implies
∇gi(x) �= 0. The algorithm is as follows:

Start with an initial polytope P containing S and such that cT x is bounded below
on S. Then

Step 1. Determine w = x to minimize cT x over P . If w ∈ S, stop. Otherwise,
Step 2. Find the point u on the line joining y and w that lies on the boundary of S.

Let i be an index for which gi(u) = 0 and define the half-space H = {x:
∇gi(u)(x− u) � 0}. Update P by intersecting with H . Return to Step 1.

The algorithm is illustrated in Fig. 14.7.
The price paid for the generality of this method over the convex cutting plane

method is that an interpolation along the line joining y and w must be executed to
find the point u. This is analogous to the line search for a minimum point required
by most programming algorithms.

Dropping Nonbinding Constraints

In all cutting plane algorithms nonbinding constraints can be dropped from the
approximating set of linear inequalities so as to keep the complexity of the approx-
imation manageable. Indeed, since n linearly independent hyperplanes determine

14.8 Exercises 521

Fig. 14.7 Supporting hyperplane algorithm

a single point in En, the algorithm can be arranged, by discarding the nonbinding
constraints at the end of each step, so that the polytope consists of exactly n linear
inequalities at every stage.

Global convergence is not destroyed by this process, since the sequence of obj-
ective values will still be monotonically increasing. It is not known, however, what
effect this has on the speed of convergence.

14.8 Exercises

1. (Non-convex?) Find the global maximum of the dual function of

minimize xy

subject to x + y − 4 ≥ 0

1 ≤ x ≤ 5, 1 ≤ y ≤ 5.

Show that although the objective function is not convex, the dual function is
concave. Find the optimal value and the Lagrange multiplier.

2. Show that the function φ defined for λ, μ, (μ � 0), by φ(λ, μ) =
minx[f (x)− λT h(x)− μT g(x)] is concave over any nonempty convex region
where it is finite.

3. Prove that the dual canonical rate of convergence is not affected by a change of
variables in x.

522 14 Local Duality and Dual Methods

4. Corresponding to the dual function (14.17):

(a) Find its gradient.
(b) Find its Hessian.
(c) Verify that it has a local maximum at λ∗, μ∗.

5. Find the Hessian expression of the dual function for a separable problem,
for example, Example 1 (this may provide information to develop Newton’s
method for solving the dual).

6. Find an explicit formula for the dual function for the entropy problem (Exam-
ple 3, Sect. 11.3).

7. Consider the problems

minimize f (x) (14.59)

subject to gi(x) � 0, j = 1, 2, . . . , p

and

minimize f (x) (14.60)

subject to gi(x)+ z2
j = 0, j = 1, 2, . . . , p.

(a) Let x∗, μ∗1, μ∗2, . . . , μ∗p be a point and set of Lagrange multipliers that
satisfy the first-order necessary conditions for (14.59). For x∗, μ∗, write
the second-order sufficiency conditions for (14.60).

(b) Show that in general they are not satisfied unless, in addition to satisfying
the sufficiency conditions of Sect. 11.5, gj (x∗) implies μ∗j > 0.

8. Apply the Lagrangian method, the augmented Lagrangian method, and the
alternating direction method of multipliers, in any computation platform, for
solving the Fisher-market instance of Exercise 19 of Chap. 11.

9. Develop the computation procedure for solving the dual linear program

max bT y s.t. AT y+ s = c, s ≥ 0

and

max bT y+ μ
∑
j

log(sj) s.t. AT y+ s = c,

respectively, using the alternating direction method of multipliers, where y and
s represent two blocks of variables.

14.8 Exercises 523

10. Consider the ADMM method for solving Example 1 of Sect. 14.5.

(a) Write out the augmented Lagrangian function of the social optimization
problem.

(b) Write out the KKT condition of subproblem of xi and develop an efficient
algorithm.

(c) Derive the closed-form optimal solution of yi for all i.
(d) Implement the ADMM in any computation platform.

11. Implement (in any computation platform) the four methods: the original method
(14.48), the variable-splitting method, the double-sweeping method, and the
random permutation method, for solving the three-block example (14.49).

12. Establish global convergence for the supporting hyperplane algorithm.
13. Establish global convergence for an imperfect version of the supporting

hyperplane algorithm that in interpolating to find the boundary point u actually
finds a point somewhere on the segment joining u and 1

2 u+ 1
2 w and establishes

a hyperplane there.
14. Prove that the convex cutting plane method is still globally convergent if it

is modified by discarding from the definition of the polytope at each stage
hyperplanes corresponding to inactive linear inequalities.

References

14.1–14.2 For the local duality theory, see Luenberger [L8]. The solution of
separable problems by dual methods in this manner was pioneered by
Everett [E2].

14.3–14.4 The method of multipliers was originally suggested by Hestenes [H8]
and from a different viewpoint by Powell [P7, P9]. The relation to duality
was presented briefly in Luenberger [L15]. The method for treating ine-
quality constraints was devised by Rockafellar [R3]. For an excellent
survey of multiplier methods see Bertsekas [B10, B12].

14.5 The alternating direction method of multipliers (ADMM) was due to
Gabay and Mercier [120] and Glowinski and Marrocco [113]; also see
Fortin and Glowinski [107], Eckstein and Bertsekas [89] and Boyd et al.
[46]. The convergence speed analysis was initially done by He and Yuan
[141] and Monteiro and Svaiter [201].

14.6 The non-convergence examples of ADMM with three blocks were
constructed by Chen et al. [57]. The variable-splitting method can be
found in Bertsekas [B11, B12], and the double-sweeping for ADMM
can be found in Sun et al. [STY]. The convergence in expectation proof
of the randomly permuted version was first done by Sun et al. [SLY] for
solving systems of linear equations, and then by Chen et al. [CLLY] for
convex quadratic minimization with linear equality constraints.

524 14 Local Duality and Dual Methods

14.8 Cutting plane methods were first introduced by Kelley [K3] who dev-
eloped the convex cutting plane method. The supporting hyperplane
algorithm was suggested by Veinott [V5]. To see how global conver-
gence of cutting plane algorithms can be established from the general
convergence theorem see Zangwill [Z2]. For some results on the conver-
gence rates of cutting plane algorithms consult Topkis [T7], Eaves and
Zangwill [E1], and Wolfe [W7].

Chapter 15
Primal–Dual Methods

This chapter discusses methods that work simultaneously with primal and dual
variables, in essence seeking to satisfy the first-order necessary conditions for
optimality. The methods employ many of the concepts used in earlier chapters,
including those related to active set methods, various first- and second-order
methods, penalty methods, and barrier methods. Indeed, a study of this chapter is in
a sense a review and extension of what has been presented earlier.

The first several sections of the chapter discuss methods for solving the standard
nonlinear programming structure that has been treated in the Parts II and III of the
text. These sections provide alternatives to the methods discussed earlier.

Solving convex primal and dual problems together is equivalent to solving a
system involving monotone function/mappings. Thus, more effective methods can
be based on constructing a homotopy path of the monotone mapping. Not only does
this path further “convexify” the problem, but it also helps the global convergence
of Newton’s method. In later sections, we discuss these homotopy methods. In
particular, we extend the homogeneous and self-dual algorithm for certain nonlinear
optimization with a capability of detecting possible infeasibility in either the primal
or dual problems.

15.1 The Standard Problem and Monotone Function

Consider again the standard nonlinear program

minimize f (x) (15.1)

subject to h(x) = 0, g(x) � 0.

© Springer Nature Switzerland AG 2021
D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
https://doi.org/10.1007/978-3-030-85450-8_15

525

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85450-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-85450-8_15

526 15 Primal–Dual Methods

Together with the feasibility, the first-order necessary conditions for optimality are,
as we know,

∇f (x)− λT ∇h(x)− μT ∇g(x) = 0 (15.2)

μ � 0

μT g(x) = 0

The last requirement is the complementary slackness condition. If it is known which
of the inequality constraints is active at the solution, these active constraints can be
rolled into the equality constraints h(x) = 0, and the inactive inequalities along with
the complementary slackness condition dropped, to obtain a problem with equality
constraints only. This indeed is the structure of the problem near the solution.

If in this structure the vector x is n-dimensional and h is m-dimensional, then λ

will also be m-dimensional. The system (15.1) will, in this reduced form, consist of
n +m equations and n + m unknowns, which is an indication that the system may
be well defined, and hence that there is a solution for the pair (x, λ). In essence,
primal–dual methods amount to solving this system of equations, and use additional
strategies to account for inequality constraints.

In view of the above observation it is natural to consider whether in fact the
system of necessary conditions is in fact well conditioned, possessing a unique
solution (x, λ). We investigate this question by considering a linearized version
of the conditions.

A useful and somewhat more generally useful approach is to consider the
quadratic program

minimize
1

2
xT Qx+ cT x (15.3)

subject to Ax = b,

where x is n-dimensional and b is m-dimensional.
The first-order conditions for this problem are

Qx− AT λ+ c = 0 (15.4)

Ax − b = 0.

These correspond to the necessary conditions (15.2) for equality constraints only.
The left-hand side square matrix, called the KKT system matrix, represents a
first-order optimality condition system of the quadratic optimization and it is
nonsymmetric. The following proposition gives conditions under which the system
is nonsingular and positive semidefinite. (Note that a nonsymmetric and square

15.1 The Standard Problem and Monotone Function 527

matrix P is positive semidefinite if and only if its symmetric version P + PT is
positive semidefinite.)

Proposition Let Q and A be n× n and m× n matrices, respectively. Suppose that A has
rank m and that Q is positive definite on the subspace M = {x : Ax = 0}. Then the matrix

[
Q −AT

A 0

]
(15.5)

is nonsingular. Moreover, although not symmetric, it is positive semidefinite.

Proof Suppose (x, y) ∈ En+m is such that

Qx− AT y = 0

Ax = 0. (15.6)

Multiplication of the first equation by xT yields

xT Qx− xT AT y = 0,

and substitution of Ax = 0 yields xT Qx = 0. However, clearly x ∈ M , and thus
the hypothesis on Q together with xT Qx = 0 implies that x = 0. It then follows
from the first equation that AT y = 0. The full rank condition on A then implies that
y = 0. Thus the only solution to (15.6) is x = 0, y = 0.

The positive definiteness of the matrix is straightforward from the definition.

If, as is often the case, the matrix Q is actually positive definite (over the whole
space), then an explicit formula for the solution of the system can be easily derived
as follows: From the first equation in (15.4) we have

x = Q−1AT λ−Q−1c.

Substitution of this into the second equation then yields

AQ−1AT λ− AQ−1c− b = 0,

from which we immediately obtain

λ = (AQ−1AT)−1[AQ−1c+ b] (15.7)

and

x = Q−1AT (AQ−1AT)−1[AQ−1c+ b] −Q−1c

= −Q−1[I − AT (AQ−1AT)−1AQ−1]c+Q−1AT (AQ−1AT)−1b. (15.8)

528 15 Primal–Dual Methods

The System of Equations of Monotone Functions

It is worth looking at the KKT system of (15.4) from a general prospect by
considering a system of nonlinear equations

k(x) = 0, where vector function k : En → En. (15.9)

Definition A vector function k ∈ C1 : Ω ⊂ En → En is monotone (strongly monotone)
if for any x ∈ Ω and y ∈ Ω , x �= y,

(y− x)T (k(y) − k(x)) ≥ (>)0.

If k is monotone (strongly monotone), then its Jacobian matrix ∇k (square but
not necessarily symmetric) is positive semidefinite (positive definite) in the function
domain Ω . Note that the gradient vector function of a (strongly) convex function
is (strongly) monotone. In general, finding a solution pair, both variables and
multipliers, of a convex optimization problem with equality constraints is equivalent
to finding a root solution of the system equations of corresponding monotone
functions.

Strategies

There are some general strategies that guide the development of the primal–dual
methods of this chapter.

1. Descent Measures. A fundamental concept that we have frequently used is
that of assuring that progress is made at each step of an iterative algorithm.
It is this that is used to guarantee global convergence. In primal methods this
measure of descent is the objective function. Even the simplex method of linear
programming is founded on this idea of making progress with respect to the
objective function. For primal minimization methods, one typically arranges that
the objective function decreases at each step.

The objective function is not the only possible way to measure progress.
We have, for example, when minimizing a function f , considered the quantity
(1/2)|∇f (x)|2, seeking to monotonically reduce it to zero.

In general, a function used to measure progress is termed a merit function.
Typically, it is defined so as to decrease as progress is made toward the solution
of a minimization problem, but the sign may be reversed in some definitions.
For primal–dual methods, the merit function may depend on both x and λ. One
especially useful merit function for equality constrained problems is

m(x, λ) = 1

2
|∇f (x)− λT ∇h(x)|2 + 1

2
|h(x))|2.

It is examined in the next section.

15.2 A Simple Merit Function 529

We shall examine other merit functions later in the chapter. With interior-
point methods or semidefinite programming, we shall use a potential function
that serves as a merit function.

2. Active Set Methods. Inequality constraints can be treated using active set
methods that treat the active constraints as equality constraints, at least for the
current iteration. However, in primal–dual methods, both x and λ are changed.
We shall consider variations of steepest descent, conjugate directions, and
Newton’s method where movement is made in the (x,λ) space.

3. Penalty Functions. In some primal–dual methods, a penalty function can serve
as a merit function, even though the penalty function depends only on x. This
is particularly attractive for recursive quadratic programming methods where a
quadratic program is solved at each stage to determine the direction of change in
the pair (x,λ).

4. Interior (Barrier) Methods. Barrier methods lead to methods that move within
the relative interior of the inequality constraints. This approach leads to the
concept of the primal–dual central path. These methods are used for semidefinite
programming since these problems are characterized as possessing a special form
of inequality constraint.

15.2 A Simple Merit Function

It is very natural, when considering the system of necessary conditions (15.2), to
form the function

mp(x, λ) = 1

p
|∇f (x)− λT ∇h(x)|pp + 1

p
|h(x)|pp, (15.10)

for a positive p ≥ 1 and use it as a measure of how close a point (x, λ) is to a
solution. The two most popular selections are p = 1 and p = 2, that is, the absolute
penalty and quadratic penalty.

It must be noted, however, that the function m(x, λ) is not always well-behaved;
it may have local minima, and these are of no value in a search for a solution. The
following theorem gives the conditions under which the function m(x, λ) can serve
as a well-behaved merit function. Basically, the main requirement is that the Hessian
of the Lagrangian be positive definite. As usual, we define l(x, λ) = f (x)−λT h(x).

Theorem Let f and h be twice continuously differentiable functions on En of dimension
1 and m, respectively. Suppose that x∗ and λ∗ satisfy the first-order necessary conditions
for a local minimum of m(x, λ) = 1

2 |∇f (x) − λT ∇h(x)|2 + 1
2 |h(x)|2 with respect to x

and λ. Suppose also that at x∗, λ∗, (i) the rank of ∇h(x∗) is m and (ii) the Hessian matrix
L(x∗, λ∗) = F(x∗)−λ∗T H(x∗) is positive definite. Then, x∗, λ∗ is a (possibly nonunique)
global minimum point of m(x, λ), with value m(x∗, λ∗) = 0.

530 15 Primal–Dual Methods

Proof Since x∗, λ∗ satisfies the first-order conditions for a local minimum point of
m(x, λ), we have

[∇f (x∗)− λ∗T ∇h(x∗)]L(x∗, λ∗)+ h(x∗)T ∇h(x∗) = 0 (15.11)

[∇f (x∗)− λ∗T ∇h(x∗)]∇h(x∗)T = 0. (15.12)

Multiplying (15.11) on the right by [∇f (x∗)−λ∗T ∇h(x∗)]T and using (15.12) we
obtain†

∇l(x∗, λ∗)L(x∗, λ∗)∇l(x∗, λ∗)T = 0.

Since L(x∗, λ∗) is positive definite, this implies that ∇l(x∗, λ∗) = 0. Using this
in (15.11), we find that h(x∗)T ∇h(x∗) = 0, which, since ∇h(x∗) is of rank m,
implies that h(x∗) = 0.

The requirement that the Hessian of the Lagrangian L(x∗, λ∗) be positive
definite at a stationary point of the merit function m is actually not too restrictive.
This condition will be satisfied in the case of a convex programming problem where
f is strictly convex and h is linear. Furthermore, even in nonconvex problems
one can often arrange for this condition to hold, at least near a solution to the original
constrained minimization problem. If it is assumed that the second-order sufficiency
conditions for a constrained minimum hold at x∗, λ∗, then L(x∗, λ∗) is positive
definite on the subspace that defines the tangent to the constraints; that is, on the
subspace defined by ∇h(x∗)x = 0. Now if the original problem is modified with a
penalty term to the problem

minimize f (x)+ 1

2
c|h(x)|2 (15.13)

subject to h(x) = 0,

the solution point x∗ will be unchanged. However, as discussed in Chap. 14, the
Hessian of the Lagrangian of this new problem (15.13) at the solution point is
L(x∗, λ∗)+ c∇h(x∗)T ∇h(x∗). For sufficiently large c, this matrix will be positive
definite. Thus a problem can be “convexified” (at least locally) before the merit
function method is employed.

An extension to problems with inequality constraints can be defined by partition-
ing the constraints into the two groups active and inactive. However, at this point
the simple merit function for problems with equality constraints is adequate for the
purpose of illustrating the general idea.

† Unless explicitly indicated to the contrary, the notation ∇l(x, λ) refers to the gradient of l with
respect to x, that is, ∇xl(x, λ).

15.3 Basic Primal–Dual Methods 531

15.3 Basic Primal–Dual Methods

Many primal–dual methods are patterned after some of the methods used in earlier
chapters, except of course that the emphasis is on equation solving rather than
explicit optimization.

First-Order Method

We consider first a simple straightforward approach, which in a sense parallels the
idea of steepest descent in that it uses only a first-order approximation to the primal–
dual equations. It is defined by

xk+1 = xk − αk∇l(xk, λk)
T (15.14)

λk+1 = λk − αkh(xk),

where αk is not yet determined. This is based on the error in satisfying (15.2).
Assume that the Hessian of the Lagrangian L(x, λ) is positive definite in some
compact region of interest, and consider the simple merit function

m(x, λ) = 1

2
|∇l(x, λ)|2 + 1

2
|h(x)|2 (15.15)

discussed above. We would like to determine whether the direction of change
in (15.14) is a descent direction with respect to this merit function. The gradient
of the merit function has components corresponding to x and λ of

∇l(x, λ)L(x, λ)+ h(x)T ∇h(x) (15.16)

−∇l(x, λ)∇h(x)T .

Thus the inner product of this gradient with the direction vector having components
(−∇l(x, λ)T , −h(x)) is

−∇l(x, λ)L(x, λ)∇l(x, λ)T − h(x)T ∇h(x)∇l(x, λ)T +∇l(x, λ)∇h(x)T h(x)

= −∇l(x, λ)L(x, λ)∇l(x, λ)T � 0.

This shows that the search direction is in fact a descent direction for the merit
function, unless ∇l(x, λ) = 0. Thus by selecting αk to minimize the merit function
in the search direction at each step, the process will converge to a point where
∇l(x, λ) = 0. However, there is no guarantee that h(x) = 0 at that point.

We can try to improve the method either by changing the way in which the
direction is selected or by changing the merit function. In this case a slight

532 15 Primal–Dual Methods

modification of the merit function will work. Let

w(x, λ, γ) = m(x, λ)− γ [f (x)− λT h(x)]

for some γ > 0. We then calculate that the gradient of w has the two components
corresponding to x and λ

∇l(x, λ)L(x, λ)+ h(x)T ∇h(x)− γ∇l(x, λ)

−∇l(x, λ)∇h(x)T + γ h(x)T ,

and hence the inner product of the gradient with the direction (−∇l(x, λ)T , −h(x))

is

−∇l(x, λ)[L(x, λ)− γ I]∇l(x, λ)T − γ |h(x)|2.

Now since we are assuming that L(x, λ) is positive definite in a compact region of
interest, there is a γ > 0 such that L(x, λ) − γ I is positive definite in this region.
Then according to the above calculation, the direction (−∇l(x, λ)T , −h(x)) is a
descent direction, and the standard descent method will converge to a solution. This
method will not converge very rapidly however, but would make h converge to zero.
(See Exercise 2 for further analysis of this method.)

Convergence Speed Analysis

We provide the convergence analysis of the first-order method on solving the system
of equations of monotone functions, that is, k(x) = 0, where the simple merit
function is mp(x) = 1

p
|k(x)|pp. The first-order method of (15.14) becomes

xk+1 = xk − αkk(xk). (15.17)

The gradient vector of the merit function is ∇m2(xk) = k(xk)
T ∇k(xk), so that its

inner product with the direction vector−k(xk) is

−k(xk)
T ∇k(xk)k(xk) ≤ 0,

since ∇k(xk) is positive semidefinite.
As illustrated earlier, even ∇k(xk) is nonsingular, k(xk)

T ∇k(xk)k(xk) = 0 does
not imply k(xk) = 0. However, when k is strongly monotone or ∇k(xk) is positive

15.3 Basic Primal–Dual Methods 533

definite, k(xk) = 0 is guaranteed. Let the smallest positive eigenvalue of ∇k(xk)+
∇k(xk)

T be γ and m2(xk) be first-order β-Lipschitz. Then,

m2(xk+1)−m2(xk) ≤ k(xk)
T ∇k(xk)(xk+1 − xk)+ β

2
|xk+1 − xk|2

= k(xk)
T ∇k(xk)(−αkk(xk))+ βα2

k

2
|k(xk)|2

≤ −γαk

2
|k(xk)|2 + βα2

k

2
|k(xk)|2

= (−γαk + βα2
k)m2(xk).

If choose αk = γ
2β

, we have

m2(xk+1) ≤
(

1− γ 2

2β

)
m2(xk),

which establishes a linear convergence rate. Recall that β and γ represent the largest
and smallest eigenvalues, respectively, of the Jacobian matrix.

When k(x) is not strongly monotone, one can solve the system of equations of
an ε-approximate strongly monotone function/operator

k̂(x) = k(x)+ ε · x,

then γ ≥ ε, resulting a O(1
ε2) speed method.

One can also apply various descent methods directly in minimizing the merit
function, based on its (sub)gradients and Hessians, as an unconstrained optimiza-
tion problem, where canonical convergence rates/speeds have been discussed in
Chaps 8–10.

Second-Order Method: Newton’s Method

Newton’s method for solving systems of equations can be easily applied to the KKT
system of equations. In its most straightforward form, the method solves the system

∇l(x, λ) = 0 (15.18)

h(x) = 0

534 15 Primal–Dual Methods

by solving the linearized version recursively. That is, given xk, λk the new point
xk+1, λk+1 is determined from the equations on directions dx

k and dλ
k :

∇l(xk, λk)
T + L(xk, λk)dx

k −∇h(xk)
T dλ

k = 0 (15.19)

h(xk)+∇h(xk)dx
k = 0

by setting xk+1 = xk + dx
k , λk+1 = λk + dλ

k . In matrix form the above Newton
equations are

[
L(xk,λk) −∇h(xk)

T

∇h(xk) 0

] [
dx

k

dλ
k

]
=
[−∇l(xk,λk)

T

−h(xk)

]
. (15.20)

The Newton equations have some important structural properties. First, we observe
that by subtracting ∇h(xk)

T λk to the top equation, the system can be transformed
to the form

[
L(xk,λk) −∇h(xk)

T

∇h(xk) 0

] [
dk

λk+1

]
=
[−∇f (xk)

T

−h(xk)

]
, (15.21)

where again λk+1 = λk+dλ
k . In this form λk appears only in the matrix L(xk, λk).

This conversion between (15.20) and (15.21) will be useful later.
Next we note that the structure of the coefficient matrix of (15.20) or (15.21)

is identical to that of the Proposition of Sect. 15.1. The standard second-order
sufficiency conditions imply that ∇h(x∗) is of full rank and that L(x∗, λ∗) is
positive definite on M = {x : ∇h(x∗)x = 0} at the solution. By continuity these
conditions can be assumed to hold in a region near the solution as well. Under these
assumptions it follows from Proposition 1 that the Newton equation (15.20) has a
unique solution, and system (15.18) is a monotone function system with the positive
semidefiniteness of Jacobian matrices.

If L(x, λ) is positive definite (either originally or through the incorporation
of a penalty term), it is possible to write an explicit expression for the solution
of the system (15.20). Let us define Lk = L(xk, λk), Ak = ∇h(xk), lk =
∇l(xk, λk)

T , hk = h(xk). Then, the solution is readily found, as in (15.7)
and (15.8) for quadratic programming, by relating A = Ak , Q = Lk , b = hk ,
and c = lk .

Convergence Speed Analysis

We again provide the convergence analysis of Newton’s method of solving the
system of equations, that is, k(x) = 0, where the simple merit function is mp(x) =
1
p
|k(x)|pp. Newton’s method of (15.20) becomes

∇k(xk)dk = −k(xk), and xk+1 = xk + αkdk. (15.22)

15.3 Basic Primal–Dual Methods 535

There are standard results concerning Newton’s method applied to a system of
nonlinear equations that are applicable to the system (15.22). These results state
that if the linearized system is nonsingular at the solution (as is implied by our
assumptions) and if the initial point is sufficiently close to the solution, the method
will in fact converge to the solution and the convergence will be of order at least two.
To guarantee convergence from remote initial points and hence be more broadly
applicable, it is desirable to use the method as a descent process. Fortunately, we
can show that the direction generated by Newton’s method is a descent direction.

The gradient vector of the quadratic merit function is∇m2(xk) = k(xk)
T ∇k(xk),

so that its inner product with the direction vector dk of (15.22) is

k(xk)
T ∇k(xk)dk = k(xk)

T [−k(xk)] = −|k(xk)|2 ≤ 0.

This is strictly negative unless the merit function or k(x) becomes zero. Thus, a root
always exists for the system of strongly monotone functions and Newton’s method
has desirable global convergence properties when executed as a descent method
with appropriate stepsizes.

Note that the calculation and the analysis above do not need k to be monotone
but the Jacobian ∇k to be nonsingular. We summarize the above discussion by the
following theorem.

Theorem Define the Newton process by

xk+1 = xk + αkdk,

where dk is solutions to (15.22) and αk is selected to minimize the merit function m2(xk +
αdk). Assume that dk exists and that the points generated lie in a compact set. Then any
limit point of these points is the root of equation system (15.9) (or the first-order stationary
solution to the equality constrained minimization KKT system (15.18)).

Proof Most of this follows from the above observations and the Global Conver-
gence Theorem. The one-dimensional search process is well defined, since the merit
function m2 is bounded below.

A Path-Following Method

Could the convergence speed be accelerated if k is monotone? The answer is
affirmative by using the homotopy or path-following method introduced in Sect. 8.7
of Chap. 8 and considering the parameterized system of equations:

k(x)+ μx = 0. (15.23)

Proposition 1 Consider a monotone function k(x) ∈ C1 : En → En where a root exists.
Then the following properties hold:

(i) The solution, denoted by x(μ), of (15.23) exists and it is unique for any given μ > 0.
(ii) x(μ) forms a continuous path as μ varies.

536 15 Primal–Dual Methods

(iii) As μ→ 0+ (i.e., μ decreases to 0), x(μ) converges to the root solution of (15.9) with
the minimal Euclidean norm.

Proof First, since k is monotone

(y− x)T (k(y)− k(x)) ≥ 0, ∀x, y, (15.24)

k(x) + μ · x is strongly monotone so that the root exists. We prove uniqueness by
contradiction, suppose there are y �= x and both satisfy equations 15.23, then we
have

0 = k(x)+ μx = k(y)+ μy, or μ(y− x) = −(k(y)− k(x)).

Multiplying (y− x)T from left, then from (15.24) we have

μ|y− x|2 ≤ −(y− x)T (k(y)− k(x)) ≤ 0,

which is a contradiction since μ > 0 and y �= x.
Let x(μ) and x(μ′) be root solutions to 15.23 corresponding to μ′ > μ > 0,

respectively. Then we have

0 = k(x(μ))+μx(μ) = k(x(μ′))+μ′x(μ′), or −μx(μ)+μ′x(μ′) = [k(x(μ))−k(x(μ′))].

Multiplying (x(μ)− x(μ′))T from left, then from (15.24) we have

0 ≤ μ|x(μ)− x(μ′)|2 ≤ (μ′ − μ)(x(μ)− x(μ′))T x(μ′).

As μ′ → μ, the right-hand side quantity converges to 0 so that x(μ′) → x(μ),
thereby the path is continuous.

Finally, let x∗ be the root solution with the minimal Euclidean norm. Then

k(x(μ))+ μx(μ) = k(x∗) or − μx(μ) = k(x(μ))− k(x∗).

Multiplying (x(μ)− x∗)T from left, then from (15.24), we have

−μ(x(μ)− x∗)T x(μ) = (x(μ)− x∗)T (k(x(μ))− k(x∗)) ≥ 0,

which implies

|x(μ)|2 ≤ x(μ)T x∗ ≤ |x(μ)| · |x∗| or |x(μ)| ≤ |x∗|, ∀μ > 0,

which proves (iii) as μ→ 0+.

Thus, one can design a sequence of decreasing μ, identical to the homotopy
method presented in Sect. 8.7 of Chap. 8. The only difference is that the Jacobian
matrix there is symmetric and positive semidefinite, but the one here is not

15.4 Relation to Sequential Quadratic Optimization 537

symmetric but remains positive semidefinite (k is monotone). Fortunately, Newton’s
method does not rely on the matrix being symmetric.

We end this subsection by numerically solving the following instance by the first-
order and the path-following methods.

Example 1

minimize 1
2 (x1 + 2x2 − 2)2

subject to (x1)
2 + (x2)

2 − 1 = 0.

Let x3 be the Lagrange multiplier of the equality constraint, and the KKT system of
equations can be expressed by

k(x) =
⎛
⎜⎝

(x1 + 2x2 − 2)− 2x1x3

2(x1 + 2x2 − 2)− 2x2x3

(x1)2 + (x2)2 − 1

⎞
⎟⎠ with ∇k(x) =

⎛
⎜⎝

1− 2x3 2 −2x1

2 4− 2x3 −2x2

2x1 2x2 0

⎞
⎟⎠ .

We report the performances of the first-order method of (15.17) and the path-
following method in which we repeat the Newton iteration

[∇k(xk)+ μkI]dk = −(k(xk)+ μkxk), xk+1 = xk + dk; μk+1 = ημk.

Both methods start at x0 = 0, and μ0 = 10 for the latter method.

Performance of the first-order and path-following methods

First-order First-order Path-following Path-following

Parameter αk = 0.01 αk = 0.05 η = 1
2 η = 1

3
iterations 300 100 20 20

Final residual |k| 0.0097 6.1716e − 04 1.9726e − 05 1.7797e − 08

15.4 Relation to Sequential Quadratic Optimization

Viewing from the original optimization with equality constraints, it is clear from the
development of the preceding discussions that Newton’s method is closely related to
quadratic programming with equality constraints. We explore this relationship more
fully here, which will lead to a generalization of Newton’s method to problems with
inequality constraints.

Consider the problem

minimize IT
k dx

k +
1

2
(dk)

T Lkdx
k (15.25)

subject to Akdx
k + hk = 0.

538 15 Primal–Dual Methods

The first-order necessary conditions of this problem are exactly (15.20), where dλ
k

corresponds to the Lagrange multiplier of (15.25). Thus, the solution of (15.25)
produces a Newton step.

Alternatively, we may consider the quadratic program

minimize ∇f (xk)dx
k +

1

2
(dx

k)T Lkdx
k (15.26)

subject to Akdx
k + hk = 0.

The necessary conditions of this problem are exactly (15.21), where λk+1 now
corresponds to the Lagrange multiplier of (15.26). The program (15.26) is obtained
from (15.25) by merely subtracting λT

k Akdk from the objective function; and this
change has no influence on dx

k , since Akdk is fixed.
The connection with quadratic programming suggests a procedure for extending

Newton’s method to minimization problems with inequality constraints. Consider
the problem

minimize f (x)

subject to h(x) = 0
g(x) � 0.

Given an estimated solution point xk and estimated Lagrange multipliers λk, μk ,
one solves the quadratic program

minimize ∇f (xk)dx
k + 1

2 (dx
k)

T Lkdx
k

subject to ∇h(xk)dx
k + hk = 0

∇g(xk)dx
k + gk � 0,

(15.27)

where Lk = F(xk)−λT
k H(xk)−μT

k G(xk), hk = h(xk), gk = g(xk). The new point
is determined by xk+1 = xk+dx

k , and the new Lagrange multipliers are the Lagrange
multipliers of the quadratic program (15.27). This is the essence of an early method
for nonlinear programming termed SOLVER. It is a very attractive procedure, since
it applies directly to problems with inequality as well as equality constraints without
the use of an active set strategy (although such a strategy might be used to solve
the required quadratic program). Methods of this general type, where a quadratic
program is solved at each step, are referred to as recursive quadratic programming
methods, and several variations are considered in this chapter.

As presented here the recursive quadratic programming method extends
Newton’s method to problems with inequality constraints, but the method has
limitations. The quadratic program may not always be well defined, the method
requires second-order derivative information, and the simple merit function is not

15.4 Relation to Sequential Quadratic Optimization 539

a descent function for the case of inequalities. Of these, the most serious is the
requirement of second-order information, and this is addressed in the next section.

Modified Newton’s Method

The difference between the first-order and Newton’s method is in choosing the
Hessian matrix in recursive quadratic programs: the former uses the identity
matrix and the latter uses Lk . Both of them have been proved to be the descent
directions for the quadratic penalty function of equality constrained optimization.
Not surprisingly, a modified Newton method is to replace the actual Hessian of the
Lagrangian by an approximation and positive definite matrix Bk . Thus, we solve the
quadratic program

minimize ∇f (xk)dx
k + 1

2 (dx
k)

T Bkdx
k

subject to ∇h(xk)dx
k + hk = 0

∇g(xk)dx
k + gk � 0,

(15.28)

At each xk the quadratic program (15.28) is solved to determine the direction dx
k

associated with optimal multiplier λk+1. In this case an arbitrary symmetric matrix
Bk is used in place of the Hessian of the Lagrangian. Note that the problem (15.28)
does not explicitly depend on λk; but Bk , often being chosen to approximate the
Hessian of the Lagrangian, may depend on λk .

Example 1 For inequality constrained optimization, the Hessian of the Lagrangian
is given as

Lk = ∇2f (xk)−
p∑

j=1

μj∇2gj (xk).

If gj is a convex function, because μj ≥ 0, −μj∇2gj (xk) will be negative
semidefinite so that the term reduces the positive semidefiniteness of the Hessian.
Thus, one specific modification is to remove all convex function gj ’s from the
Hessian calculation. Of course, they would still be included in the gradient vector
of the Lagrangian.

In order to ensure convergence of the structured modified Newton methods, it
is necessary to find a suitable merit function—a merit function that is compatible
with the direction finding algorithm in the sense that it decreases along the direction
generated. Next, we show that the absolute-value exact penalty function is com-
patible with the modified Newton approach, especially for inequality constrained
optimization with complementary slackness.

540 15 Primal–Dual Methods

Absolute-Value Penalty Function

Let us consider the constrained minimization problem

minimize f (x) (15.29)

subject to g(x) � 0,

where g(x) is p-dimensional. For notational simplicity we consider the case of ine-
quality constraints only, since it is, in fact, the most difficult case. The extension
to equality constraints is straightforward. In accordance with the recursive quadratic
programming approach, given a current point x, we select the direction of movement
d by solving the quadratic programming problem

minimize
1

2
dT Bd+∇f (x)d (15.30)

subject to ∇g(x)d+ g(x) � 0,

where B is positive definite.
The first-order necessary conditions for a solution to this quadratic program are

Bd+∇f (x)T −∇g(x)T μ = 0 (15.31a)

∇g(x)d+ g(x) � 0 (15.31b)

μT [∇g(x)d+ g(x)] = 0 (15.31c)

μ � 0. (15.31d)

Note that if the solution to the quadratic program has d = 0, then the point
x, together with μ from (15.31), satisfies the first-order necessary conditions
for the original minimization problem (15.29). The following proposition is the
fundamental result concerning the compatibility of the absolute-value penalty
function and the quadratic programming method for determining the direction of
movement.

Proposition 1 Let d, μ (with d �= 0) be a solution of the quadratic program (15.30). Then
if c � max

j
(μj), the vector d is a descent direction for the penalty function

P (x) = f (x) − c

p∑
j=1

gj (x)−.

15.4 Relation to Sequential Quadratic Optimization 541

Proof Let J (x) = {j : gj (x) < 0}. Now for α > 0 and sufficiently small,

P(x + αd) = f (x+ αd) − c

p∑
j=1

gj (x+ αd)−

= f (x)+ α∇f (x)d− c

p∑
j=1

[gj (x)+ α∇gj (x)d]− + o(α)

= f (x)+ α∇f (x)d− c

p∑
j=1

gj (x)− − αc
∑

j∈J (x)

∇gj (x)d+ o(α)

= P(x)+ α∇f (x)d− αc
∑

j∈J (x)

∇gj (x)d+ o(α). (15.32)

Where (15.31b) was used in the third line to infer that ∇gj (x)d ≥ 0 if gj (x) = 0
and the sign does not change for gj (x) > 0. Again using (15.31b) we have

− c
∑

j∈J (x)

∇gj (x)d � c
∑

j∈J (x)

gj (x) = c

p∑
j=1

gj (x)−. (15.33)

Using (15.31a) we have

∇f(x)d = −dT Bd +
p∑

j=1

μj∇gj (x)d,

which by using the complementary slackness condition (15.31c) leads to

∇f (x)d = −dT Bd−
p∑

j=1

μjgj (x) � −dT Bd−
p∑

j=1

μjgj (x)− (15.34)

≤ −dT Bd −max (μj)

p∑
j=1

gj (x)−.

Finally, substituting (15.33) and (15.34) in (15.32), we find

P(x + αd) � P(x)+ α{−dT Bd+ [c −max(μj)]
p∑

j=1

gj (x)−} + o(α),

Since B is positive definite and c ≥ max(μj), it follows that for α sufficiently small,
P(x + αd) < P(x).

542 15 Primal–Dual Methods

The above proposition is exceedingly important, for it provides a basis for est-
ablishing the global convergence of modified Newton methods, including recursive
quadratic programming. The following is a simple global convergence result based
on the descent property.

Theorem Let B be positive definite and assume that throughout some compact region ⊂
En, the quadratic program (15.30) has a unique solution d, μ such that at each point the
Lagrange multipliers satisfy max

j
(μj) � c. Let the sequence {xk} be generated by

xk+1 = xk + αkdk,

where dk is the solution to (15.30) at xk and where αk minimizes P (xk+1). Assume that
each xk ∈ �. Then every limit point x of {xk} satisfies the first-order necessary conditions
for the constrained minimization problem (15.29).

Proof The solution to a quadratic program depends continuously on the data, and
hence the direction determined by the quadratic program (15.30) is a continuous
function of x. The function P(x) is also continuous, and by Proposition 1, it follows
that P is a descent function at every point that does not satisfy the first-order
conditions. The result thus follows from the Global Convergence Theorem.

In view of the above result, recursive quadratic programming in conjunction with
the absolute-value penalty function is an attractive technique. There are, however,
some difficulties to be kept in mind. First, the selection of the parameter αk requires
a one-dimensional search with respect to a nondifferentiable function. Thus the eff-
icient curve fitting search methods of Chap. 8 cannot be used without significant
modification. Second, use of the absolute-value function requires an estimate of an
upper bound for μj ’s, so that c can be selected properly. In some applications a
suitable bound can be obtained from previous experience, but in general one must
develop a method for revising the estimate upward when necessary.

Another potential difficulty with the quadratic programming approach above is
that the quadratic program (15.30) may be infeasible at some point xk , even though
the original problem (15.29) is feasible. If this happens, the method breaks down.
However, see Exercise 5 for a method that may avoids this problem. Overall, in
dealing with inequality constraints, the best way is to apply the barrier or shifted-
barrier method presented in the next section.

15.5 Primal–Dual Interior-Point (Barrier) Methods

The primal–dual interior-point methods discussed for linear programming in
Chap. 5 are, as mentioned there, closely related to the barrier methods presented
in Chap. 13 and the primal–dual methods of the current chapter. They can be
naturally extended to solve nonlinear programming problems while maintaining
both theoretical and practical efficiency.

15.5 Primal–Dual Interior-Point (Barrier) Methods 543

Consider the inequality constrained problem

minimize f (x)

subject to Ax = b, (15.35)

g(x) ≥ 0,

In general, a weakness of the active constraint method for such a problem is the
combinatorial nature of determining which constraints should be active.

Logarithmic Barrier Function

A method that avoids the necessity to explicitly and combinatorially select a set
of active constraints is based on the logarithmic barrier method, which solves a
sequence of equality constrained minimization problems. Specifically,

minimize f (x)− μ

p∑
i=1

log(gj (x)) (15.36)

subject to Ax = b,

where μ = μk > 0, k = 1, . . ., μk > μk+1, μk → 0. The μks can be pre-
determined. Typically, we have μk+1 = ημk for some constant 0 < η < 1. Here,
we also assume (we would remove this assumption later) that the original problem
has a feasible interior point x0; that is,

Ax0 = b and g(x0) > 0,

and A has full row rank.
For fixed μ, and using sj = μ/gj , the first-order optimality conditions of the

barrier problem (15.36) are:

Sg(x) = μ1

Ax = b (15.37)

−AT y+∇f (x)T −∇g(x)T s = 0,

where S = diag(s); that is, a diagonal matrix whose diagonal entries are s, and
∇g(x) is the Jacobian matrix of g(x). Note that, from the tradition of the interior-
point methods, we use y in replacing λ and s in replacing μ.

544 15 Primal–Dual Methods

If f (x) and −gj (x) are convex functions for all j, f (x) − μ
∑

j log(−gj (x))

is strictly convex in the interior of the feasible region, and the objective level set
is bounded, then there is a unique minimizer for the barrier problem. Let (x(μ) >

0, y(μ), s(μ) > 0) be the (unique) solution of (15.37). Then, these values form the
primal–dual central path of (15.35):

C = {(x(μ), y(μ), s(μ) > 0) : 0 < μ <∞}.

This can be summarized in the following theorem.

Theorem 1 Let (x(μ), y(μ), s(μ)) be on the central path.

i) If f (x) and −gj (x) are convex functions for all j , then s(μ) is unique.
ii) Furthermore, if f (x) − μ

∑
j log(gj (x)) is strictly convex,(x(μ), y(μ), s(μ)) are

unique, and they are bounded for 0 < μ � μ0 for any given μ0 > 0.
iii) For 0 < μ′ < μ, f (x(μ′)) < f (x(μ)) if x(μ′) �= x(μ).
iv) (x(μ), y(μ), s(μ)) converges to a point satisfying the first-order necessary conditions

for a solution of (15.35) as μ→ 0.

Once we have an approximate solution point (x, y, s) = (xk, yk, sk) for (15.37)
for μ = μk > 0, we can again use the primal–dual methods described for linear
programming to generate a new approximate solution to (15.37) for μ = μk+1 <

μk . The Newton direction vectors (dx
k, dy

k, ds
k) is found from the system of linear

Newton equations:

Sk∇g(xk)dx
k +G(xk)ds

k = μ1− Skg(xk), (15.38)

Adx
k = b− Axk,

−AT dy
k +

⎛
⎝∇2f (xk)−

∑
j

(sk)j∇2gj (xk)

⎞
⎠dx

k

−∇g(xk)
T ds

k = AT yk −∇f (xk)
T + ∇g(xk)

T sk,

where G(xk) = diag(g(xk)). Then, the new iterate is update to:

(xk+1, yk+1, sk+1) = (xk, yk, sk)+ αk(dx
k, dy

k, ds
k)

for a stepsize αk . Recently, this approach has also been used to find points satisfying
the first-order conditions for problems when f (x) and gj (x) are not generally
convex functions.

15.5 Primal–Dual Interior-Point (Barrier) Methods 545

Interior-Point Method for Convex Quadratic Programming

Let f (x) = (1/2)xT Qx+ cT x and gj (x) = xj for j = 1, . . . , n, and consider the
quadratic program

minimize
1

2
xT Qx+ cT x

subject to Ax = b, (15.39)

x � 0,

where the given matrix Q ∈ En×n is positive semidefinite (that is, the objective is a
convex function), A ∈ En×m, c ∈ En and b ∈ Em. The problem reduces to finding
x ∈ En, y ∈ Em and s ∈ En satisfying the following optimality conditions:

Sx = 0

Ax = b (15.40)

−AT y+Qx− s = −c

(x, s) ≥ 0.

The optimality conditions with the logarithmic barrier function with parameter μ

are be:

Sx = μ1

Ax = b (15.41)

−AT y+Qx− s = −c.

Note that the bottom two sets of constraints are linear equalities.
Thus, once we have an interior feasible point (x, y, s) for (15.41), with μ =

xT s/n, we can apply Newton’s method to compute a new (approximate) iterate
(x+, y+, s+) by solving for (dx, dy, ds) from the system of linear equations:

Sdx + Xds = ημ1− Xs,

Adx = 0, (15.42)

−AT dy +Qdx − ds = 0,

where X and S are two diagonal matrices whose diagonal entries are x > 0 and
s > 0, respectively. Here, η is a fixed positive constant less than 1, which implies
that our targeted μ is reduced by the factor η at each step.

546 15 Primal–Dual Methods

Potential Function as a Merit Function

For any interior feasible point (x, y, s) of (15.39) and its dual, a suitable merit
function is the potential function introduced in Chap. 5 for linear programming:

ψn+ρ(x, s) = (n+ ρ) log(xT s)−
n∑

j=1

log(xj sj).

The main result for this is stated in the following theorem.

Theorem 2 In solving (15.42) for (dx, dy, ds), let η = n/(n + ρ) < 1 for fixed ρ � √n

and assign x+ = x+ αdx, y+ = y+ αdy, and s+ = s+ αds where

α = α
√

min(Xs)

|(XS)−1/2(xT s
n+ρ

1− Xs)|
,

where α is any positive constant less than 1. (Again X and S are matrices with components
on the diagonal being those of x and s, respectively.) Then,

ψn+ρ(x+, s+)− ψn+ρ(x, s) � −α
√

3/4+ α2

2(1− α)
.

The proof of the theorem is also similar to that for linear programming; see
Exercise 10. Notice that, since Q is positive semidefinite, we have

dx
T ds = (dx, dy)

T (ds, 0) = dT
x Qdx � 0

while dT
x ds = 0 in the linear programming case.

We outline the algorithm here:
Given any interior feasible (x0, y0, s0) of (15.39) and its dual. Set ρ �

√
n and

k = 0.

1. Set (x, s) = (xk, sk) and η = n/(n+ρ) and compute (dx, dy, ds) from (15.42).
2. Let xk+1 = xk + αdx, yk+1 = yk + αdy, and sk+1 = sk + αds where

α = arg min
α�0

ψn+ρ(xk + αdx, sk + αds).

3. Let k = k + 1. If sT
k xk/sT

0 x0 ≤ ε, stop. Otherwise, return to Step 1.

This algorithm exhibits an iteration complexity bound that is identical to that of
linear programming expressed in Theorem 1, Sect. 5.6.

15.6 The Monotone Complementarity Problem 547

15.6 The Monotone Complementarity Problem

It is worth looking at the KKT system of constrained optimization from a general
prospective by considering a system of complementary slackness equations (for
simplicity, we have ignored the equality constraints)

k(x) ≥ 0, x ≥ 0, and Xk(x) = 0, (15.43)

where k : En → En is a monotone vector function and X is the diagonal
matrix whose diagonal entries are x. In general, finding a solution pair of a convex
optimization problem with inequality constraints and nonnegative variables is
equivalent to finding a complementary slackness solution (including both variables
and multipliers) of system (15.43) with a corresponding monotone vector function.

More precisely, consider

minimize f (x)

subject to g(x) ≥ 0, x ≥ 0.

Its first-order conditions would be

∇f (x)T −∇g(x)T y ≥ 0 ∈ En, x ≥ 0 ∈ En,

g(x) ≥ 0 ∈ Ep, y ≥ 0 ∈ Ep,

X[∇f (x)T −∇g(x)T y] = 0, Y[g(x)] = 0,

where Y is the diagonal matrix whose diagonal entries are y. Then consider
aggregated variables [x; y] ∈ En+p and the vector function

k(x, y) = [∇f (x)T −∇g(x)T y; g(x)] ∈ En+p.

The KKT conditions of the problem become a problem represented by (15.43). Note
that the Jacobian matrix of k(x, y) is

∇k(x, y) =
(
∇2f (x)−∑p

j=1 yj∇2gj (x) −∇g(x)T

∇g(x) 0

)
,

which is positive semidefinite if f and −gj are all convex functions.
It is more convenient to rewrite the complementary slackness problem of (15.43)

by introducing the slack variables s:

k(x)− s = 0, (x; s) ≥ 0, and Xs = 0.

548 15 Primal–Dual Methods

If the equality constraints present in the original optimization problem, one can
simply fix those slack variables, corresponding to equality constraints, to zero
and remove them from consideration. For notational simplicity, we consider all
inequalities next.

The Interior-Point Method for the Complementarity Problem

With the addition of the logarithmic barrier to the original optimization problem,
the KKT conditions would be represented by

k(x)− s = 0, (x; s) ≥ 0, and Xs = μ · 1. (15.44)

As μ→ 0, system (15.44) becomes the KKT conditions of the original optimization
problem without the barrier term.

At iteration k, we have xk > 0 and sk > 0 approximately satisfy the equations in
(15.44) with μ = μk = (xk)

T sk/n. Then we reduce μ = ημk , where 0 ≤ η < 1,
solve the system of Newton equations for direction vectors:

∇k(xk)dx
k − ds

k = −(k(xk)− sk)

Skdx
k + Xkds

k = ημk1− Xksk, (15.45)

and then assign

(xk+1, sk+1) = (xk, sk)+ αk(dx
k , ds

k)(> 0).

One criterion in choosing stepsize αk is to guarantee positivity of the iterate. Another
strategy to update s if k(xk+1) > 0 is to simply assign sk+1 = k(xk+1).

The method would have the same convergence speed of that for convex quadratic
programming, if k(x) is a scaled (self-concordant) Lipschitz function:

Definition (Scaled (Self-Concordant) Lipschitz Function) Function k(x) is scaled Lip-
schitz with β = υ(α) if for any solution x > 0 and a positive α(< 1)

|X[k(x+d)−k(x)−∇k(x)d] |1 ≤ υ(α)dT ∇k(x)d, when |X−1d|∞ ≤ α < 1. (15.46)

One can verify that, for example, − log(x) and 1
x

are scaled Lipschitz but not
regular Lipschitz, on the domain of x > 0.

We illustrate the performances of interior-point method (15.45) on two toy
problem instance examples.

Example 1 Consider a convex optimization instance

minimize 1
2 (x1 + 2x2 − 2)2

subject to 1− (x1)
2 − (x2)

2 ≥ 0, (x1, x2) ≥ 0.

15.6 The Monotone Complementarity Problem 549

Let x3 be the Lagrange multiplier of the equality constraint, and the KKT conditions
can be expressed as a complementarity problem

k(x) =
⎛
⎜⎝

(x1 + 2x2 − 2)+ 2x1x3

2(x1 + 2x2 − 2)+ 2x2x3

1− (x1)2 − (x2)2

⎞
⎟⎠ with ∇k(x) =

⎛
⎜⎝

1+ 2x3 2 2x1

2 4+ 2x3 2x2

−2x1 −2x2 0

⎞
⎟⎠ .

Here, we start at x0 = 1/3 and s0 = 31, and μ0 = (x0)
T s0/3.

Performance of the interior-point method

Parameter η = 1
2 η = 1

3

iterations 20 20

Final objective value 6.2909e − 10 4.2663e − 16

Final xT s 1.1196e − 05 6.1532e − 09

Final x (0.5001 0.7499) (0.4997 0.7501)

The stepsize is 90% to the boundary, that is, compute the largest stepsize α to the
boundary of nonnegative orthant and then use 0.9α as the actual stepsize. Note that
the algorithm converges to an interior-point optimal solution.

Example 2 We slightly change the objective and try the interior-point algorithm on
solving a nonconvex constrained instance

minimize 1
2 (x1 + 2x2 + 2)2

subject to (x1)
2 + (x2)

2 − 1 ≥ 0, (x1, x2) ≥ 0.

To enforce better descent property, we used the Lagrangian–Hessian modification
described in Example 1 of Sect. 15.4. and, consequent, an approximate Jacobian

k(x) =
⎛
⎝

(x1 + 2x2 + 2)− 2x1x3

2(x1 + 2x2 − 2)− 2x2x3

(x1)
2 + (x2)

2 − 1

⎞
⎠ with ∇k̂(x) =

⎛
⎝

1 2 −2x1

2 4 −2x2

2x1 2x2 0

⎞
⎠ .

Here, we start at x0 = 1 and s0 = 1, and μ0 = (x0)
T s0/3.

Performance of the interior-point method

Parameter η = 1
2 η = 1

2

iterations 20 30

Final objective value 9.0104 9.0003

Final xT s 0.0032 9.0190e − 05

Final x (1.0010 0.0001) (1.0000 0.0000)

550 15 Primal–Dual Methods

The stepsize is 30% to the boundary, more conservative than the one used for convex
optimization. Often algorithms, although provable working only for convex cases,
may still work for some nonconvex cases since the problem is locally convex, as
explained at the beginning of Chap. 14.

15.7 Detect Infeasibility in Nonlinear Optimization

As seen in Chapt. 6, it is rather difficult to detect infeasibility of a nonlinear system,
because there is no clean Farkas’ lemma and alternative system, in contrast to linear
or polyhedral system, to certify that a system has no feasible solution. However, we
present an approximate infeasibility certificate for the general monotone comple-
mentarity problem, since it is an equally important task for nonlinear optimization.

The optimization version of the complementarity problem can be expressed as

minimize xT s
subject to k(x)− s = 0 ∈ En,

(x, s) ≥ 0.

(15.47)

The objective of the problem is clearly bounded from below by 0, and, if one
can find a feasible solution (x, s) to achieve zero objective, then x and s are
complementary. While searching for a complementary solution, we would also like
to find out whether problem (15.47) is feasible or not. In other words, except the
complementarity or duality gap condition, we like to know if the rest of KKT
conditions can be met (or if the primal and dual problems are both feasible).

We let k(x) be a continuous monotone function from En+ to itself (recall En+ is
the nonnegative orthant and En++ is the interior of En+). In other words, for every
x1 ≥ 0 and x2 ≥ 0 we have

(x1 − x2)
T (k(x1)− k(x2)) ≥ 0.

This assumption also implies that the Jacobian matrix of ∇k, although may be
nonsymmetric, is positive semidefinite in En+ or En++ .

Problem (15.47) is said to be (asymptotically) feasible if and only if there is a
bounded sequence (xt > 0, st > 0), t = 1, 2, . . ., such that the residual

lim
t→∞ st − k(xt)→ 0,

where any limit point (x̄, s̄) of the sequence is called an (asymptotically) feasible
point for (15.47). Problem (15.47) has an interior feasible point if it has an
(asymptotically) feasible point (x̄ > 0, s̄ > 0). It is said to be (asymptotically)
solvable if there is a (asymptotically) feasible (x̄, s̄) such that x̄T s̄ = 0, where
(x̄, s̄) is called the “optimal” or “complementary” solution for (15.47). The problem

15.7 Detect Infeasibility in Nonlinear Optimization 551

is (strongly) infeasible if and only if there is no sequence (xt > 0, st > 0),
t = 1, 2, . . ., such that the residual goes to zero.

We now assume that k(x) is also a scaled-Lipschitz function of (15.46). The
method based on solving a homogeneous and self-dual problem, developed in
Sect. 5.7 of Chap. 5, can be generalized for solving problem (15.47). The gener-
alization would solve the problem

minimize xT s+ τκ

subject to

(
τk(x/τ)

−xT k(x/τ)

)
−
(

s
κ

)
= 0 ∈ En+1,

[(x, τ), (s, κ)] ≥ 0.

(15.48)

Basically, we append a new nonnegative variable τ to x and a new slack variable κ

to s, so that the dimension of the domain is increased by 1. Let

ψ(x, τ) =
(

τk(x/τ)

−xT k(x/τ)

)
: En+1++ → En+1. (15.49)

The following theorem has been proved.

Theorem (Relation of Problem (15.47) and its Homogeneous Version (15.48)) Let ψ be
given by (15.49). Then:

i. (Self-complementarity) ψ is a continuous homogeneous function in En+1++ with degree

1 and for any (x; τ) ∈ En+1++

(x; τ)T ψ(x, τ) = 0

and

(x; τ)T ∇ψ(x, τ) = −ψ(x, τ)T .

ii. (Retaining monotonicity) If k is a continuous monotone mapping/function from En+ to

En, then ψ is a continuous monotone mapping/function from En+1++ to En+1 so that ∇ψ

is positive semidefinite.
iii. (Retaining Lipschitz property) If k is scaled Lipschitz, then ψ is scaled Lipschitz with a

same order of constant.
iv. (Feasibility implying complementarity) Homogeneous problem (15.48) is (asymp-

totically) feasible and every (asymptotically) feasible point is an (asymptotically)
complementary solution.

Now, let k be monotone and [(x∗, τ ∗), (s∗, κ∗)] be a maximal complementary
solution for (15.48) (that is, its support has the maximal cardinality).

v. (Solvable certification) The original problem, (15.47), has a complementarity solution
if and only if τ ∗ > 0. In this case, (x∗/τ ∗, s∗/τ ∗) is a complementary solution.

vi. (Infeasible certification) Problem (15.47) is (strongly) infeasible if and only if κ∗ > 0.
In this case, (x∗/κ∗, s∗/κ∗) is a certificate to prove (strong) infeasibility.

Therefore, we apply interior-point algorithms to solve the homogeneous version
(15.48), and they are known to produce maximal complementary or interior-optimal
solution in general. Thus, one can either compute a complementary solution (that is,

552 15 Primal–Dual Methods

it meets all KKT conditions) or certify either primal or dual problem is infeasible,
at the same convergence speed as the problem being known feasible. One difference
comparing to linear programming is that the case τ ∗ = κ∗ = 0 is possible, which
indicates that the problem is weakly infeasible or the solution is not attainable. To
summarize, we have:

Four possible combinations of the optimal τ ∗ and κ∗

τ ∗ \ κ∗ = 0 > 0

= 0 All other cases Infeasible (a finite certificate exists)

> 0 Solvable (a finite solution exists) N/A

We comment that the theorem is also applicable when k is locally monotone, that
is, the model is capable to detect infeasibility in a local region of x.

We illustrate the performances of interior-point method (15.45) on the toy
problem instance examples.

Example 1 Consider a convex but infeasible optimization instance

minimize 1
2 (x1 + 2x2 − 2)2

subject to 1− (x1 + 1)2 − (x2 + 1)2 ≥ 0, (x1, x2) ≥ 0.

Let x3 be the Lagrange multiplier of the equality constraint; the KKT conditions can
be expressed as a complementarity problem

k(x) =
⎛
⎜⎝

(x1 + 2x2 − 2)+ 2(x1 + 1)x3

2(x1 + 2x2 − 2) + 2(x2 + 1)x3

1− (x1 + 1)2 − (x2 + 1)2

⎞
⎟⎠ , ∇k(x) =

⎛
⎜⎝

1+ 2x3 2 2(x1 + 1)

2 4+ 2x3 2(x2 + 1)

−2(x1 + 1) −2(x2 + 1) 0

⎞
⎟⎠ .

We called a Matlab code that implemented the interior-point algorithm for solving
homogeneous version (15.48), and the result is as follows.

Numerical results on the infeasible instance

iterations τ κ xT sT μ (x3)

13 1.9408e − 06 0.4405 (6.2e − 06 6.4e − 6) (1.4390 1.4497) 0.5440

Here, sT = (1.4390 1.4497) represents the slope vector of the hyperplane separating
the nonnegative orthant and the ball region that lies entirely in the negative orthant.
The two regions have no intersection, which makes the problem infeasible.

If we replace the inequality constraint of the example by (x1+1)2+(x2+1)2−1 ≥
0, then the instance is feasible and the algorithm produces (x1 = 0.7456, x2 =
0.6272) with objective value 10−11 in 14 iterations (at termination τ = 0.4937, κ =
10−6).

15.8 Summary 553

15.8 Summary

A constrained optimization problem can be solved by directly solving the equations
that represent the first-order necessary conditions for a solution. For a quadratic
programming problem with linear constraints, these equations are linear and thus
can be solved by standard linear procedures. Quadratic programs with inequality
constraints can be solved by a pivoting or active set method in which the direction of
movement is toward the solution of the corresponding equality constrained problem.
This method will solve a quadratic program in a finite number of steps.

For general nonlinear programming problems, many of the standard methods
for solving systems of equations can be adapted to the corresponding necessary
equations. One class consists of first-order methods that move in a direction related
to the residual (that is, the error) in the equations. Another class of methods is
directly minimizing the penalty functions of the residual error as unconstrained
problems. Finally, a third class is based on Newton’s method for solving systems
of nonlinear equations, and solving a linearized version of the system at each
iteration. Under appropriate assumptions, Newton’s method has excellent global as
well as local convergence properties, since a merit function decreases in the Newton
direction. An individual step of Newton’s method is equivalent to solving a quadratic
programming problem, and thus Newton’s method can be extended to problems with
inequality constraints through recursive or sequential quadratic programming. It is
not surprising therefore that the convergence properties of these methods are also
closely related to those of other chapters for unconstrained optimization. Again we
find that the canonical rate is fundamental for properly designed first-order methods.

When apply the primal–dual methods, the reader should account for the special
structure of the linearized version of the necessary conditions and by introducing
approximations to the second-order information. In order to assure global conver-
gence of these methods, a penalty (or merit) function must be specified that is
compatible with the method of direction selection, in the sense that the direction
is a direction of descent for the merit function. The absolute-value penalty function
and the standard quadratic penalty function are both compatible with some versions
of recursive quadratic programming.

Solving convex primal and dual problems together is equivalent to solving a
system involving monotone function/mappings. Thus, more effective methods can
be based on constructing a homotopy path of the monotone mapping, such as
the Euclidean norm of the solution for equality constrained optimization and the
logarithmic barrier function for inequality constrained optimization. The homotopy
path is characterized by a nonnegative parameter μ. By designing a sequence of
decreasing μk → 0 as incremental milestones, the corresponding Newton iterates
converge to a KKT solution.

In particular, interior point methods in the primal–dual model are very effective
for treating problems with inequality constraints, for they avoid (or at least
minimize) the difficulties associated with determining which constraints will be
active at the solution. Applied to general nonlinear programming problems, these

554 15 Primal–Dual Methods

methods closely parallel the interior point methods for linear programming. There
is again a central path, and Newton’s method is a good way to follow the path. The
homogeneous model/algorithm is a one-phase algorithm with capability to detect
possible primal or dual infeasibility, which becomes an important task in nonlinear
optimization.

15.9 Exercises

1. Write the KKT conditions the quadratic program

minimize x2 − xy + y2 − 3x − μ(log(x)+ log(y)+ log(3− x − y))

subject to x + y � 4.

Start with x0 = y0 = 1, compute the first three steps of Newton’s method.
2. Suppose x∗, λ∗ satisfy

∇f (x∗)− λ∗T ∇h(x∗) = 0

h(x∗) = 0.

Let

C =
[

L(x∗,λ∗) −∇h(x∗)T
∇h(x∗) 0

]
.

Assume that L(x∗, λ∗) is positive definite and that ∇h(x∗) is of full rank.

(a) Show that the matrix is positive semidefinite and nonsingular.
(b) Using the result of Part (a), show that for some α > 0 the iterative process

xk+1 = xk − α∇l(xk, λk)
T and λk+1 = λk + αh(xk)

converges locally to x∗, λ∗. (That is, if started sufficiently close to x∗, λ∗,
the process converges to x∗, λ∗.)

3. Another method for solving a system Ax = b when A is nonsingular and
symmetric is the conjugate residual method. In this method the direction
vectors are constructed to be an A2-orthogonalized version of the residuals
rk = b− Axk . The error function E(x) = |Ax− b|2 decreases monotonically
in this process. Since the directions are based on rk rather than the gradient of
E, which is 2Ark , the method extends the simplicity of the conjugate gradient
method by implicit use of the fact that A2 is positive definite. The method is

15.9 Exercises 555

this: Set p1 = r1 = b − Ax1 and repeat the following steps, omitting (a, b) on
the first step.

If αk−1 �= 0,

pk = rk − βkpk−1, βk = rT
k A2pk−1

pT
k−1A2pk−1

. (15.50a)

If αk−1 = 0,

pk = Ark − ηkpk−1 − δkpk−2

ηk = rT
k A3pk−1

pT
k−1A2pk−1

, δk = rT
k A3pk−2

pT
k−2A3pk−2

(15.50b)

xk+1 = xk + αkpk, αk = rT
k Apk

pT
k A2pk

(15.50c)

rk+1 = b− Axk+1. (15.50d)

Show that the directions pk are A2-orthogonal.
4. For the problem

minimize f (x)

subject to g(x) � 0,

where g(x) is r-dimensional, define the penalty function

p(x) = f (x)− c min{0, g1(x), g2(x), . . . , gr (x)}.
Let d, (d �= 0) be a solution to the quadratic program

minimize
1

2
dT Bd+∇f (x)d

subject to g(x)+ ∇g(x)d � 0,

where B is positive definite. Show that d is a descent direction for p for
sufficiently large c.

5. Suppose the quadratic program of Exercise 4 is not feasible. In that case one
may solve

minimize
1

2
dT Bd+∇f (x)d+ cξ

subject to g(x)+∇g(x)d � −ξ1

ξ � 0.

556 15 Primal–Dual Methods

(a) Show that if d �= 0 is a solution, then d is a descent direction for p.
(b) If d = 0 is a solution, show that x is a critical point of p in the sense that

for any d �= 0, p(x+ αd) > p(x)+ o(α).

6. For the equality constrained problem, consider the function

φ(x) = f (x)− λ(x)T h(x)+ ch(x)T C(x)C(x)T h(x),

where

C(x) = [∇h(x)∇h(x)T]−1∇h(x) and λ(x) = −C(x)∇f (x)T .

(a) Under standard assumptions on the original problem, show that for suffi-
ciently large c, φ is (locally) an exact penalty function.

(b) Show that φ(x) can be expressed as

φ(x) = f(x)− π(x)T h(x),

where π(x) is the Lagrange multiplier of the problem

minimize
1

2
cdT d+∇f (x)d

subject to ∇h(x)d+ h(x) = 0.

(c) Indicate how φ can be defined for problems with inequality constraints.

7. Reproduce the computational results presented in Sect. 15.3 on Example 1.
8. Let {Bk} be a sequence of positive definite symmetric matrices, and assume

that there are constants a > 0, b > 0 such that a|x|2 � xT Bkx � b|x|2 for
all x. Suppose that B is replaced by Bk in the kth step of the recursive quadratic
programming procedure of the theorem in Sect. 15.4. Show that the conclusions
of that theorem are still valid. Hint: Note that the set of allowable Bk’s is closed.

9. (Central path theorem) Prove the central path theorem, Theorem 1 of Sect. 15.5,
for convex optimization.

10. Prove the potential reduction theorem, Theorem 2 of Sect. 15.5, for convex
quadratic programming. This theorem can be generalized to nonquadratic
convex objective functions f (x) satisfying the following condition: let

u : (0, 1)→ (1, ∞)

be a monotone increasing function; then

|X(∇f (x+ dx)−∇f (x)− ∇2f (x)dx)|1 ≤ u(α)dT
x ∇2f (x)dx

15.9 Exercises 557

whenever

x > 0, |X−1dx|∞ ≤ α < 1.

Such condition is called the scaled Lipschitz condition in {x : x > 0}.
11. Reproduce the computational results presented in Sect. 15.6 on the examples.
12. Prove the theorem on the relations of problem (15.47) and its homogeneous ver-

sion (15.48), and reproduce the computational result on solving the infeasible
instance.

References

15.1–15.3 Arrow and Hurwicz [A9] proposed a continuous process (represented as
a system of differential equations) for solving the Lagrange equations.
This early paper showed the value of the simple merit function in
attacking the equations. A formal discussion of the properties of the
simple merit function may be found in Luenberger [L17]. The first-order
method was examined in detail by Polak [P4]. Also see Zangwill [Z2] for
an early analysis of a method for inequality constraints. The conjugate
direction method was first extended to nonpositive definite cases by
the use of hyperbolic pairs and then by employing conjugate residuals.
(See Exercise 3, and Luenberger [L9, L11].) Additional methods with
somewhat better numerical properties were later developed by Paige
and Saunders [P1] and by Fletcher [F8]. It is perhaps surprising that
Newton’s method was analyzed in this form only recently, well after
the development of the SOLVER method discussed in Sect. 15.2. For
a comprehensive account of Newton methods, see Bertsekas, Chap. 3
[B11]. The SOLVER method was proposed by Wilson [W2] for convex
programming problems and was later interpreted by Beale [B7]. Garcia-
Palomares and Mangasarian [G3] proposed a quadratic programming
approach to the solution of the first-order equations. See Fletcher [F10]
for a good overview discussion. An early method for solving quadratic
programming problems is the principal pivoting method of Dantzig and
Wolfe; see Dantzig [D6]. For a discussion of factorization methods
applied to quadratic programming, see Gill, Murray, and Wright [G7].
The “path-following” method presented here is new.

15.4 The discovery that the absolute-value penalty function is compati-
ble with recursive quadratic programming was made by Pshenichny
(see Pshenichny and Danilin [P10]) and later by Han [H3], who also
suggested that the method be combined with a quasi-Newton update
procedure. The development of recursive quadratic programming for
the standard quadratic penalty function is due to Biggs [B14, B15]. The
convergence rate analysis first appeared in the second edition of this text.

558 15 Primal–Dual Methods

15.5 Many researchers have applied interior-point algorithms to convex
quadratic problems. These algorithms can be divided into three groups:
the primal algorithm, the dual algorithm, and the primal–dual algorithm.
Relations among these algorithms can be seen in den Hertog [H6],
Anstreicher et al [A6], Sun and Qi [S12], Tseng [T12], and Ye [Y3].

15.6–15.7 The generalization of interior-point methods for solving linear and
nonlinear monotone complementarity problem was due to Kojima et
al. [K6], Monteiro and Adler [MA], Güler [G16], and Potra and Ye
[PY]. The rest of the material is due to Andersen and Ye [A5] and
they are the bases for optimization solver MOSEK [8] for nonlinear
convex programming. Interior-point algorithms to compute the maximal
complementary solution can be seen in Güler and Ye [G17]. For results
similar to those of Exercises 2,4, and 5, see Bertsekas [B11]. For
discussion of Exercise 6, see Fletcher [F10].

Appendix A
Mathematical Review

The purpose of this appendix is to set down for reference and review some basic
definitions, notation, and relations that are used frequently in the text.

A.1 Sets

If x is a member of the set S, we write x ∈ S. We write y �∈ S if y is not a member
of S.

A set S may be specified by listing its elements between braces; such as, for
example, S = {1, 2, 3, 4}. Alternatively, a set can be specified in the form S = {x :
P (x)} as the set of elements satisfying property P ; such as S = {x : 1 � x �
4, x integer}

The union of two sets S and T is denoted S ∪ T and is the set consisting of
the elements that belong to either S or T . The intersection of two sets S and T is
denoted S ∩ T and is the set consisting of the elements that belong to both S and T .
If S is a subset of T , that is, if every member of S is also a member of T , we write
S ⊂ T or T ⊃ S.

The empty set is denoted φ or ∅. There are two ways that operations such as
minimization over a set are represented. Specifically we write either

min
x∈S

f (x) or min{f (x) : x ∈ S}

to denote the minimum value of f over the set S. The set of x’s in S that achieve
the minimum is denoted argmin {f (x) : x ∈ S}.

© Springer Nature Switzerland AG 2021
D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
https://doi.org/10.1007/978-3-030-85450-8

559

https://doi.org/10.1007/978-3-030-85450-8

560 A Mathematical Review

Sets of Real Numbers

If a and b are real numbers, [a, b] denotes the set of real numbers x satisfying
a � x � b. A rounded, instead of square, bracket denotes strict inequality in the
definition. Thus (a, b] denotes all x satisfying a < x � b.

If S is a set of real numbers bounded above, then there is a smallest real number
y such that x � y for all x ∈ S. The number y is called the least upper bound or
supremum of S and is denoted

sup
x∈S

(x) or sup{x : x ∈ S}.

Similarly, the greatest lower bound or infimum of a set S is denoted

inf
x∈S

(x) or inf{x : x ∈ S}.

A.2 Matrix Notation

A matrix is a rectangular array of numbers, called elements. The matrix itself is
denoted by a boldface letter. When specific numbers are not used, the elements are
denoted by italicized lower-case letters, having a double subscript. Thus we write

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦

for a matrix A having m rows and n columns. Such a matrix is referred to as an
m× n matrix. If we wish to specify a matrix by defining a general element, we use
the notation A = [aij].

An m × n matrix all of whose elements are zero is called a zero matrix and
denoted 0. A square matrix (a matrix with m = n) whose elements are aij = 0 for
i �= j , and aii = 1 for i = 1, 2, . . . , n is said to be an identity matrix and denoted I.

The sum of two m×n matrices A and B is written A+B and is the matrix whose
elements are the sum of the corresponding elements in A and B. The product of a
matrix A and a scalar λ, written λA or Aλ, is obtained by multiplying each element
of A by λ. The product AB of an m×n matrix A and an n×p matrix B is the m×p

matrix C with elements cij =∑n
k=1 aikbkj .

The transpose of an m× n matrix A is the n×m matrix AT with elements aT
ij =

aji . A (square) matrix A is symmetric if AT = A. A square matrix A is nonsingular
if there is a matrix A−1, called the inverse of A, such that A−1A = I = AA−1. The

A Mathematical Review 561

determinant of a square matrix A is denoted by det (A). The determinant is nonzero
if and only if the matrix is nonsingular. Two square n × n matrices A and B are
similar if there is a nonsingular matrix S such that B = S−1AS.

Matrices having a single row are referred to as row vectors; matrices having
a single column are referred to as column vectors. Vectors of either type are
usually denoted by lower-case boldface letters. To economize page space, row
vectors are written a = [a1, a2, . . . , an] and column vectors are written a =
(a1, a2, . . . , an). Since column vectors are used frequently, this notation avoids the
necessity to display numerous columns. To further distinguish rows from columns,
we write a ∈ En if a is a column vector with n components, and we write b ∈ En if
b is a row vector with n components.

It is often convenient to partition a matrix into submatrices. This is indicated by
drawing partitioning lines through the matrix, as for example,

A =
⎡
⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤
⎦ =

[
A11 A12

A21 A22

]
.

The resulting submatrices are usually denoted Aij , as illustrated.
A matrix can be partitioned into either column or row vectors, in which case

a special notation is convenient. Denoting the columns of an m × n matrix A by
aj , j = 1, 2, . . . , n, we write A = [a1, a2, . . . , an]. Similarly, denoting the rows
of A by ai, i = 1, 2, . . . , m, we write A = (a1, a2, . . . , am). Following the same
pattern, we often write A = [B, C] for the partitioned matrix A = [B|C].

A.3 Spaces

We consider the n-component vectors x = (x1, x2, . . . , xn) as elements of
a vector space. The space itself, n-dimensional Euclidean space, is denoted En.
Vectors in the space can be added or multiplied by a scalar, by performing the
corresponding operations on the components. We write x � 0 if each component of
x is nonnegative.

A linear combination of the vectors a1, a2, . . . , ak is a vector of the form∑k
i=1 λiai with real multipliers λ’s. The set of vectors that are linear combinations

of a1, a2, . . . , ak is the set spanned by the vectors.
A conic combination of the vectors a1, a2, . . . , ak is a linear combination, but

every multiplier λi is restricted to be nonnegative. The set of vectors that are conic
combinations of a1, a2, . . . , ak represents the cone generated by these vectors.

A convex combination of the vectors a1, a2, . . . , ak is a conic combination
but multiplier λi subject to

∑k
i=1 λi = 1. For two vectors a1 and a2, all convex

combinations of the two form the line segment connecting the two vectors, which

562 A Mathematical Review

combination can be simplified as the form λa1+(1−λ)a2 with multiplier 0 � λ � 1.
If we remove the restriction in λ, then the combination is called affine combination.

The scalar or inner product of two vectors x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn) is defined as xT y = yT x = ∑n

i=1 xiyi . The vectors x and y
are said to be orthogonal if xT y = 0. The magnitude or p-norm of a vector x is
|x|p = (

∑
j |xj |p)1/p for p ≥ 1, where 2-norm, simply denoted by | · |, is the

default norm called the Euclidean norm. For any two vectors x and y in En, the
Cauchy–Schwarz Inequality holds: |xT y| � |x| · |y|.

A set of vectors a1, a2, . . . , ak is said to be linearly dependent if there are
scalars λ1, λ2, . . . , λk , not all zero, such that

∑k
i=1 λiai = 0. If no such set of

scalars exists, the vectors are said to be linearly independent. A linearly independent
set of vectors that span En is said to be a basis for En. Every basis for En contains
exactly n vectors.

The rank of a matrix A is equal to the maximum number of linearly independent
columns in A. This number is also equal to the maximum number of linearly
independent rows in A. The m × n matrix A is said to be of full rank if the rank
of A is equal to the minimum of m and n.

A subspace M of En is a subset that is closed under the operations of vector
addition and scalar multiplication; that is, if a and b are vectors in M , then λa+μb
is also in M for every pair of scalars λ, μ. The dimension of a subspace M is equal
to the maximum number of linearly independent vectors in M . If M is a subspace of
En, the orthogonal complement of M , denoted M⊥, consists of all vectors that are
orthogonal to every vector in M . The orthogonal complement of M is easily seen
to be a subspace, and together M and M⊥ span En in the sense that every vector
x ∈ En can be written uniquely in the form x = a + b with a ∈ M, b ∈ M⊥. In
this case a and b are said to be the orthogonal projections of x onto the subspaces
M and M⊥, respectively.

A correspondence A that associates with each point in a space X a point in a
space Y is said to be a mapping from X to Y . For convenience this situation is
symbolized by A : X → Y . The mapping A may be either linear or nonlinear. The
norm of linear mapping A is defined as |A| = max|x|≤1

|Ax|. It follows that for any

x, |Ax| ≤ |A| · |x|.

A.4 Eigenvalues and Quadratic Forms

Corresponding to an n × n square matrix A, a scalar λ and a nonzero vector x
satisfying the equation Ax = λx are said to be, respectively, an eigenvalue and
eigenvector of A. In order that λ be an eigenvalue it is clear that it is necessary and
sufficient for A − λI to be singular, and hence det(A − λI) = 0. This last result,
when expanded, yields an nth-order polynomial equation which can be solved for n

(possibly nondistinct) complex roots λ which are the eigenvalues of A.

A Mathematical Review 563

Now, for the remainder of this section, assume that A is symmetric. Then the
following properties hold:

(i) The eigenvalues of A are real.
(ii) Eigenvectors associated with distinct eigenvalues are orthogonal.

(iii) There is an orthogonal basis for En, each element of which is an eigenvector
of A.

If the basis u1, u2, . . . , un in (iii) is normalized so that each element has magnitude
unity, then defining the matrix Q = [u1, u2, . . . , un] we note that QT Q = I and
hence QT = Q−1. A matrix with this property is said to be an orthogonal matrix.
Also, we observe, in this case, that

Q−1AQ = QT AQ = QT [Au1, Au2, . . . , Aun] = QT [λ1u1, λ2u2, . . . , λnun].

Thus

Q−1AQ =

⎡
⎢⎢⎢⎣

λ1

λ2
. . .

λn

⎤
⎥⎥⎥⎦ ,

and therefore A is similar to a diagonal matrix.
A symmetric matrix A is said to be positive definite if the quadratic form xT Ax is

positive for all nonzero vectors x. Similarly, we define A to be positive semidefinite,
negative definite, or negative semidefinite if xT Ax � 0,< 0, or � 0 for all x. The
matrix A is indefinite if xT Ax is positive for some x and negative for others.

It is easy to obtain a connection between definiteness and the eigenvalues of A.
For any x let y = Q−1x where Q is defined as above. Then xT Ax = yT QT AQy =∑n

i=1 λiy
2
i . Since the yi’s are arbitrary (since x is), it is clear that A is positive

definite (or positive semidefinite) if and only if all eigenvalues of A are positive (or
nonnegative).

Through diagonalization we can also easily show that a positive semidefinite
matrix A has a positive semidefinite (symmetric) square root A1/2 satisfying A1/2 ·
A1/2 = A. For this we use Q as above and define

A1/2 = Q

⎡
⎢⎢⎢⎢⎣

λ
1/2
1

λ
1/2
2

. . .

λ
1/2
n

⎤
⎥⎥⎥⎥⎦

QT ,

which is easily verified to have the desired properties.

564 A Mathematical Review

A.5 Topological Concepts

A sequence of vectors x0, x1, . . . , xk, . . ., denoted by {xk=0}∞k , or if the index set
is understood, by simply {xk}, is said to converge to the limit x if |xk − x| → 0 as
k →∞ (that is, if given ε > 0, there is a N such that k � N implies |xk − x| < ε).
If {xk} converges to x, we write xk → x or lim xk = x.

A point x is a limit point of the sequence {xk} if there is a subsequence of {xk}
convergent to x. Thus x is a limit point of {xk} if there is a subset K of the positive
integers such that {xk}k∈K converges to x.

A ball (sphere) around x is a set of the form {y : |y − x| < (=) ε} for some
ε > 0. Such a ball is also referred to as the neighborhood of x of radius ε.

A subset S of En is open if around every point in S there is a sphere that is
contained in S. Equivalently, S is open if given x ∈ S there is an ε > 0 such that
|y − x| < ε implies y ∈ S. Thus the sphere {x : |x| < 1} is open. In general, open
sets can be characterized as sets having no sharp boundaries. The interior of any set
S in En is the set of points x ∈ S which are the center of some sphere contained in

S. It is denoted
◦
S. The interior of a set is always open; indeed it is the largest open

set contained in S. The interior of the set {x : |x| � 1} is the sphere {x : |x| < 1}.
A set P is closed if every point that is arbitrarily close to the set P is a member

of P . Equivalently, P is closed if xk → x with xk ∈ P implies x ∈ P . Thus the
set {x : |x| � 1} is closed. The closure of any set P in En is the smallest closed set
containing P . It is denoted S. The boundary of a set is that part of the closure that
is not in the interior.

A set is compact if it is both closed and bounded (that is, if it is closed and
is contained within some sphere of finite radius). An important result, due to
Weierstrass, is that if S is a compact set and {xk} is a sequence each member of
which belongs to S, then {xk} has a limit point in S (that is, there is subsequence
converging to a point in S).

Corresponding to a bounded sequence {rk}∞k=0 of real numbers, if we let sk =
sup{ri : i � k} then {sk} converges to some real number so. This number is called
the limit superior of {rk} and is denoted lim

k→∞(rk).

A.6 Functions

A real-valued function f defined on a subset of En is said to be continuous at x
if xk → x implies f (xk) → f (x). Equivalently, f is continuous at x if given
ε > 0 there is a δ > 0 such that |y − x| < δ implies |f (y) − f (x)| < ε. An
important result connected with continuous functions is a theorem of Weierstrass: A
continuous function f defined on a compact set S has a minimum point in S; that
is, there is an x∗ ∈ S such that for all x ∈ S, f (x) � f (x∗).

A Mathematical Review 565

A set of real-valued functions f1, f2, . . . , fm on En can be regarded as a
single vector function f = (f1, f2, . . . , fm). This function assigns a vector f(x) =
(f1(x), f2(x), . . . , fm(x)) in Em to every vector x ∈ En. Such a vector-valued
function is said to be continuous if each of its component functions is continuous.

If each component of f = (f1, f2, . . . , fm) is continuous on some open set of
En, then we write f ∈ C. If in addition, each component function has first partial
derivatives which are continuous on this set, we write f ∈ C1. In general, if the
component functions have continuous partial derivatives of order p, we write f ∈
Cp.

If f ∈ C1 is a real-valued function on En, f (x) = f (x1, x2, . . . , xn), we
define the gradient of f to be the vector

∇f (x) =
[
∂f (x)

∂x1
,

∂f (x)

∂x2
, · · · ,

∂f (x)

∂xn

]
.

We sometimes use the alternative notation fx(x) for ∇f (x). In matrix calculations
the gradient is considered to be a row vector.

If f ∈ C2 then we define the Hessian of f at x to be the n × n matrix denoted
∇2f (x) or F(x) as

F(x) =
[

∂2f (x)

∂xi∂xj

]
.

Since

∂2f

∂xi∂xj

= ∂2f

∂xj ∂xi

,

it is easily seen that the Hessian is symmetric.
For a vector-valued function f = (f1, f2, . . . , fm) the situation is similar. If

f ∈ C1, the first derivative is defined as the m× n matrix

∇f(x) =
[

∂fi(x)

∂xj

]
.

If f ∈ C2 it is possible to define the m Hessians F1(x), F2(x), . . . , Fm(x)

corresponding to the m component functions. The second derivative itself, for a
vector function, is a third-order tensor but we do not require its use explicitly. Given
any λT = [λ1, λ2, . . . , λm] ∈ Em, we note, however, that the real-valued function
λT f has gradient equal to λT ∇f(x) and Hessian, denoted λT F(x), equal to

λT F(x) =
m∑

i=1

λiFi (x).

566 A Mathematical Review

Convex and Concave Functions

Definition A function f defined on a convex set � is said to be convex if, for every x1, x2 ∈
� and every α, 0 � α � 1, there holds

f (αx1 + (1− α)x2) � αf (x1)+ (1− α)f (x2).

If, for every α, 0 < α < 1, and x1 �= x2, there holds

f (αx1 + (1− α)x2) < αf (x1)+ (1− α)f (x2),

then f is said to be strictly convex.

Several examples of convex or nonconvex functions are shown in Fig. A.1.
Geometrically, a function is convex if the line joining two points on its graph lies
nowhere below the graph, as shown in Fig. A.1a, b, or, thinking of a function in two
dimensions, it is convex if its graph is bowl shaped. Mathematically, f being convex
implies

f (x)− f (y) ≥ ∇f (y)(x− y), ∀x, y,

and a function is convex if and only if its Hessian is positive semidefinite
everywhere.

There are simple rules to test the convexity of a function. For example, linear
function is convex; maxi{fi(x)} (i.e., return the maximal value of several functions)
is convex if fi(·)’s are all convex; a composite function f (ψ(x)) is convex if f (·)
is monotonically increasing and convex, and ψ(x) is convex.

Next we turn to the definition of a concave function.

Definition A function g defined on a convex set � is said to be concave if the function
f = −g is convex. The function g is strictly concave if −g is strictly convex.

Taylor’s Theorem

A group of results that are used frequently in analysis are referred to under the
general heading of Taylor’s Theorem or Mean Value Theorems. If f ∈ C1 in a
region containing the line segment [x1, x2], then there is a θ, 0 � θ � 1 such that

f (x2) = f (x1)+∇f (θx1 + (1− θ)x2)(x2 − x1).

Furthermore, if f ∈ C2 then there is a θ, 0 � θ � 1 such that

f (x2) = f (x1)+∇f (x1)(x2 − x1)

+ 1

2
(x2 − x1)

T F(θx1 + (1− θ)x2)(x2 − x1),

A Mathematical Review 567

Fig. A.1 Convex and
nonconvex functions

568 A Mathematical Review

where F denotes the Hessian of f . Also see Sect. 8.2 for a discussion of Lipschitz
functions.

Implicit Function Theorem

Suppose we have a set of m equations in n variables

hi(x) = 0, i = 1, 2, . . . , m.

The implicit function theorem addresses the question as to whether if n − m of the
variables are fixed, the equations can be solved for the remaining m variables. Thus
selecting m variables, say x1, x2, . . . , xm, we wish to determine if these may be
expressed in terms of the remaining variables in the form

xi = φi(xm+1, xm+2, . . . , xn), i = 1, 2, . . . , m.

The functions φi , if they exist, are called implicit functions.

Theorem Let x0 = (x0
1 , x0

2 , . . . , x0
n) be a point in En satisfying the properties:

(i) The functions hi ∈ Cp, i = 1, 2, . . . , m in some neighborhood of x0, for some
p � 1.

(ii) hi(x0) = 0, i = 1, 2, . . . , m.
(iii) The m×m Jacobian matrix

J =

⎡
⎢⎢⎣

∂h1(x0)
∂x1

· · · ∂h1(x0)
∂xm

.

.

.
.
.
.

∂hm(x0)
∂x1

· · · ∂hm(x0)
∂xm

⎤
⎥⎥⎦ .

is nonsingular.

Then there is a neighborhood of x̂0 = (x0
m+1, x0

m+2, . . . , x0
n) ∈ En−m such that for x̂ =

(xm+1, xm+2, . . . , xn) in this neighborhood there are functions φi(x̂), i = 1, 2, . . . , m

such that

(i) φi ∈ Cp .
(ii) x0

i = φi(x̂0), i = 1, 2, . . . , m.
(iii) hi(φ1(x̂), φ2(x̂), . . . , φm(x̂), x̂) = 0, i = 1, 2, . . . , m.

Example 1 Consider the equation x2
1 + x2 = 0. A solution is x1 = 0, x2 = 0.

However, in a neighborhood of this solution there is no function φ such that x1 =
φ(x2). At this solution condition (iii) of the implicit function theorem is violated.
At any other solution, however, such a φ exists.

Example 2 Let A be an m × n matrix (m < n) and consider the system of linear
equations Ax = b. If A is partitioned as A = [B, C] where B is m × m then
condition (iii) is satisfied if and only if B is nonsingular. This condition corresponds,

A Mathematical Review 569

of course, exactly with what the theory of linear equations tells us. In view of this
example, the implicit function can be regarded as a nonlinear generalization of the
linear theory.

o, O Notation

If g is a real-valued function of a real variable, the notation g(x) = O(x) means
that g(x) goes to zero at least as fast as x does. More precisely, it means that there
is a K � 0 such that

∣∣∣∣
g(x)

x

∣∣∣∣ � K as x → 0.

The notation g(x) = o(x) means that g(x) goes to zero faster than x does; or
equivalently, that K above is zero.

Appendix B
Convex Sets

B.1 Basic Definitions

Concepts related to convex sets so dominate the theory of optimization that it is
essential for a student of optimization to have knowledge of their most fundamental
properties. In this appendix is compiled a brief summary of the most important of
these properties.

Definition A set C in En is said to be convex if for every x1, x2 ∈ C and every real number
λ, 0 < λ < 1, the convex combination point λx1 + (1 − λ)x2 ∈ C.

This definition can be interpreted geometrically as stating that a set is convex if,
given two points in the set, every point on the line segment joining these two points
is also a member of the set. This is illustrated in Fig. B.1.

The following proposition shows that certain familiar set operations preserve
convexity.

Proposition 1 Convex sets in En satisfy the following relations:

(i) If C is a convex set and β is a real number, the set

βC = {x : x = βc, c ∈ C}

is convex.
(ii) If C and D are convex sets, then the set

C +D = {x : x = c+ d, c ∈ C, d ∈ D}

is convex.
(iii) The intersection of any collection of convex sets is convex.

© Springer Nature Switzerland AG 2021
D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
https://doi.org/10.1007/978-3-030-85450-8

571

https://doi.org/10.1007/978-3-030-85450-8

572 B Convex Sets

Fig. B.1 Convexity

Fig. B.2 Properties of convex sets

The proofs of these three properties follow directly from the definition of a
convex set and are left to the reader. The properties themselves are illustrated in
Fig. B.2.

Another important concept is that of forming the smallest convex set containing
a given set.

Definition Let S be a subset of En. The convex hull of S, denoted co(S), is the set which
is the intersection of all convex sets containing S. The closed convex hull of S is defined as
the closure of co(S).

Finally, we conclude this section by defining a cone and a convex cone. A cone
is a special kind of set that arises quite frequently.

Definition A set C is a cone if x ∈ C implies αx ∈ C for all α > 0. A cone that is also
convex is a convex cone.

Some cones are shown in Fig. B.3. Their basic property is that if a point x belongs
to a cone, then the entire half line from the origin through the point (but not the
origin itself) also must belong to the cone.

B Convex Sets 573

Fig. B.3 Cones

B.2 Hyperplanes and Polytopes

The most important type of convex set (aside from single points) is the hyperplane.
Hyperplanes dominate the entire theory of optimization, appearing under the guise
of Lagrange multipliers, duality theory, or gradient calculations.

The most natural definition of a hyperplane is the logical generalization of the
geometric properties of a plane in three dimensions. We start by giving this geo-
metric definition. For computations and for a concrete description of hyperplanes,
however, there is an equivalent algebraic definition that is more useful. A major
portion of this section is devoted to establishing this equivalence.

Definition A set V in En is said to be a linear variety, if, given any x1, x2 ∈ V , we have
the affine combination λx1 + (1− λ)x2 ∈ V for all real numbers λ.

Note that the only difference between the definition of a linear variety and a
convex set is that in a linear variety the entire line passing through any two points,
rather than simply the line segment between them, must lie in the set. Thus in three
dimensions the nonempty linear varieties are points, lines, two-dimensional planes,
and the whole space. In general, it is clear that we may speak of the dimension of a
linear variety. Thus, for example, a point is a linear variety of dimension zero and
a line is a linear variety of dimension one. In the general case, the dimension of a
linear variety in En can be found by translating it (moving it) so that it contains
the origin and then determining the dimension of the resulting set, which is then a
subspace of En.

Definition A hyperplane in En is an (n− 1)-dimensional linear variety.

We see that hyperplanes generalize the concept of a two-dimensional plane in
three-dimensional space. They can be regarded as the largest linear varieties in a
space, other than the entire space itself.

We now relate this abstract geometric definition to an algebraic one.

574 B Convex Sets

Proposition 2 Let a be a nonzero n-dimensional column vector, and let c be a real number.
The set

H = {x ∈ En : aT x = c}

is a hyperplane in En.

Proof It follows directly from the linearity of the equation aT x = c that H is a
linear variety. Let x1 be any vector in H . Translating by −x1 we obtain the set
M = H − x1 which is a linear subspace of En. This subspace consists of all vectors
x satisfying aT x = 0; in other words, all vectors orthogonal to a. This is clearly an
(n− 1)-dimensional subspace.

Proposition 3 Let H be a hyperplane in En. Then there is a nonzero n- dimensional vector
and a constant c such that

H = {x ∈ En : aT x = c}.

Proof Let x1 ∈ H and translate by −x1 obtaining the set M = H − x1. Since
H is a hyperplane, M is an (n − 1)-dimensional subspace. Let a be any nonzero
vector that is orthogonal to this subspace, that is, a belongs to the one-dimensional
subspace M⊥. Clearly M = {x : aT x = 0}. Letting c = aT x1 we see that if x2 ∈ H

we have x2 − x1 ∈ M and thus aT x2 − aT x1 = 0 which implies aT x2 = c. Thus
H ⊂ {x : aT x = c}. Since H is, by definition, of dimension n−1 and {x : aT x = c}
is of dimension n− 1 by Proposition 2, these two sets must be equal.

Combining Propositions 2 and 3, we see that a hyperplane is the set of solutions
to a single linear equation. This is illustrated in Fig. B.4. We now use hyperplanes
to build up other important classes of convex sets.

Definition Let a be a nonzero vector in En and let c be a real number. Corresponding to
the hyperplane H = {x : aT x = c} are the positive and negative closed half spaces

H+ = {x : aT x � c}
H− = {x : aT x � c}

Fig. B.4 Hyperplane

B Convex Sets 575

Fig. B.5 Polytopes

and the positive and negative open half spaces

H̊+ = {x : aT x > c}
H̊− = {x : aT x < c}.

It is easy to see that half spaces are convex sets and that the union of H+ and H−
is the whole space.

Definition A set which can be expressed as the intersection of a finite number of closed
half spaces is said to be a convex polytope.

We see that convex polytopes are the sets obtained as the family of solutions to a
set of linear inequalities of the form

aT
1 x � b1

aT
2 x � b2

...
...

aT
mx � bm,

since each individual inequality defines a half space and the solution family is the
intersection of these half spaces. (If some ai = 0, the resulting set can still, as the
reader may verify, be expressed as the intersection of a finite number of half spaces.)

Several polytopes are illustrated in Fig. B.5. We note that a polytope may be
empty, bounded, or unbounded. The case of a nonempty bounded polytope is of
special interest and we distinguish this case by the following.

Definition A nonempty bounded polytope is called a polyhedron.

B.3 Separating and Supporting Hyperplanes

The two theorems in this section are perhaps the most important results related to
convexity. Geometrically, the first states that given a point outside a convex set, a
hyperplane can be passed through the point that does not touch the convex set. The

576 B Convex Sets

second, which is a limiting case of the first, states that given a boundary point of a
convex set, there is a hyperplane that contains the boundary point and contains the
convex set on one side of it.

Theorem 1 Let C be a convex set and let y be a point exterior to the closure of C. Then
there is a vector a such that aT y < inf

x∈C
aT x.

Proof Let

δ = inf
x∈C

|x− y| > 0.

There is an x0 on the boundary of C such that |x0 − y| = δ. This follows because
the continuous function f (x) = |x − y| achieves its minimum over any closed and
bounded set and it is clearly only necessary to consider x in the intersection of the
closure of C and the sphere of radius 2δ centered at y.

We shall show that setting a = x0− y satisfies the conditions of the theorem. Let
x ∈ C. For any α, 0 � α � 1, the point x0 + α(x − x0) ∈ C and thus

|x0 + α(x− x0)− y|2 � |x0 − y|2.

Expanding,

2α(x0 − y)T (x− x0)+ α2|x− x0|2 � 0.

Thus, considering this as α → 0+, we obtain

(x0 − y)T (x− x0) � 0

or,

(x0 − y)T x � (x0 − y)T x0 = (x0 − y)T y+ (x0 − y)T (x0 − y)

= (x0 − y)T y+ δ2.

Setting a = x0 − y proves the theorem.

The geometrical interpretation of Theorem 1 is that, given a convex set C and a
point y exterior to the closure of C, there is a hyperplane containing y that contains
C in one of its open half spaces. We can easily extend this theorem to include the
case where y is a boundary point of C.

Theorem 2 Let C be a convex set and let y be a boundary point of C. Then there is a
hyperplane containing y and containing C in one of its closed half spaces.

B Convex Sets 577

Proof Let {yk} be a sequence of vectors, exterior to the closure of C, converging
to y. Let {ak} be the sequence of corresponding vectors constructed according to
Theorem 1, normalized so that |ak| = 1, such that

aT
k yk < inf

x∈C
aτ
kx.

Since {ak} is a bounded sequence, it has a convergent subsequence {ak}, k ∈ K
with limit a. For this vector we have for any x ∈ C.

aT y = lim
k∈K

aT
k yk � lim

k∈K
aT
k x = ax.

Definition A hyperplane containing a convex set C in one of its closed half spaces and
containing a boundary point of C is said to be a supporting hyperplane of C.

In terms of this definition, Theorem 2 says that, given a convex set C and a
boundary point y of C, there is a hyperplane supporting C at y.

It is useful in the study of convex sets to consider the relative interior of a convex
set C defined as the largest subset of C that contains no boundary points of C.

Another variation of the theorems of this section is the one that follows, which is
commonly known as the Separating Hyperplane Theorem.

Theorem 3 Let B and C be convex sets with no common relative interior points. (That is
the only common points are boundary points.) Then there is a hyperplane separating B and
D. In particular, there is a nonzero vector a such that supb∈B aT b ≤ infc∈C aT c.

Proof Consider the set G = C−B. It is easily shown that G is convex and that 0 is
not a relative interior point of G. Hence, Theorem 1 or Theorem 2 applies and gives
the appropriate hyperplane.

B.4 Extreme Points

Definition A point x in a convex set C is said to be an extreme point of C if there are no
two distinct points x1 and x2 in C such that x = αx1 + (1− α)x2 for some α, 0 < α < 1.

For example, in E2 the extreme points of a square are its four corners; the extreme
points of a circular disk are all points on the boundary. Note that a linear variety
consisting of more than one point has no extreme points.

Lemma 1 Let C be a convex set, H a supporting hyperplane of C, and T the intersection
of H and C. Every extreme point of T is an extreme point of C.

Proof Suppose x0 ∈ T is not an extreme point of C. Then x0 = αx1+(1−α)x2 for
some x1, x2 ∈ C, x1 �= x2, 0 < α < 1. Let H be described as H = {x : aT x = c}
with C contained in its closed positive half space. Then

aT x1 � c, aT x2 � c.

578 B Convex Sets

But, since x0 ∈ H ,

c = aT x0 = αaT x1 + (1− α)aT x2,

and thus x1 and x2 ∈ H . Hence x1, x2 ∈ T and x0 is not an extreme point of T .

Theorem 4 A closed bounded convex set in En is equal to the closed convex hull of its
extreme points.

Proof The proof is by induction on the dimension of the space En. The statement
is easily seen to be true for n = 1. Suppose that it is true for n−1. Let C be a closed
bounded convex set in En, and let K be the closed convex hull of the extreme points
of C. We wish to show that K = C.

Assume there is y ∈ C y �∈ K . Then by Theorem 1, Sect. B.3, there is a
hyperplane separating y and K; that is, there is a �= 0, such that aT y < infx∈K aT x.
Let c0 = inf

x∈C
(aT x). The number c0 is finite and there is an x0 ∈ C for which

aT x0 = c0, because by Weierstrass’ Theorem, the continuous function aT x achieves
its minimum over any closed bounded set. Thus the hyperplane H = {x : aT x = c0}
is a supporting hyperplane to C. It is disjoint from K since c0 < inf

x∈K
(aT x).

Let T = H ∩ C. Then T is a bounded closed convex subset of H which can be
regarded as a space of dimension n − 1. T is nonempty, since it contains x0. Thus,
by the induction hypothesis, T contains extreme points; and by Lemma 1 these are
also extreme points of C. Thus we have found extreme points of C not in K , which
is a contradiction.

Let us investigate the implications of this theorem for convex polyhedra. We
recall that a convex polyhedron is a bounded polytope. Being the intersection of
closed half spaces, a convex polyhedron is also closed. Thus any convex polyhedron
is the closed convex hull of its extreme points. It can be shown (see Sect. 2.5) that
any polytope has at most a finite number of extreme points and hence a convex
polyhedron is equal to the convex hull of a finite number of points. The converse
can also be established, yielding the following two equivalent characterizations.

Theorem 5 A convex polyhedron can be described either as a bounded intersection of a
finite number of closed half spaces, or as the convex hull of a finite number of points.

Appendix C
Gaussian Elimination

C.1 The LU Decomposition

This section describes the method for solving systems of linear equations that has
proved to be, not only the most popular, but also the fastest and least susceptible
to round-off error accumulation—the method of Gaussian elimination. Attention is
directed toward explaining this classical elimination technique itself and its relation
to the theory of LU decomposition of a nonsingular square matrix.

We first note how easily triangular systems of equations can be solved. Thus the
system

a11x1 = b1

a21x1 + a22x2 = b2
...

...

an1x1 + an2x2 + · · · + annxn = bn

can be solved recursively as follows:

x1 = b1/a11

x2 = (b2 − a21x1)/a22

...

xn = (bn − an1x1 − an2x2 . . .− ann−1xn−1)/ann,

provided that each of the diagonal terms aii, i = 1, 2, . . . , n is nonzero (as they
must be if the system is nonsingular). This observation motivates us to attempt to
reduce an arbitrary system of equations to a triangular one.

© Springer Nature Switzerland AG 2021
D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
https://doi.org/10.1007/978-3-030-85450-8

579

https://doi.org/10.1007/978-3-030-85450-8

580 C Gaussian Elimination

Definition A square matrix C = [cij] is said to be lower triangular if cij = 0 for i < j .
Similarly, C is said to be upper triangular if cij = 0 for i > j .

In matrix notation, the idea of Gaussian elimination is to somehow find a
decomposition of a given n × n matrix A in the form A = LU where L is a lower
triangular and U an upper triangular matrix. The system

Ax = b (C.1)

can then be solved by solving the two triangular systems

Ly = b, Ux = y. (C.2)

The calculation of L and U together with solution of the first of these systems is
usually referred to as forward elimination, while solution of the second triangular
system is called back substitution.

Every nonsingular square matrix A has an LU decomposition, provided that
interchanges of rows of A are introduced if necessary. This interchange of rows
corresponds to a simple reordering of the system of equations, and hence amounts to
no loss of generality in the method. For simplicity of notation, however, we assume
that no such interchanges are required.

We turn now to the problem of explicitly determining L and U, by elimination,
for a nonsingular matrix A. Given the system, we attempt to transform it so that
zeros appear below the main diagonal. Assuming that a11 �= 0 we subtract multiples
of the first equation from each of the others in order to get zeros in the first column
below a11. If we define mk1 = ak1/a11 and let

M1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−m21 1
−m31 1
•
•
•
−mn1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

the resulting new system of equations can be expressed as

A(2)x = b(2)

with

A(2) = M1A, b(2) = M1b.

The matrix A(2) = [a(2)
ij] has a

(2)
k1 = 0, k > 1.

C Gaussian Elimination 581

Next, assuming a
(2)
22 �= 0, multiples of the second equation of the new system are

subtracted from ***equations 3 through n to yield zeros below a
(2)
22 in the second

column. This is equivalent in premultiplying A(2) and b(2) by

M2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 1
• −m32 1
• −m42

• •
•
•
−mn2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where mk2 = a
(2)
k2 /a

(2)
22 . This yields A(3) = M2A(2) and b(3) = M2A(2).

Proceeding in this way we obtain A(n) = Mn−1Mn−2 . . . M1A, an upper
triangular matrix which we denote by U. The matrix M = Mn−1Mn−2 . . . M1
is a lower triangular matrix, and since MA = U we have A = M−1U. The
matrix L = M−1 is also lower triangular and becomes the L of the desired LU
decomposition for A.

The representation for L can be made more explicit by noting that M−1
k is the

same as Mk except that the off-diagonal terms have the opposite sign. Furthermore,
we have L = M−1 = M−1

1 M−1
2 . . . M−1

n−1 which is easily verified to be

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
m21 1
m31 m32 1
• • •
• • •
• • •

mn1 mn2 • • • 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

•

Hence L can be evaluated directly in terms of the calculations required by the
elimination process. Of course, an explicit representation for M = L−1 would
actually be more useful but a simple representation for M does not exist. Thus we
content ourselves with the explicit representation for L and use it in (C.2).

If the original system (C.1) is to be solved for a single b vector, the vector y
satisfying Ly = b is usually calculated simultaneously with L in the form y =
b(n) = Mb. The final solution x is then found by a single back substitution, from
Ux = y. Once the LU decomposition of A has been obtained, however, the solution
corresponding to any right-hand side can be found by solving the two systems (C.2).

In practice, the diagonal element a
(k)
kk of A(k) may become zero or very close

to zero. In this case it is important that the kth row be interchanged with a row

582 C Gaussian Elimination

that is below it. Indeed, for considerations of numerical accuracy, it is desirable to
continuously introduce row interchanges of this type in such a way to insure |mij| �
1 for all i, j . If this is done, the Gaussian elimination procedure has exceptionally
good stability properties.

C.2 Pivots

This section described the process of pivoting in a set of under determined
simultaneous linear equations.

Consider the set of simultaneous linear equations

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

...
... (C.3)

am1x1 + am2x2 + . . .+ amnxn = bm,

where m � n. In matrix form we write this as

Ax = b. (C.4)

In the space En we interpret this as a collection of m linear relations that must
be satisfied by a vector x. Thus denoting by ai the ith row of A we may express
(C.3) as:

a1x = b1

a2x = b2

... (C.5)

amx = bm.

This corresponds to the most natural interpretation of (C.3) as a set of m equations.
If m < n and the equations are linearly independent, then there is not a unique

solution but a whole linear variety of solutions (see Appendix B). A unique solution
results, however, if n − m additional independent linear equations are adjoined.
For example, we might specify n − m equations of the form ekx = 0, where ek

is the kth unit vector (which is equivalent to xk = 0), in which case we obtain a
basic solution to (C.3). Different basic solutions are obtained by imposing different
additional equations of this special form.

If Eq. (C.5) are linearly independent, we may replace a given equation by any
nonzero multiple of itself plus any linear combination of the other equations in

C Gaussian Elimination 583

the system. This leads to the well-known Gaussian reduction schemes, whereby
multiples of equations are systematically subtracted from one another to yield either
a triangular or canonical form. It is well known, and easily proved, that if the first m

columns of A are linearly independent, the system (C.3) can, by a sequence of such
multiplications and subtractions, be converted to the following canonical form:

x1 +ā1(m+1)xm+1 + ā1(m+2)xm+2 + · · · + ā1nxn = ā10

x2 +ā2(m+1)xm+1 + ā2(m+2)xm+2 + · · · + ā2nxn = ā20

...
... (C.6)

xm +ām(m+1)xm+1 + ām(m+2)xm+2 + · · · + āmnxn = ām0.

Corresponding to this canonical representation of the system, the variables x1,

x2, . . . , xm are called basic and the other variables are nonbasic. The corresponding
basic solution is then:

x1 = ā10, x2 = ā20, . . . , xm = ām0, xm+1 = 0, . . . , xn = 0,

or in vector form: x = (ā0, 0) where ā0 is m-dimensional and 0 is the (n − m)-
dimensional zero vector.

Actually, we relax our definition somewhat and consider a system to be in
canonical form if, among the n variables, there are m basic ones with the property
that each appears in only one equation, its coefficient in that equation is unity, and
no two of these m variables appear in any one equation. This is equivalent to saying
that a system is in canonical form if by some reordering of the equations and the
variables it takes the form (C.6).

Also it is customary, from the dictates of economy, to represent the system (C.6)
by its corresponding array of coefficients or tableau:

x1 x2 x3 · · · xm xm+1 xm+2 · · · xn

1 0 0 · · · 0 ā1(m+1) ā1(m+2) · · · ā1n ā10

0 1 0 · · · 0 ā2(m+1) ā2(m+2) · · · . ā20

.

.

.

0 0 0 · · · 1 ām(m+1) ām(m+2) · · · āmn ām0

(C.7)

The question solved by pivoting is this: given a system in canonical form, suppose
a basic variable is to be made nonbasic and a nonbasic variable is to be made basic;
what is the new canonical form corresponding to the new set of basic variables? The
procedure is quite simple. Suppose in the canonical system (C.6) we wish to replace
the basic variable xp, 1 � p � m, by the nonbasic variable xq . This can be done if
and only if āpq is nonzero; it is accomplished by dividing row p by āpq to get a unit

584 C Gaussian Elimination

coefficient for xq in the pth equation, and then subtracting suitable multiples of row
p from each of the other rows in order to get a zero coefficient for xq in all other
equations. This transforms the qth column of the tableau so that it is zero except
in its pth entry (which is unity) and does not affect the columns of the other basic
variables. Denoting the coefficients of the new system in canonical form by ā′ij, we
have explicitly

{
ā′ij = āij − āiq

āpq
āpj, i �= p

ā′pj = āpj
āpq

.
(C.8)

Equation (C.8) are the pivot equations that arise frequently in linear programming.
The element āpq in the original system is said to be the pivot element.

Example 1 Consider the system in canonical form:

x1 + x4 + x5 − x6 = 5
x2 + 2x4 − 3x5 + x6 = 3

x3 − x4 + 2x5 − x6 = −1.

Let us find the basic solution having basic variables x4, x5, x6. We set up the
coefficient array below:

x1 x2 x3 x4 x5 x6

1 0 0 1 1 −1 5
0 1 0 2 −3 1 3
0 0 1 −1 2 −1 −1

The circle indicated is our first pivot element and corresponds to the replacement of
x1 by x4 as a basic variable. After pivoting we obtain the array

and again we have circled the next pivot element indicating our intention to replace
x2 by x5. We then obtain

C Gaussian Elimination 585

Continuing, there results

x1 x2 x3 x4 x5 x6

1 −1 −2 1 0 0 4
1 −2 −3 0 1 0 2
1 −3 −5 0 0 1 1

From this last canonical form we obtain the new basic solution

x4 = 4, x5 = 2, x6 = 1.

Appendix D
Basic Network Concepts

This appendix describes some of the basic graph and network terminology and
concepts necessary for the development of this alternative approach.

A graph consists of a finite collection of elements called nodes together with a
subset of unordered pairs of the nodes called arcs. The nodes of a graph are usually
numbered, say, 1, 2, 3, . . . , n. An arc between nodes i and j is then represented by
the unordered pair (i, j). A graph is typically represented as shown in Fig. D.1.
The nodes are designated by circles, with the number inside each circle denoting
the index of that node. The arcs are represented by the lines between the nodes.

There are a number of other elementary definitions associated with graphs
that are useful in describing their structure. A chain between nodes i and
j is a sequence of arcs connecting them. The sequence must have the form
(i, k1), (k1, k2), (k2, k3), . . . , (km, j). In Fig. D.1, (1, 2), (2, 4), (4, 3) is a chain
between nodes 1 and 3. If a direction of movement along a chain is specified—say
from node i to node j—it is then called a path from i to j . A cycle is a chain leading
from node i back to node i. The chain (1, 2), (2, 4), (4, 3), (3, 1) is a cycle for the
graph in Fig. D.1.

A graph is connected if there is a chain between any two nodes. Thus, the graph
of Fig. D.1 is connected. A graph is a tree if it is connected and has no cycles.
Removal of any one of the arcs (1, 2), (1, 3), (2, 4), (3, 4) would transform the graph
of Fig. D.1 into a tree. Sometimes we consider a tree within a graph G, which is just
a tree made up of a subset of arcs from G. Such a tree is a spanning tree if it touches
all nodes of G. It is easy to see that a graph is connected if and only if it contains a
spanning tree.

In directed graphs a sense of orientation is given to each arc. In this case an
arc is considered to be an ordered pair of nodes (i, j), and we say that the arc is
from node i to node j . This is indicated on the graph by having an arrow on the arc
pointing from i to j as shown in Fig. D.2. When working with directed graphs, some
node pairs may have an arc in both directions between them. Rather than explicitly
indicating both arcs in such a case, it is customary to indicate a single undirected

© Springer Nature Switzerland AG 2021
D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
https://doi.org/10.1007/978-3-030-85450-8

587

https://doi.org/10.1007/978-3-030-85450-8

588 D Basic Network Concepts

Fig. D.1 A graph

Fig. D.2 A directed graph

Table D.1 Incidence matrix
for example

(1,2) (1,4) (2,3) (2,4) (4,2)

1 1 1

2 –1 1 1 –1

3 –1

4 –1 –1 1

arc. The notions of paths and cycles can be directly applied to directed graphs. In
addition we say that node j is reachable from i if there is a path from node i to j .

In addition to the visual representation of a directed graph characterized by
Fig. D.2, another common method of representation is in terms of a graph’s node-
arc incidence matrix. This is constructed by listing the nodes vertically and the arcs
horizontally. Then in the column under arc (i, j), a +1 is placed in the position
corresponding to node i and a −1 is placed in the position corresponding to node j .
The incidence matrix for the graph of Fig. D.2 is shown in Table D.1.

Clearly, all information about the structure of the graph is contained in the node-
arc incidence matrix. This representation is often very useful for computational
purposes, since it is easily stored in a computer.

D Basic Network Concepts 589

D.1 Flows in Networks

A graph is an effective way to represent the communication structure between nodes.
When there is the possibility of flow along the arcs, we refer to the directed graph as
a network. In applications the network might represent a transportation system or a
communication network, or it may simply be a representation used for mathematical
purposes (such as in the assignment problem).

A flow in a given directed arc (i, j) is a number xij � 0. Flows in the arcs of
the network must jointly satisfy a conservation criterion at each node. Specifically,
unless the node is a source or sink as discussed below, flow cannot be created or lost
at a node; the total flow into a node must equal the total flow out of the node. Thus
at each such node i

n∑
j=1

xij −
n∑

k=1

xki = 0.

The first sum is the total flow from i, and the second sum is the total flow to i.
(Of course xij does not exist if there is no arc from i to j.) It should be clear that
for nonzero flows to exist in a network without sources or sinks, the network must
contain a cycle.

In many applications, some nodes are in fact designated as sources or sinks (or,
alternatively, supply nodes or demand nodes). The net flow out of a source may be
positive, and the level of this net flow may either be fixed or variable, depending on
the application. Similarly, the net flow into a sink may be positive.

D.2 Tree Procedure

Recall that node j is reachable from node i in a directed graph if there is a path
from node i to node j . For simple graphs, determination of reachability can be
accomplished by inspection, but for large graphs it generally cannot. The problem
can be solved systematically by a process of repeatedly labeling and scanning
various nodes in the graph. This procedure is the backbone of a number of methods
for solving more complex graph and network problems, as illustrated later. It can
also be used to establish quickly some important theoretical results.

Assume that we wish to determine whether a path from node 1 to node m exists.
At each step of the algorithm, each node is either unlabeled, labeled but unscanned,
or labeled and scanned. The procedure consists of these steps:

Step 1. Label node 1 with any mark. All other nodes are unlabeled.
Step 2. For any labeled but unscanned node i, scan the node by finding all

unlabeled nodes reachable from i by a single arc. Label these nodes with an i.

590 D Basic Network Concepts

Fig. D.3 The scanning
procedure

Step 3. If node m is labeled, stop; a breakthrough has been achieved—a path
exists. If no unlabeled nodes can be labeled, stop; no connecting path exists.
Otherwise, go to Step 2.

The process is illustrated in Fig. D.3, where a path between nodes 1 and 10 is
sought. The nodes have been labeled and scanned in the order 1, 2, 3, 5, 6, 8, 4, 7,
9, 10. The labels are indicated close to the nodes. The arcs that were used in the
scanning processes are indicated by heavy lines. Note that the collection of nodes
and arcs selected by the process, regarded as an undirected graph, form a tree—
a graph without cycles. This, of course, accounts for the name of the process, the
tree procedure. If one is interested only in determining whether a connecting path
exists and does not need to find the path itself, then the labels need only be simple
check marks rather than node indices. However, if node indices are used as labels,
then after successful completion of the algorithm, the actual connecting path can be
found by tracing backward from node m by following the labels. In the example,
one begins at 10 and moves to node 7 as indicated; then to 6, 3, and 1. The path
follows the reverse of this sequence.

It is easy to prove that the algorithm does indeed resolve the issue of the existence
of a connecting path. At each stage of the process, either a new node is labeled,
it is impossible to continue, or node m is labeled and the process is successfully
terminated. Clearly, the process can continue for at most n−1 stages, where n is the
number of nodes in the graph. Suppose at some stage it is impossible to continue.
Let S be the set of labeled nodes at that stage and let S̄ be the set of unlabeled nodes.
Clearly, node 1 is contained in S, and node m is contained in S̄. If there were a path
connecting node 1 with node m, then there must be an arc in that path from a node k

in S to a node in S̄. However, this would imply that node k was not scanned, which
is a contradiction. Conversely, if the algorithm does continue until reaching node
m, then it is clear that a connecting path can be constructed backward as outlined
above.

D Basic Network Concepts 591

D.3 Capacitated Networks

In some network applications it is useful to assume that there are upper bounds
on the allowable flow in various arcs. This motivates the concept of a capacitated
network. A capacitated network is a network in which some arcs are assigned
nonnegative capacities, which define the maximum allowable flow in those arcs.
The capacity of an arc (i, j) is denoted kij , and this capacity is indicated on the
graph by placing the number kij adjacent to the arc. Figure 2.1 shows an example
of a network with the capacities indicated. Thus the capacity from node 1 to node 2
is 12, while that from node 2 to node 1 is 6.

Bibliography

[A1] J. Abadie, J. Carpentier, Generalization of the Wolfe reduced gradient method to the case
of nonlinear constraints, in Optimization, ed. by R. Fletcher (Academic, London, 1969),
pp. 37–47

[AGR] S. Agrawal, E. Delage, M. Peters, Z. Wang, Y. Ye, A unified framework for dynamic
prediction market design. Oper. Res. 59(3), 550–568 (2011)

[AWY] S. Agrawal, Z. Wang, Y. Ye, A dynamic near-optimal algorithm for online linear
programming. Oper. Res. 62(4), 876–890 (2014)

[A2] H. Akaike, On a successive transformation of probability distribution and its application
to the analysis of the optimum gradient method. Ann. Inst. Stat. Math 11, 1–17 (1959)

[5] A.Y. Alfakih, A. Khandani, H. Wolkowicz, Solving Euclidean distance matrix comple-
tion problems via semidefinite programming. Comput. Opt. Appl. 12, 13–30 (1999)

[A3] F. Alizadeh, Combinatorial optimization with interior point methods and semi-definite
matrices, Ph.D. Thesis, University of Minnesota, Minneapolis, 1991

[A4] F. Alizadeh, Optimization over the positive semi-definite cone: interior-point methods
and combinatorial applications, in Advances in Optimization and Parallel Computing,
ed. by P.M. Pardalos (North Holland, Amsterdam, 1992), pp. 1–25

[8] E.D. Andersen, MOSEK: high performance software for large-scale LP, QP, SOCP, SDP
and MIP (1997). http://www.mosek.com/

[A5] E.D. Andersen, Y. Ye, On a homogeneous algorithm for the monotone complementarity
problem. Math. Prog. 84, 375–400 (1999)

[A6] K.M. Anstreicher, D. den Hertog, C. Roos, T. Terlaky, A long step barrier method for
convex quadratic programming. Algorithmica 10, 365–382 (1993)

[A7] H.A. Antosiewicz, W.C. Rheinboldt, Numerical analysis and functional analysis, in
Survey of Numerical Analysis, ed. by J. Todd, Chap. 14 (McGraw-Hill, New York, 1962)

[A8] L. Armijo, Minimization of functions having Lipschitz continuous first-partial deriva-
tives. Pac. J. Math. 16(1), 1–3 (1966)

[A9] K.J. Arrow, L. Hurwicz, Gradient method for concave programming, I.: local results, in
Studies in Linear and Nonlinear Programming, ed. by K.J. Arrow, L. Hurwicz, H. Uzawa
(Stanford University Press, Stanford, 1958)

[14] E. Balas, S. Ceria, G. Cornuejols, A lift-and-project cutting plane algorithm for mixed
0-1 programs. Math. Program. 58, 295–324 (1993)

[B1] R.H. Bartels, A numerical investigation of the simplex method. Technical Report No. CS
104, Computer Science Department, Stanford University, Stanford, CA (31 July 1968)

© Springer Nature Switzerland AG 2021
D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
https://doi.org/10.1007/978-3-030-85450-8

593

http://www.mosek.com/
https://doi.org/10.1007/978-3-030-85450-8

594 Bibliography

[B2] R.H. Bartels, G.H Golub, The simplex method of linear programming using LU
decomposition. Commun. ACM 12(5), 266–268 (1969)

[17] A. Barvinok, A remark on the rank of positive semidefinite matrices subject to affine
constraints. Discrete Comput. Geom. 25, 23–31 (2001)

[18] A. Barvinok, A Course in Convexity. Graduate Studies in Mathematics, vol. 54 (Ameri-
can Mathematical Society, Providence, 2002)

[19] J. Barzilai, J.M. Borwein, Two-point step size gradient methods. IMA J. Numer. Anal. 8,
141–148 (2008)

[B3] D.A., Bayer, J.C. Lagarias, The nonlinear geometry of linear programming, part I: affine
and projective scaling trajectories. Trans. Am. Math. Soc. 314(2), 499–526 (1989)

[B4] D.A. Bayer, J.C. Lagarias, The nonlinear geometry of linear programming, part II:
Legendre transform coordinates. Trans. Am. Math. Soc. 314(2), 527–581 (1989)

[B5] M.S. Bazaraa, J.J. Jarvis, Linear Programming and Network Flows (Wiley, New York,
1977)

[B6] M.S. Bazaraa, J.J. Jarvis, H.F. Sherali, Karmarkar’s projective algorithm (Chap. 8.4),
pp. 380–394; Analysis of Karmarkar’s algorithm (Chap. 8.5), pp. 394–418, in Linear
Programming and Network Flows, 2nd edn. (Wiley, New York, 1990)

[B7] E.M.L. Beale, in Numerical Methods, Nonlinear Programming, ed. by J. Abadie (North-
Holland, Amsterdam, 1967)

[BEC] A. Beck, First-Order Methods in Optimization (SIAM, 2017)
[BET] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse

problems. SIAM J. Imaging Sci. 2, 183–202 (2009)
[B8] F.S. Beckman, The solution of linear equations by the conjugate gradient method, in

Mathematical Methods for Digital Computers, ed. by A. Ralston, H.S. Wilf, vol. 1
(Wiley, New York, 1960)

[28] S.J. Benson, Y. Ye, X. Zhang, Solving large-scale sparse semidefinite programs for
combinatorial optimization. SIAM J. Optim. 10, 443–461 (2000)

[BN] A. Ben-Tal, A. Nemirovski, Robust convex optimization. Math. Oper. Res. 23(4), 769–
805 (1998)

[30] A. Ben-Tal, A. Nemirovski, Structural design via semidefinite programming, in Hand-
book on Semidefinite Programming (Kluwer, Boston, 2000), pp. 443–467

[B9] D.P. Bertsekas, Partial conjugate gradient methods for a class of optimal control
problems. IEEE Trans. Autom. Control 19, 209–217 (1973)

[B10] D.P. Bertsekas, Multiplier methods: a survey. Automatica 12(2), 133–145 (1976)
[B11] D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (Academic,

New York, 1982)
[B12] D.P. Bertsekas, Nonlinear Programming (Athena Scientific, Belmont, 1995)

[35] D. Bertsimas, Y. Ye, Semidefinite relaxations, multivariate normal distributions, and
order statistics, in Handbook of Combinatorial Optimization (Springer, New York, 1999),
pp. 1473–1491

[B13] D.M. Bertsimas, J.N. Tsitsiklis, Linear Optimization (Athena Scientific, Belmont, 1997)
[B14] M.C. Biggs, Constrained minimization using recursive quadratic programming: some

alternative sub-problem formulations, in Towards Global Optimization, ed. by L.C.W.
Dixon, G.P. Szego (North-Holland, Amsterdam, 1975)

[B15] M.C. Biggs, On the convergence of some constrained minimization algorithms based on
recursive quadratic programming. J. Inst. Math. Appl. 21, 67–81 (1978)

[B16] G. Birkhoff, Three observations on linear algebra. Rev. Univ. Nac. Tucumán, Ser. A. 5,
147–151 (1946)

[B17] P. Biswas, Y. Ye, Semidefinite programming for ad hoc wireless sensor network
localization, in Proceedings of the 3rd IPSN, 2004, pp. 46–54

[B18] R.E. Bixby, Progress in linear programming. ORSA J. Comput. 6(1), 15–22 (1994)
[B19] R.G. Bland, New finite pivoting rules for the simplex method. Math. Oper. Res. 2(2),

103–107 (1977)

Bibliography 595

[B20] R.G. Bland, D. Goldfarb, M.J. Todd, The ellipsoidal method: a survey. Oper. Res. 29,
1039–1091 (1981)

[B21] L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation (Springer,
New York, 1996)

[BO] O. Bondareva, Some applications of linear programming methods to the theory of
cooperative games (In Russian). Probl. Kybernetiki 10, 119–139 (1963)

[46] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and
statistical learning via the alternating direction method of multipliers. Found. Trends
Mach. Learn. 3, 1–122 (2010)

[B22] S. Boyd, L.E. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System
and Control Science (SIAM, Philadelphia, 1994)

[B23] S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cam-
bridge, 2004)

[B24] C.G. Broyden, Quasi-Newton methods and their application to function minimization.
Math. Comput. 21, 368–381 (1967)

[B25] C.G. Broyden, The convergence of a class of double rank minimization algorithms: parts
I and II. J. Inst. Math. Appl. 6, 76–90, 222–231 (1970)

[BUB] s. Bubeck, Convex optimization: algorithms and complexity (2014). arXiv preprint
arXiv:1405.4980

[B26] T. Butler, A.V. Martin, On a method of courant for minimizing functionals. J. Math.
Phys. 41, 291–299 (1962)

[CDHS] Y, Carmon, J.C. Duchi, O. Hinder, A. Sidford, Accelerated methods for nonconvex
optimization. SIAM J. Optim. 28(2), 1751–1772 (2018)

[C1] C.W. Carroll, The created response surface technique for optimizing nonlinear restrained
systems. Oper. Res. 9(12), 169–184 (1961)

[C2] A. Charnes, Optimality and degeneracy in linear programming. Econometrica 20, 160–
170 (1952)

[C3] A. Charnes, C.E. Lemke, The bounded variables problem. ONR Research Memorandum
10, Graduate School of Industrial Administration, Carnegie Institute of Technology,
Pittsburgh (1954)

[57] C.H. Chen, B.S. He, Y.Y. Ye, X.M. Yuan, The direct extension of ADMM for multi-
block convex minimization problems is not necessarily convergent. Math. Program. 155,
57–79 (2016). https://doi.org/10.1007/s10107-014-0826-5

[CLLY] C Chen, M Li, X Liu, Y Ye, Extended ADMM and BCD for nonseparable convex
minimization models with quadratic coupling terms: convergence analysis and insights.
Math. Program. 173(1–2), 37–77 (2019)

[C4] A. Cohen, Rate of convergence for root finding and optimization algorithms. Ph.D.
Dissertation, University of California, Berkeley, 1970

[C5] S.A. Cook, The complexity of theorem-proving procedures, in Proceedings of 3rd ACM
Symposium on the Theory of Computing, 1971, pp. 151–158

[C6] R.W. Cottle, Linear Programming. Lecture Notes for MS& E 310 (Stanford University,
Stanford, 2002)

[C7] R. Cottle, J.S. Pang, R.E. Stone, Interior-Point Methods (Chap. 5.9), in The Linear
Complementarity Problem (Academic, Boston, 1992), pp. 461–475

[C8] R. Courant, Calculus of variations and supplementary notes and exercises
(mimeographed notes), supplementary notes by M. Kruskal and H. Rubin, revised and
amended by J. Moser, New York University (1962)

[C9] J.B. Crockett, H. Chernoff, Gradient methods of maximization. Pac. J. Math. 5, 33–50
(1955)

[C10] H. Curry, The method of steepest descent for nonlinear minimization problems. Q. Appl.
Math. 2, 258–261 (1944)

[66] Y.-H. Dai, R. Fletcher, Projected Barzilai-Borwein methods for large-scale box-
constrained quadratic programming. Numer. Math. 100, 21–47 (2005)

https://doi.org/10.1007/s10107-014-0826-5

596 Bibliography

[D1] J.W. Daniel, The conjugate gradient method for linear and nonlinear operator equations.
SIAM J. Numer. Anal. 4(1), 10–26 (1967)

[D2] G.B. Dantzig, Maximization of a linear function of variables subject to linear inequalities
(Chap. XXI), in Activity Analysis of Production and Allocation, ed. by T.C. Koopmans.
Cowles Commission Monograph, vol. 13 (Wiley, New York, 1951)

[D3] G.B., Dantzig, Application of the simplex method to a transportation problem, in Activity
Analysis of Production and Allocation, ed. by T.C. Koopmans (Wiley, New York, 1951),
pp. 359–373

[D4] G.B. Dantzig, Computational algorithm of the revised simplex method. RAND Report
RM-1266, The RAND Corporation, Santa Monica (1953)

[D5] G.B. Dantzig, Variables with upper bounds in linear programming. RAND Report RM-
1271, The RAND Corporation, Santa Monica (1954)

[D6] G.B. Dantzig, Linear Programming and Extensions (Princeton University Press, Prince-
ton, 1963)

[D7] G.B. Dantzig, L.R. Ford Jr., D.R. Fulkerson, A primal-dual algorithm, in Linear
Inequalities and Related Systems. Annals of Mathematics Study, vol. 38 (Princeton
University Press, Princeton, 1956), pp. 171–181

[D8] G.B. Dantzig, A. Orden, P. Wolfe, Generalized simplex method for minimizing a
linear form under linear inequality restraints. RAND Report RM-1264, The RAND
Corporation, Santa Monica (1954)

[D9] G.B. Dantzig, M.N. Thapa, Linear Programming 1: Introduction (Springer, New York,
1997)

[D10] G.B. Dantzig, M.N. Thapa, Linear Programming 2: Theory and Extensions (Springer,
New York, 2003)

[D11] G.B. Dantzig, P. Wolfe, Decomposition principle for linear programs. Oper. Res. 8, 101–
111 (1960)

[D12] W.C. Davidon, Variable metric method for minimization. Research and Development
Report ANL-5990 (Ref.) U.S. Atomic Energy Commission, Argonne National Labora-
tories (1959)

[D13] W.C. Davidon, Variance algorithm for minimization. Comput. J. 10, 406–410 (1968)
[deG] G. de Ghellinck, Les Probléms de Décisions Séquentielles, Cahiers du Centre d’Etudes

de Recherche Opérationnelle 2, 161–179 (1960)
[81] E. de Klerk, C. Roos, T. Terlaky, Initialization in semidefinite programming via a self-

dual skew-symmetric embedding. Oper. Res. Lett. 20, 213–221 (1997)
[DY] E. Delage, Y. Ye, Distributionally robust optimization under moment uncertainty with

application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)
[D14] R.S. Dembo, S.C. Eisenstat, T. Steinhaug, Inexact Newton methods. SIAM J. Numer.

Anal. 19(2), 400–408 (1982)
[D15] J.E. Dennis, Jr., J.J. Moré, Quasi-Newton methods, motivation and theory. SIAM Rev.

19, 46–89 (1977)
[D16] J.E. Dennis, Jr., R.E. Schnabel, Least change secant updates for quasi-Newton methods.

SIAM Rev. 21, 443–469 (1979)
[Dikin] I. I. Dikin, On the convergence of an iterative process. Upravlyaemye Sistemi 12, 54–60

(1974) (in Russian)
[D17] L.C.W. Dixon, Quasi-Newton algorithms generate identical points. Math. Program. 2,

383–387 (1972)
[E1] B.C. Eaves, W.I. Zangwill, Generalized cutting plane algorithms. Working Paper No.

274, Center for Research in Management Science, University of California, Berkeley
(July 1969)

[89] J. Eckstein, D.P. Bertsekas, On the Douglas-Rachford splitting method and the proximal
point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

[E2] H. Everett III, Generalized Lagrange multiplier method for solving problems of optimum
allocation of resources. Oper. Res. 11, 399–417 (1963)

Bibliography 597

[F1] D.K. Faddeev, V.N. Faddeeva, Computational Methods of Linear Algebra (W. H.
Freeman, San Francisco, 1963)

[F2] S.C. Fang, S. Puthenpura, Linear Optimization and Extensions (Prentice-Hall, Engle-
wood Cliffs, 1994)

[F3] W. Fenchel, Convex Cones, Sets, and Functions. Lecture Notes (Department of Mathe-
matics, Princeton University, Princeton, 1953)

[F4] A.V. Fiacco, G.P. McCormick, Nonlinear Programming: Sequential Unconstrained
Minimization Techniques (Wiley, New York, 1968)

[F5] A.V. Fiacco, G.P. McCormick, Nonlinear Programming: Sequential Unconstrained
Minimization Techniques (Wiley, New York, 1968). Reprint: Volume 4 of SIAM Classics
in Applied Mathematics (SIAM Publications, Philadelphia, 1990)

[F6] R. Fletcher, A new approach to variable metric algorithms. Comput. J. 13(13), 317–322
(1970)

[F7] R. Fletcher, An exact penalty function for nonlinear programming with inequalities.
Math. Program. 5, 129–150 (1973)

[F8] R. Fletcher, Conjugate gradient methods for indefinite systems. Numerical Analysis
Report, 11. Department of Mathematics, University of Dundee, Scotland (September
1975)

[F9] R. Fletcher, Practical Methods of Optimization 1: Unconstrained Optimization (Wiley,
Chichester, 1980)

[F10] R. Fletcher, Practical Methods of Optimization 2: Constrained Optimization (Wiley,
Chichester, 1981)

[F11] R. Fletcher, M.J.D. Powell, A rapidly convergent descent method for minimization.
Comput. J. 6, 163–168 (1963)

[F12] R. Fletcher, C.M. Reeves, Function minimization by conjugate gradients. Comput. J. 7,
149–154 (1964)

[F13] L.K. Ford Jr., D.K. Fulkerson, Flows in Networks (Princeton University Press, Princeton,
1962)

[F14] G.E. Forsythe, On the asymptotic directions of the s-dimensional optimum gradient
method. Numer. Math. 11, 57–76 (1968)

[F15] G.E. Forsythe, C.B. Moler, Computer Solution of Linear Algebraic Systems (Prentice-
Hall, Englewood Cliffs, 1967)

[F16] G.E. Forsythe, W.R. Wasow, Finite-Difference Methods for Partial Differential Equa-
tions (Wiley, New York, 1960)

[107] M. Fortin, R. Glowinski, On decomposition-coordination methods using an augmented
Lagrangian, in Augmented Lagrangian Methods: Applications to the Solution of Bound-
ary Problems, ed. by M. Fortin, R. Glowinski (North- Holland, Amsterdam, 1983)

[F17] K. Fox, An Introduction to Numerical Linear Algebra (Clarendon Press, Oxford, 1964)
[109] M. Frank, P. Wolfe, An algorithm for quadratic programming. Naval Res. Logist. Q. 3,

95–110 (1956)
[F18] R.M. Freund, Polynomial-time algorithms for linear programming based only on primal

scaling and projected gradients of a potential function. Math. Program. 51, 203–222
(1991)

[F19] K.R. Frisch, The logarithmic potential method for convex programming. Unpublished
Manuscript, Institute of Economics, University of Oslo, Oslo (1955)

[G1] D. Gabay, Reduced quasi-Newton methods with feasibility improvement for nonlinear
constrained optimization, in Mathematical Programming Studies, vol. 16 (North-
Holland, Amsterdam, 1982), pp. 18–44

[113] D. Gabay, B. Mercier, A dual algorithm for the solution of nonlinear variational problems
via finite element approximations. Comput. Math. Appl. 2, 17–40 (1976)

[G2] D. Gale, The Theory of Linear Economic Models (McGraw-Hill, New York, 1960)
[G3] U.M. Garcia-Palomares, O.L. Mangasarian, Superlinearly convergent quasi-Newton

algorithms for nonlinearly constrained optimization problems. Math. Program. 11, 1–
13 (1976)

598 Bibliography

[G4] S.I. Gass, Linear Programming, 3rd edn. (McGraw-Hill, New York, 1969)
[G5] P.E. Gill, W. Murray, M.A. Saunders, J.A. Tomlin, M.H. Wright, On projected Newton

barrier methods for linear programming and an equivalence to Karmarkar’s projective
method. Math. Program. 36, 183–209 (1986)

[G6] P.E., Gill, W. Murray, Quasi-Newton methods for unconstrained optimization. J. Inst.
Math. Appl. 9, 91–108 (1972)

[G7] P.E. Gill, W. Murray, M.H. Wright, Practical Optimization (Academic, London, 1981)
[120] R. Glowinski, A. Marrocco, Approximation par éléments finis d’ordre un et résolution

par pénalisation-dualité d’une classe de problèmes non linéaires. R.A.I.R.O. R2 2, 41–76
(1975)

[G8] M.X. Goemans, D.P. Williamson, Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach.
42, 1115–1145 (1995)

[G9] D. Goldfarb, A family of variable metric methods derived by variational means. Math.
Comput. 24, 23–26 (1970)

[123] D. Goldfarb, G. Iyengar, Robust portfolio selection problems. Math. Oper. Res. 28, 1–38
(2002)

[G10] D. Goldfarb, M.J. Todd, Linear programming, in Optimization, ed. by G.L. Nemhauser,
A.H.G. Rinnooy Kan, M.J. Todd. Handbooks in Operations Research and Management
Science, vol. 1 (North Holland, Amsterdam, 1989), pp. 141–170

[G11] D. Goldfarb, D. Xiao, A primal projective interior point method for linear programming.
Math. Program. 51, 17–43 (1991)

[GQT] S.M. Goldfeld, R.E. Quandt, H.F. Trotter, Maximization by quadratic hill climbing.
Econometrica 34, 541–551 (1966).

[GT] A.J. Goldman, A.W. Tucker, Polyhedral convex cones, in Linear Inequalities and Related
Systems, ed. by H.W. Kuhn, A.W. Tucker (Princeton University Press, Princeton, 1956),
pp. 19–40

[G12] A.A. Goldstein, On steepest descent. SIAM J. Control 3, 147–151 (1965)
[AG] A.A. Goldstein, Convex programming in Hilbert space. Bull. Am. Math. Soc. 70(5),

709–710 (1964)
[G13] C.C. Gonzaga, An algorithm for solving linear programming problems in O(n3L)

operations, in Progress in Mathematical Programming: Interior Point and Related
Methods, ed. by N. Megiddo (Springer, New York, 1989), pp. 1–28

[G14] C.C. Gonzaga, M.J. Todd, An O(
√

nL)-iteration large-step primal-dual affine algorithm
for linear programming. SIAM J. Optim. 2, 349–359 (1992)

[G15] J. Greenstadt, Variations on variable metric methods. Math. Comput. 24, 1–22 (1970)
[G16] O. Güler, Existence of interior points and interior paths in nonlinear monotone comple-

mentarity problems. Math. Oper. Res. 18(1), 128–147 (1993)
[G17] O. Güler, Y. Ye, Convergence behavior of interior point algorithms. Math. Program. 60,

215–228 (1993)
[H1] G. Hadley, Linear Programming (Addison-Wesley, Reading, 1962)
[H2] G. Hadley, Nonlinear and Dynamic Programming (Addison-Wesley, Reading, 1964)
[H3] S.P. Han, A globally convergent method for nonlinear programming. J. Optim. Theory

Appl. 22(3), 297–309 (1977)
[H4] H. Hancock, Theory of Maxima and Minima (Ginn, Boston, 1917)
[H5] J. Hartmanis, R.E. Stearns, On the computational complexity of algorithms. Trans. Am.

Math. Soc. 117, 285–306 (1965)
[HA] E. Hazan, Introduction to online convex optimization (2019). arXiv preprint

arXiv:1909.05207
[141] B.S. He, X.M. Yuan, On the O(1/n) convergence rate of the Douglas-Rachford

alternating direction method. SIAM J. Numer. Anal. 50, 700–709 (2012)
[H6] D. den Hertog, Interior point approach to linear, quadratic and convex programming,

algorithms and complexity, Ph.D. Thesis, Faculty of Mathematics and Informatics, TU
Delft, BL Delft, 1992

Bibliography 599

[H7] M.R. Hestenes, The conjugate gradient method for solving linear systems, in Proceeding
of Symposium in Applied Mathematics, vol. VI, Numerical Analysis (McGraw-Hill, New
York 1956), pp. 83–102

[H8] M.R. Hestenes, Multiplier and gradient methods. J. Opt. Theory Appl. 4(5), 303–320
(1969)

[H9] M.R. Hestenes, Conjugate-Direction Methods in Optimization (Springer, Berlin, 1980)
[H10] M.R. Hestenes, E.L. Stiefel, Methods of conjugate gradients for solving linear systems.

J. Res. Natl. Bur. Stand. Sect. B 49, 409–436 (1952)
[OH] Oliver Hinder, Principled Algorithms for Finding Local Minima, Ph.D. Thesis, Stanford

University, 2019
[H11] F.L. Hitchcock, The distribution of a product from several sources to numerous localities.

J. Math. Phys. 20, 224–230 (1941)
[H12] P. Huard, Resolution of mathematical programming with nonlinear constraints by the

method of centers, in Nonlinear Programming, ed. by J. Abadie (North Holland,
Amsterdam, 1967), pp. 207–219

[H13] H.Y. Huang, Unified approach to quadratically convergent algorithms for function
minimization. J. Optim. Theory Appl. 5, 405–423 (1970)

[H14] L. Hurwicz, Programming in linear spaces, in Studies in Linear and Nonlinear Program-
ming, ed. by K.J. Arrow, L. Hurwicz, H. Uzawa (Stanford University Press, Stanford,
1958)

[I1] E. Isaacson, H.B. Keller, Analysis of Numerical Methods (Wiley, New York, 1966)
[J2] F. Jarre, Interior-point methods for convex programming. Appl. Math. Optim. 26, 287–

311 (1992)
[154] W.B. Johnson, J. Lindenstrauss, Extensions of Lipschitz mapping into Hilbert space.

Comtemp. Math. 26, 189–206 (1984)
[Kallen] L.C.M. Kallenberg, Linear Programming and Finite Markovian Control Problems

(Mathematical Centre Tracts, 1983)
[K1] S. Karlin, Mathematical Methods and Theory in Games, Programming, and Economics,

vol. I (Addison-Wesley, Reading, 1959)
[K2] N.K. Karmarkar, A new polynomial-time algorithm for linear programming. Combina-

torica 4, 373–395 (1984)
[K3] J.E. Kelley, The cutting-plane method for solving convex programs. J. Soc. Ind. Appl.

Math. VIII(4), 703–712 (1960)
[K4] L.G. Khachiyan, A polynomial algorithm for linear programming. Dokl. Akad. Nauk

USSR 244, 1093–1096 (1979). Translated in Soviet Math. Dokl. 20, 191–194 (1979)
[KM] T. Kitahara, S. Mizuno, A bound for the number of different basic solutions generated

by the simplex method. Math. Program. 137(1–2), 579–586 (2013)
[K5] V. Klee, G.J. Minty, How good is the simplex method, in Inequalities III, ed. by O. Shisha

(Academic, New York, 1972)
[K6] M. Kojima, S. Mizuno, A. Yoshise, A polynomial-time algorithm for a class of linear

complementarity problems. Math. Program. 44, 1–26 (1989)
[K7] M. Kojima, S. Mizuno, A. Yoshise, An O(

√
nL) iteration potential reduction algorithm

for linear complementarity problems. Math. Program. 50, 331–342 (1991)
[K8] T.C. Koopmans, Optimum utilization of the transportation system, in Proceedings of the

International Statistical Conference (Washington, 1947)
[K9] J. Kowalik, M.R. Osborne, Methods for Unconstrained Optimization Problems (Elsevier,

New York, 1968)
[K10] H.W. Kuhn, The Hungarian method for the assignment problem. Naval Res. Logist. Q.

2, 83–97 (1955)
[K11] H.W. Kuhn, A.W. Tucker, Nonlinear programming, in Proceedings of the Second

Berkeley Symposium on Mathematical Statistics and Probability, ed. by J. Neyman
(University of California Press, Berkeley/Los Angeles, 1961), pp. 481–492

[L1] C. Lanczos, Applied Analysis (Prentice-Hall, Englewood Cliffs, 1956)

600 Bibliography

[169] J.B. Lasserre, Global optimization with polynomials and the problem of moments
related. SIAM J. Optim. 11, 796–817 (2001)

[170] M. Laurent, Matrix completion problems. Encycl. Optim. 3, 221–229 (2001)
[L2] E. Lawler, Combinatorial Optimization: Networks and Matroids (Holt, Rinehart, and

Winston, New York, 1976)
[LS] Y.T. Lee, A. Sidford, Path finding methods for linear programming: solving linear

programs in O (vrank) iterations and faster algorithms for maximum flow. 2014 IEEE
55th Annual Symposium on Foundations of Computer Science (2014), pp. 424-433

[L3] C. Lemarechal, R. Mifflin, Nonsmooth optimization, in IIASA Proceedings III (Perga-
mon Press, Oxford, 1978)

[L4] C.E. Lemke, The dual method of solving the linear programming problem. Naval Res.
Logist. Q. 1(1), 36–47 (1954)

[L5] E.S. Levitin, B.T. Polyak, Constrained minimization methods. Zh. vychisl. Math. Math.
Fiz 6(5), 1–50 (1966)

[LIX] X. Li, Online Linear Programming: Algorithm Design and Analysis, Ph.D. Thesis,
Stanford University, 2020

[177] M.S. Lobo, L. Vandenberghe, S. Boyd, Applications of second-order cone programming.
Linear Algebra Appl. 284, 193–228 (1998)

[L6] C. Loewner, Über monotone Matrixfunktionen. Math. Zeir. 38, 177–216 (1934). Also
see C. Loewner, Advanced matrix theory, mimeo notes, Stanford University, 1957

[L7] F.A. Lootsma, Boundary properties of penalty functions for constrained minimization,
Doctoral dissertation, Technical University, Eindhoven, May 1970

[180] L. Lovász, A. Shrijver, Cones of matrices and setfunctions, and 0-1 optimization. SIAM
J. Optim. 1, 166–190 (1990)

[181] Z. Lu, L. Xiao, On the complexity analysis of randomized block-coordinate descent
methods. Math. Program. (2013). https://doi.org/10.1007/s10107-014-0800-2

[L8] D.G. Luenberger, Optimization by Vector Space Methods (Wiley, New York, 1969)
[L9] D.G. Luenberger, Hyperbolic pairs in the method of conjugate gradients. SIAM J. Appl.

Math. 17(6), 1263–1267 (1969)
[L10] D.G. Luenberger, A combined penalty function and gradient projection method for non-

linear programming, Internal Memo, Department of Engineering-Economic Systems,
Stanford University (June 1970)

[L11] D. G. Luenberger, The conjugate residual method for constrained minimization prob-
lems. SIAM J. Numer. Anal. 7(3), 390–398 (1970)

[L12] D.G. Luenberger, Control problems with kinks. IEEE Trans. Autom. Control AC-15(5),
570–575 (1970)

[L13] D.G. Luenberger, Convergence rate of a penalty-function scheme. J. Optim. Theory
Appl. 7(1), 39–51 (1971)

[L14] D.G. Luenberger, The gradient projection method along geodesics. Manag. Sci. 18(11),
620–631 (1972)

[L15] D.G. Luenberger, Introduction to Linear and Nonlinear Programming, 1st edn.
(Addison-Wesley, Reading, 1973)

[L17] D.G. Luenberger, An approach to nonlinear programming. J. Optim. Theory Appl. 11(3),
219–227 (1973)

[191] Z.Q. Luo, W. Ma, A.M. So, Y. Ye, S. Zhang, Semidefinite relaxation of quadratic
optimization problems. IEEE Signal Process. Mag. 27, 20–34 (2010)

[L18] Z.Q. Luo, J. Sturm, S. Zhang, Conic convex programming and self-dual embedding.
Optim. Methods Softw. 14, 169–218 (2000)

[L19] I.J. Lustig, R.E. Marsten, D.F. Shanno, On implementing Mehrotra’s predictor-corrector
interior point method for linear programming. SIAM J. Optim. 2, 435–449 (1992)

[Manne] A. S. Manne, Linear programming and sequential decisions. Manag. Sci. 6, 259–267
(1960)

https://doi.org/10.1007/s10107-014-0800-2

Bibliography 601

[M1] N. Maratos, Exact penalty function algorithms for finite dimensional and control
optimization problems, Ph.D. Thesis, Imperial College Sci. Tech., University of London,
1978

[M2] G.P. McCormick, Optimality criteria in nonlinear programming, in Nonlinear Program-
ming, SIAM-AMS Proceedings, vol. IX, 1976, pp. 27–38

[M3] L. McLinden, The analogue of Moreau’s proximation theorem, with applications to the
nonlinear complementarity problem. Pac. J. Math. 88, 101–161 (1980)

[M4] N. Megiddo, Pathways to the optimal set in linear programming, in Progress in
Mathematical Programming: Interior Point and Related Methods, ed. by N. Megiddo
(Springer, New York, 1989), pp. 131–158

[M5] S. Mehrotra, On the implementation of a primal-dual interior point method. SIAM J.
Optim. 2(4), 575–601 (1992)

[M6] S. Mizuno, M.J. Todd, Y. Ye, On adaptive step primal-dual interior point algorithms for
linear programming. Math. Oper. Res. 18, 964–981 (1993)

[201] R.D.C. Monteiro, B.F. Svaiter, Iteration-complexity of block-decomposition algorithms
and the alternating direction method of multipliers. SIAM J. Optim. 23, 475–507 (2013)

[M7] R.D.C. Monteiro, I. Adler, Interior path following primal-dual algorithms: part I: linear
programming. Math. Program. 44, 27–41 (1989)

[MA] R.D.C. Monteiro, I. Adler, An extension of Karmarkar type algorithm to a class of convex
separable programming problems with global convergence. Math. Oper. Res. 15, 408–
422 (1990)

[More] J.J. Moré, The Levenberg-Marquardt algorithm: implementation and theory. Numerical
Analysis, ed. by G.A. Watson (Springer, New York, 1977)

[M8] D.D. Morrison, Optimization by least squares. SIAM J. Numer. Anal. 5, 83–88 (1968)
[M9] B.A. Murtagh, Advanced Linear Programming (McGraw-Hill, New York, 1981)

[M10] B.A. Murtagh, R.W.H. Sargent, A constrained minimization method with quadratic
convergence (Chap. 14), in Optimization, ed. by R. Fletcher (Academic, London, 1969)

[M11] K.G. Murty, Linear and Combinatorial Programming (Wiley, New York, 1976)
[M12] K.G. Murty, The Karmarkar’s algorithm for linear programming (Chap. 11.4.1), in

Linear Complementarity, Linear and Nonlinear Programming. Sigma Series in Applied
Mathematics, vol. 3 (Heldermann Verlag, Berlin, 1988), pp. 469–494

[AN] A. Naber, Memory-Efficient Optimization Over Positive Semidefinite Matrices, Ph.D.
Thesis (Stanford University, 2020)

[N1] S.G. Nash, A. Sofer Linear and Nonlinear Programming (McGraw-Hill Companies,
New York, 1996)

[NY] A. Nemirovskii, D. Yudin, Efficient methods for large-scale convex optimization prob-
lems. Ekono-mika i Matematicheskie Metody 2, 135–152 (1979)

[213] Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization
problems. SIAM J. Optim. 22, 341–362 (2012)

[214] Y.E. Nesterov, Semidefinite relaxation and nonconvex quadratic optimization. Optim.
Methods Softw. 9, 141–160 (1998)

[215] Y. Nesterov, A method of solving a convex programming problem with convergence rate
O((1/k2)). Soviet Math. Dokl. 27(2), 372–376 (1983)

[216] Y. Nesterov, M.J. Todd, Y. Ye, Infeasible-start primal-dual methods and infeasibility
detectors for nonlinear programming problems. Math. Program. 84, 227–267 (1999)

[N2] Y. Nesterov, A. Nemirovskii, Interior Point Polynomial Methods in Convex Program-
ming: Theory and Algorithms (SIAM Publications, Philadelphia, 1994)

[N3] Y. Nesterov, M.J. Todd, Self-scaled barriers and interior-point methods for convex
programming. Math. Oper. Res. 22(1) 1–42 (1997)

[N4] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course (Kluwer,
Boston, 2004)

[O1] W. Orchard-Hays, Background development and extensions of the revised simplex
method. RAND Report RM-1433, The RAND Corporation, Santa Monica (1954)

602 Bibliography

[O2] A. Orden, Application of the simplex method to a variety of matrix problems, in
Directorate of Management Analysis: “Symposium on Linear Inequalities and Program-
ming”, ed. by A. Orden, L. Goldstein (DCS/Comptroller, Headquarters, U.S. Air Force,
Washington, 1952), pp. 28–50

[O3] A. Orden, The transshipment problem. Manag. Sci. 2(3), 276–285 (1956)
[O4] S.S. Oren, Self-scaling variable metric (SSVM) algorithms II: implementation and

experiments. Manag. Sci. 20, 863–874 (1974)
[O5] S.S. Oren, D.G. Luenberger, Self-scaling variable metric (SSVM) algorithms I: criteria

and sufficient conditions for scaling a class of algorithms. Manag. Sci. 20, 845–862
(1974)

[O6] S.S. Oren, E. Spedicato, Optimal conditioning of self-scaling variable metric algorithms.
Math. Program. 10, 70–90 (1976)

[O7] J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several
Variables (Academic, New York, 1970)

[P1] C.C. Paige, M.A. Saunders, Solution of sparse indefinite systems of linear equations.
SIAM J. Numer. Anal. 12(4), 617–629 (1975)

[P2] C. Papadimitriou, K. Steiglitz, Combinatorial Optimization Algorithms and Complexity
(Prentice-Hall, Englewood Cliffs, 1982)

[229] P. Parrilo, Semidefinite programming relaxations for semialgebraic problems. Math.
Program. 96, 293–320 (2003)

[230] G. Pataki, On the rank of extreme matrices in semidefinite programs and the multiplicity
of optimal eigenvalues. Math. Oper. Res. 23, 339–358 (1998)

[P3] A. Perry, A modified conjugate gradient algorithm, Discussion Paper No. 229, Center
for Mathematical Studies in Economics and Management Science, North-Western
University, Evanston (1976)

[P4] E. Polak, Computational Methods in Optimization: A Unified Approach (Academic, New
York, 1971)

[P5] E. Polak, G. Ribiere, Note sur la Convergence de Methods de Directions Conjugres. Rev.
Fr. Inform. Recherche Operationnelle 16, 35–43 (1969)

[Polyak] B. Polyak, Some methods of speeding up the convergence of iteration methods. USSR
Comput. Math. Math. Phys. 4, 1–17 (1964)

[PY] F. Potra, Y. Ye, Interior-point methods for nonlinear complementarity problem. J. Optim.
Theory Appl. 68, 617–642 (1996).

[P6] M.J.D. Powell, An efficient method for finding the minimum of a function of several
variables without calculating derivatives. Comput. J. 7, 155–162 (1964)

[P7] M.J.D. Powell, A method for nonlinear constraints in minimization problems, in
Optimization, ed. by R. Fletcher Powell (Academic, London, 1969), pp. 283–298

[P8] M.J.D. Powell, On the convergence of the variable metric algorithm. Mathematics
Branch, Atomic Energy Research Establishment, Harwell, Berkshire, England, (October
1969)

[P9] M.J.D. Powell, Algorithms for nonlinear constraints that use Lagrangian functions.
Math. Program. 14, 224–248 (1978)

[P10] B.N. Pshenichny, Y.M. Danilin, Numerical Methods in Extremal Problems (translated
from Russian by V. Zhitomirsky) (MIR Publishers, Moscow, 1978)

[241] M. Ramana, An exact duality theory for semidefinite programming and its complexity
implications. Math. Program. 77, 129–162 (1997)

[242] M. Ramana, L. Tuncel, H. Wolkowicz, Strong duality for semidefinite programming.
SIAM J. Optim. 7, 641–662 (1997)

[R1] J. Renegar, A polynomial-time algorithm, based on Newton’s method, for linear
programming. Math. Program. 40, 59–93 (1988)

[R2] J. Renegar, A Mathematical View of Interior-Point Methods in Convex Optimization
(Society for Industrial and Applied Mathematics, Philadelphia, 2001)

[RM] H. Robbins, S. Monro, A stochastic approximation method. Ann. Math. Stat. 22(3), 400–
407 (1951)

Bibliography 603

[R3] R.T. Rockafellar, The multiplier method of Hestenes and Powell applied to convex
programming. J. Optim. Theory Appl. 12, 555–562 (1973)

[247] R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970)
[R4] C. Roos, T. Terlaky, J.-Ph. Vial, Theory and Algorithms for Linear Optimization: An

Interior Point Approach (Wiley, Chichester, 1997)
[R5] J. Rosen, The gradient projection method for nonlinear programming, I. Linear con-

straints. J. Soc. Ind. Appl. Math. 8, 181–217 (1960)
[R6] J. Rosen, The gradient projection method for nonlinear programming, II. Non-linear

constraints. J. Soc. Ind. Appl. Math. 9, 514–532 (1961)
[S1] R. Saigal, Linear Programming: Modern Integrated Analysis (Kluwer Academic Pub-

lisher, Boston, 1995)
[S2] B. Shah, R. Buehler, O. Kempthorne, Some algorithms for minimizing a function of

several variables. J. Soc. Ind. Appl. Math. 12, 74–92 (1964)
[S3] D.F. Shanno, Conditioning of quasi-Newton methods for function minimization. Math.

Comput. 24, 647–656 (1970)
[SL] L.S. Shapley, On balanced sets and cores. Nav. Res. Logist. Q. 14(4), 453–460 (1967)
[S4] D.F. Shanno, Conjugate gradient methods with inexact line searches. Math. Oper. Res.

3(3), 244–2560 (1978)
[S5] A. Shefi, Reduction of linear inequality constraints and determination of all feasible

extreme points, Ph.D. Dissertation, Department of Engineering-Economic Systems,
Stanford University, Stanford, 1969

[257] W.F. Sheppard, On the calculation of the double integral expressing normal correlation.
Trans. Camb. Philos. Soc. 19, 23–66 (1900)

[S6] M. Simonnard, Linear Programming, translated by William S. Jewell (Prentice-Hall,
Englewood Cliffs, 1966)

[S7] M. Slater, Lagrange multipliers revisited: a contribution to non-linear programming.
Cowles Commission Discussion Paper, Math 403 (November 1950)

[Smale] S. Smale, Newton’s method estimates from data at one point, in The Merging of
Disciplines: New Directions in Pure, Applied and Computational Mathematics, ed. by
R. Ewing, K. Gross, C. Martin (Springer, New York, 1986)

[SO] A.M. So, A Semidefinite Programming Approach to the Graph Realization Problem:
Theory, Applications and Extensions, Ph.D. Thesis, Stanford University, 2007

[SY] A.M. So, Y. Ye, Theory of semidefinite programming for sensor network localization.
Math. Program. 109, 367–384 (2007)

[SYZ] A.M. So, Y. Ye, J. Zhang, A unified theorem on SDP rank reduction. Math. Oper. Res.
33, 910–920 (2008)

[S8] G. Sonnevend, An ‘analytic center’ for polyhedrons and new classes of global algorithms
for linear (smooth, convex) programming, in System Modelling and Optimization:
Proceedings of the 12th IFIP-Conference held in Budapest, Hungary, September 1985,
eds. by A. Prekopa, J. Szelezsan, B. Strazicky. Lecture Notes in Control and Information
Sciences, vol. 84 (Springer, Berlin, 1986), pp. 866–876

[S10] E.L. Stiefel, Kernel polynomials in linear algebra and their numerical applications. Nat.
Bur. Stand. Appl. Math. Ser. 49, 1–22 (1958)

[S11] J.F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones. Optim. Methods Softw. 11&12, 625–633 (1999)

[S12] J. Sun, L. Qi, An interior point algorithm of O(
√

n| ln(ε)|) iterations for C1-convex
programming. Math. Program. 57, 239–257 (1992)

[SLY] R. Sun, Z. Luo, Y. Ye, On the efficiency of random permutation for ADMM and
coordinate descent. Math. Oper. Res. 45(1), 233–271 (2019)

[STY] D. Sun, K.-C. Toh, L. Yang, A convergent 3-block semiproximal alternating direction
method of multipliers for conic programming with 4-type constraints. SIAM J. Optim.
25(2), 882–915 (2015)

[T1] A. Tamir, Line search techniques based on interpolating polynomials using function
values only. Manag. Sci. 22(5), 576–586 (1976)

604 Bibliography

[T2] K. Tanabe, Complementarity-enforced centered Newton method for mathematical pro-
gramming, in New Methods for Linear Programming, ed. by K. Tone (The Institute of
Statistical Mathematics, Tokyo, 1987), pp. 118–144

[T3] R.A. Tapia, Quasi-Newton methods for equality constrained optimization: equivalents
of existing methods and new implementation, in Symposium on Nonlinear Programming
III, ed. by O. Mangasarian, R. Meyer, S. Robinson (Academic, New York, 1978), pp.
125–164

[T4] M.J. Todd, A low complexity interior point algorithm for linear programming. SIAM J.
Optim. 2, 198–209 (1992)

[T5] M.J. Todd, Y. Ye, A centered projective algorithm for linear programming. Math. Oper.
Res. 15, 508–529 (1990)

[T6] K. Tone, Revisions of constraint approximations in the successive QP method for
nonlinear programming problems. Math. Program. 26(2), 144–152 (1983)

[T7] D.M. Topkis, A note on cutting-plane methods without nested constraint sets. ORC 69-
36, Operations Research Center, College of Engineering, Berkeley, December 1969

[T8] D.M. Topkis, A.F. Veinott Jr., On the convergence of some feasible direction algorithms
for nonlinear programming. J. SIAM Control 5(2), 268–279 (1967)

[T9] J.F. Traub, Iterative Methods for the Solution of Equations (Prentice-Hall, Englewood
Cliffs, 1964)

[T10] L. Tunçel, Constant potential primal-dual algorithms: a framework. Math. Program. 66,
145–159 (1994)

[T11] R. Tutuncu, An infeasible-interior-point potential-reduction algorithm for linear pro-
gramming, Ph.D. Thesis, School of Operations Research and Industrial Engineering,
Cornell University, Ithaca, 1995

[T12] P. Tseng, Complexity analysis of a linear complementarity algorithm based on a
Lyapunov function. Math. Program. 53, 297–306 (1992)

[V1] P.M. Vaidya, An algorithm for linear programming which requires O((m+n)n2 + (m+
n)1.5nL) arithmetic operations. Math. Prog. 47, 175–201 (1990). Condensed version in:
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, pp.
29–38

[V2] L. Vandenberghe, S. Boyd, Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)
[V3] R.J. Vanderbei, Linear Programming: Foundations and Extensions (Kluwer Academic

Publishers, Boston, 1997)
[V4] S.A. Vavasis, Nonlinear Optimization: Complexity Issues (Oxford Science, New York,

1991)
[V5] A.F. Veinott, Jr., The supporting hyperplane method for unimodal programming. Oper.

Res. XV(1), 147–152 (1967)
[V08] A. F. Veinott, Lectures in Dynamic Programming and Stochastic Control. Lecture Notes

of MS&E351 (Stanford University, Stanford, 2008)
[V6] Y.V. Vorobyev, Methods of Moments in Applied Mathematics (Gordon and Breach, New

York, 1965)
[WB] A. Wachter and L. T. Biegler, On the implementation of an interior-point filter line-search

algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57, 2006
[WAZ] Z. Wang, Dynamic Learning Mechanisms in Revenue Management Problems, Ph.D.

Thesis, Stanford University, 2012
[W1] D.J. Wilde, C.S. Beightler, Foundations of Optimization (Prentice-Hall, Englewood

Cliffs, 1967)
[W2] R.B. Wilson, A simplicial algorithm for concave programming, Ph.D. Dissertation,

Harvard University Graduate School of Business Administration, 1963
[W3] P. Wolfe, A duality theorem for nonlinear programming. Q. Appl. Math. 19, 239–244

(1961)
[W4] P. Wolfe, On the convergence of gradient methods under constraints. IBM Research

Report RZ 204, Zurich (1966)

Bibliography 605

[W5] P. Wolfe, Methods of nonlinear programming (Chap. 6), in Nonlinear Programming, ed.
by J. Abadie. Interscience (Wiley, New York, 1967), pp. 97–131

[W6] P. Wolfe, Convergence conditions for ascent methods. SIAM Rev. 11, 226–235 (1969)
[W7] P. Wolfe, Convergence theory in nonlinear programming (Chap. 1), in Integer and Non-

linear Programming, ed. by J. Abadie (North-Holland Publishing Company, Amsterdam,
1970)

[W8] S.J. Wright, Primal-Dual Interior-Point Methods (SIAM, Philadelphia, 1996)
[299] G. Xue, Y. Ye, Efficient algorithms for minimizing a sum of Euclidean norms with

applications. SIAM J. Optim. 7, 1017–1036 (1997)
[300] Y. Ye, Approximating quadratic programming with bound and quadratic constraints.

Math. Program. 84, 219–226 (1999)
[Y1] Y. Ye, An O(n3L) potential reduction algorithm for linear programming. Math. Program.

50, 239–258 (1991)
[Y2] Y. Ye, M.J. Todd, S. Mizuno, An O(

√
nL)-iteration homogeneous and self-dual linear

programming algorithm. Math. Oper. Res. 19, 53–67 (1994)
[Y3] Y. Ye, Interior Point Algorithms (Wiley, New York, 1997)
[Y4] Y. Ye, A new complexity result on solving the Markov decision problem. Math. Oper.

Res. 30, 733–749 (2005)
[Y5] Y. Ye, A new complexity result on minimization of a quadratic function with a sphere

constraint, in Recent Advances in Global Optimization, ed. by C.A. Floudas, P.M.
Pardalos (Princeton University Press, Princeton, 2014), pp. 19–31

[Y6] X. Yuan, A review of trust region algorithms for optimization. ICIAM 99(1), 271–282
(2000)

[Z1] W.I. Zangwill, Nonlinear programming via penalty functions. Manag. Sci. 13(5), 344–
358 (1967)

[Z2] W.I. Zangwill, Nonlinear Programming: A Unified Approach (Prentice-Hall, Englewood
Cliffs, 1969)

[Z3] Y. Zhang, D. Zhang, On polynomiality of the Mehrotra-type predictor-corrector interior-
point algorithms. Math. Program. 68, 303–317 (1995)

[Z4] G. Zoutendijk, Methods of Feasible Directions (Elsevier, Amsterdam, 1960)

Index

A
Adjacent basic feasible solution, 78
Affine combination, 562, 573
Algorithms

0th-order method, 236
1st-order method, 241
2nd-order method, 243
arithmetic convergence, 290
coordinate descent, 287
ellipsoid, 134
Frank–Wolfe, 412
geometric convergence, 259, 260, 264
interior-point, 137, 190, 542
Newton’s method, 275
path-following, 149
potential reduction, 151
randomized coordinate descent, 289, 299
simplex method, 77

Alternating direction method of multipliers,
508

Augmented Lagrangian method, 498, 503

B
Basic feasible solution, 26
Basic solution, 25
Basic variables, 25

C
Carathéodory’s theorem, 26, 28, 186
Column generation, 86
Complementary slackness condition, 273
Compressed sensing, 373

Cone, 561, 572
dual, 166
interior, 172
self-dual, 166

Conic combination, 80, 561
Conic linear programming, 3, 165, 166

compact form, 167
duality, 176
duality gap, 181
dual problem, 176
facility location, 178
Farkas’ lemma, 173, 174
infeasibility certificate, 173, 174, 194
interior-point algorithm, 190
linear program, 167
matrix to vector operator, 167
optimality conditions, 183
p-order cone programming, 167
potential reduction algorithm, 192
second-order cone program, 167, 168, 178
semidefinite program, 167, 168
strong duality, 182
vector to matrix operator, 173
weak duality, 180

Constraint qualifications, 368
Convergence speed

arithmetic convergence, 227, 256, 269, 512
linear convergence, 226
order of convergence, 226
superlinear convergence, 227

Convex combination, 561
Convex cones, 165

barrier function, 190
conic-inequality, 166

© Springer Nature Switzerland AG 2021
D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, International
Series in Operations Research & Management Science 228,
https://doi.org/10.1007/978-3-030-85450-8

607

https://doi.org/10.1007/978-3-030-85450-8

608 Index

interior of cone, 172
nonnegative orthant, 165, 191
p-order cone, 166
product of cones, 179
second-order cone, 166, 191
semidefinite matrix, 165, 191

D
Dual basic feasible solution, 50

F
Farkas’ lemma, 33
First-order methods

accelerated steepest descent, 269
affine-scaling descent, 272
BB method, 270
heavy ball method, 270
mirror descent, 274
multiplicative steepest descent, 271
steepest descent, 252

First-order stationary solution, 367
Fisher market, 388

H
Homogeneous self-dual algorithm

conic linear programming, 193
infeasibility certificate CLP, 194
infeasibility certificate LP, 158
optimal solution CLP, 194
optimal solution LP, 158

I
Integrality gap, 118
Interior ellipsoidal-trust region method, 443,

471

L
Lagrangian derivative condition, 369
Line search

backtracking, 256, 277, 281
bisection, 241
cubic fit, 242
curve fitting, 236
discrete bisection, 241, 246
quadratic fit, 241

Linear combination, 561
Linear programming, 2, 165

analytic center, 137
analytic volume, 140

central path, 141
complementarity, 52
duality, 41
potential function, 151
presolver, 118

Lipschitz condition, 253, 283, 285, 289
LU factorization, 86

M
Markov Decision Process, 22, 46
Markowitz portfolio model, 183, 373
Matrix

Frobenius norm, 166
inner product, 166
positive definite, 172
projection matrix, 381

Max Flow–Min Cut Theorem, 65
Maximal flow, 18, 62
Minimal value function, 101
Mirror-descent method, viii
Monotone complementary slackness,

547
Monotone function, 287, 528

N
Neural network function, 207

P
Phase I, 87
Phase II, 88
Portfolio Management, 373, 387
Potential function

conic linear programming, 190
convex quadratic programming, 546
linear programming, 151

Precondition, 266
Prediction market, 21, 45
Projected Hessian test, 381

Q
Quadratic

binary optimization, 168, 189
Schur complements, 179
second-order cone program, 180
semidefinite program, 180
semidefinite relaxation, 169

R
Reduced gradients, 51

Index 609

S
Scaled Lipschitz condition, 548
SDP relaxation

approximation ratio, 169, 189
quadratic optimization, 169, 177
rank-d solution, 170
rank-1 solution, 169
sensor network localization, 169, 170, 177,

195
sensor network localization with anchors,

171
Second-order-cone, 4
Second-order cone programming, 4
Self-concordant functions, 280
Semidefinite cone, 4
Semidefinite programming, 4, 165

central path, 191
complementarity conditions, 185
exact rank reduction, 186
objective-guide rank reduction, 189
primal-dual potential function, 192
randomized binary rank reduction, 188
randomized rank reduction, 187
solution rank, 185

Separating hyperplane, 34
Sequential quadratic optimization, 442

Shifted barrier, 471
Slater condition, 383
Star convex, 411
Stationary solution, 204, 253
Steepest descent direction, 203
Steepest descent projection, 406
Stepsize

fixed stepsize, 253
Stochastic Gradient method, viii
Support vector machine, 20

T
Transportation problem, 101

northwest corner rule, 104
simplex method, 108

Triangularity, 106

V
Value-iteration method, 453

W
Wasserstein Distance, 18

	Preface
	Contents
	1 Introduction
	1.1 Optimization
	1.2 Types of Problems
	Linear Programming
	Conic Linear Programming
	Unconstrained Problems
	Constrained Problems

	1.3 Complexity of Problems
	1.4 Iterative Algorithms and Convergence

	Part I Linear Programming
	2 Basic Properties of Linear Programs
	2.1 Introduction
	2.2 Examples of Linear Programming Problems
	2.3 Basic Feasible Solutions
	2.4 The Fundamental Theorem of Linear Programming
	2.5 Relations to Convex Geometry
	2.6 Farkas' Lemma and Alternative Systems
	2.7 Summary
	2.8 Exercises
	References

	3 Duality and Complementarity
	3.1 Dual Linear Programs and Interpretations
	3.2 The Duality Theorem
	3.3 Geometric and Economic Interpretations
	Dual Multipliers—Shadow Prices

	3.4 Sensitivity and Complementary Slackness
	Sensitivity
	Complementary Slackness

	3.5 Selected Applications of the Duality
	Robust and Distributionally Robust Optimization
	Online Linear Programming

	3.6 Max Flow–Min Cut Theorem
	Max Flow Augmenting Algorithm
	Max Flow–Min Cut Theorem
	Relation to Duality

	3.7 Summary
	3.8 Exercises
	References

	4 The Simplex Method
	4.1 Adjacent Basic Feasible Solutions (Extreme Points)
	Nondegeneracy Assumption
	Determination of Vector to Leave Basis
	Conic Combination Interpretations

	4.2 The Primal Simplex Method
	Determining an Optimal Feasible Solution
	The Simplex Procedure
	Finding an Initial Basic Feasible Solution

	4.3 The Dual Simplex Method
	The Primal–Dual Algorithm

	4.4 The Simplex Tableau Method
	Decomposition

	4.5 The Simplex Method for Transportation Problems
	Finding a Basic Feasible Solution
	The Northwest Corner Rule

	Basis Triangularity
	The Transportation Simplex Method
	Simplex Multipliers
	Cycle of Change
	The Transportation Simplex Algorithm

	4.6 Efficiency Analysis of the Simplex Method
	4.7 Summary
	4.8 Exercises
	References

	5 Interior-Point Methods
	5.1 Elements of Complexity Theory
	5.2 The Simplex Method Is Not Polynomial-Time
	5.3 The Ellipsoid Method
	Cutting Plane and New Containing Ellipsoid
	Convergence

	Ellipsoid Method for Usual Form of LP

	5.4 The Analytic Center
	Cutting Plane and Analytic Volume of Reduction

	5.5 The Central Path
	Dual Central Path
	Primal–Dual Central Path
	Duality Gap

	5.6 Solution Strategies
	Primal Barrier Method
	Primal–Dual Path-Following
	Primal–Dual Potential Reduction Algorithm
	Iteration Complexity

	5.7 Termination and Initialization
	Termination
	Initialization
	The HSD Algorithm

	5.8 Summary
	5.9 Exercises
	References

	6 Conic Linear Programming
	6.1 Convex Cones
	6.2 Conic Linear Programming Problem
	6.3 Farkas' Lemma for Conic Linear Programming
	6.4 Conic Linear Programming Duality
	6.5 Complementarity and Solution Rank of SDP
	Null-Space Rank Reduction
	Gaussian Projection Rank Reduction
	Randomized Binary Rank Reduction
	Objective-Guide Rank Reduction

	6.6 Interior-Point Algorithms for Conic Linear Programming
	Initialization: The HSD Algorithm

	6.7 Summary
	6.8 Exercises
	References

	Part II Unconstrained Problems
	7 Basic Properties of Solutions and Algorithms
	7.1 First-Order Necessary Conditions
	Feasible and Descent Directions

	7.2 Examples of Unconstrained Problems
	7.3 Second-Order Conditions
	Sufficient Conditions for a Relative Minimum

	7.4 Convex and Concave Functions
	Properties of Convex Functions
	Properties of Differentiable Convex Functions

	7.5 Minimization and Maximization of Convex Functions
	7.6 Global Convergence of Descent Algorithms
	Iterative Algorithms
	Descent
	Closed Mappings
	Global Convergence Theorem
	Spacer Steps

	7.7 Speed of Convergence
	Order of Convergence
	Linear Convergence
	Arithmetic Convergence
	Average Rates
	Convergence of Vectors
	Complexity

	7.8 Summary
	7.9 Exercises
	References

	8 Basic Descent Methods
	8.1 Line Search Algorithms
	0th-Order Method: Golden Section Search and Curve Fitting
	Search by Golden Section
	Quadratic Fit

	1st-Order Method: Bisection and Curve Fitting Methods
	The Bisection Method
	Quadratic Fit: Method of False Position
	Cubic Fit

	2nd-Order Method: Newton's Method
	Global Convergence of Curve Fitting
	Closedness of Line Search Algorithms
	Inaccurate Line Search
	Armijo's Rule

	8.2 The Method of Steepest Descent: First-Order
	The Method
	Global Convergence and Convergence Speed
	The Quadratic Case
	The Nonquadratic Case

	8.3 Applications of the Convergence Theory and Preconditioning
	Scaling as Preconditioning

	8.4 Accelerated Steepest Descent
	The Heavy Ball Method
	The Method of False Position

	8.5 Multiplicative Steepest Descent
	Affine-Scaling Method
	Mirror-Descent Method

	8.6 Newton's Method: Second-Order
	Order Two Convergence
	Modifications
	Newton's Method and Logarithms
	Self-concordant Functions

	8.7 Sequential Quadratic Optimization Methods
	Trust Region Method
	A Homotopy or Path-Following Method

	8.8 Coordinate and Stochastic Gradient Descent Methods
	Global Convergence
	Local Convergence Rate
	Convergence Speed of a Randomized Coordinate Descent Method
	Stochastic Gradient Descent (SGD) Method

	8.9 Summary
	8.10 Exercises
	References

	9 Conjugate Direction Methods
	9.1 Conjugate Directions
	9.2 Descent Properties of the Conjugate Direction Method
	9.3 The Conjugate Gradient Method
	Conjugate Gradient Algorithm
	Verification of the Algorithm

	9.4 The C–G Method as an Optimal Process
	Bounds on Convergence

	9.5 The Partial Conjugate Gradient Method
	9.6 Extension to Nonquadratic Problems
	Quadratic Approximation
	Line Search Methods
	Convergence
	Preconditioning and Partial Methods

	9.7 Parallel Tangents
	9.8 Exercises
	References

	10 Quasi-Newton Methods
	10.1 Modified Newton Method
	Other Modified Newton's Methods

	10.2 Construction of the Inverse
	Rank One Correction

	10.3 Davidon–Fletcher–Powell Method
	Positive Definiteness
	Finite Step Convergence

	10.4 The Broyden Family
	Partial Quasi-Newton Methods

	10.5 Convergence Properties
	Global Convergence
	Local Convergence

	10.6 Scaling
	Improvement of Eigenvalue Ratio
	Scale Factors
	A Self-Scaling Quasi-Newton Algorithm

	10.7 Memoryless Quasi-Newton Methods
	Scaling and Preconditioning

	10.8 Combination of Steepest Descent and Newton's Method
	10.9 Summary
	10.10 Exercises
	References

	Part III Constrained Optimization
	11 Constrained Optimization Conditions
	11.1 Constraints and Tangent Plane
	Tangent Plane

	11.2 First-Order Necessary Conditions (Equality Constraints)
	Sensitivity

	11.3 Equality Constrained Optimization Examples
	Large-Scale Applications

	11.4 Second-Order Conditions (Equality Constraints)
	Eigenvalues in Tangent Subspace
	Projected Hessians

	11.5 Inequality Constraints
	First-Order Necessary Conditions
	The Lagrangian and First-Order Conditions

	Second-Order Conditions
	Sensitivity

	11.6 Mix-Constrained Optimization Examples
	11.7 Lagrangian Duality and Zero-Order Conditions
	11.8 Rules for Constructing the Lagrangian Dual Explicitly
	11.9 Summary
	11.10 Exercises
	References

	12 Primal Methods
	12.1 Infeasible Direction and the Steepest Descent Projection Method
	12.2 Feasible Direction Methods: Sequential Linear Programming
	12.3 The Gradient Projection Method
	Linear Constraints
	Nonlinear Constraints

	12.4 Convergence Rate of the Gradient Projection Method
	Geodesic Descent
	Geodesics
	Lagrangian and Geodesics
	Rate of Convergence
	Problems with Inequalities

	12.5 The Reduced Gradient Method
	Linear Constraints
	Global Convergence
	Nonlinear Constraints

	12.6 Convergence Rate of the Reduced Gradient Method
	12.7 Sequential Quadratic Optimization Methods
	12.8 Active Set Methods
	Changes in Working Set

	12.9 Summary
	12.10 Exercises
	References

	13 Penalty and Barrier Methods
	13.1 Penalty Methods
	The Method
	Convergence

	13.2 Barrier Methods
	The Method
	Convergence

	13.3 Lagrange Multipliers in Penalty and Barrier Methods
	Lagrange Multipliers in the Penalty Method
	The Hessian Matrix

	Lagrange Multipliers in the Barrier Method

	13.4 Newton's Method for the Logarithmic Barrier Optimization
	The KKT Condition System of the Logarithmic Barrier Function
	The KKT System of a ``Shifted'' Barrier

	The Interior Ellipsoidal-Trust Region Method with Barrier

	13.5 Newton's Method for Equality Constrained Optimization
	Normalization of Penalty Functions
	Inequalities

	13.6 Conjugate Gradients and Penalty Methods
	13.7 Penalty Functions and Gradient Projection
	Underlying Concept
	Implementing the First Step
	Inequality Constraints

	13.8 Summary
	13.9 Exercises
	References

	14 Local Duality and Dual Methods
	14.1 Local Duality and the Lagrangian Method
	Inequality Constraints
	Partial Duality
	The Lagrangian Method: Dual Steepest Ascent
	Preconditioning or Scaling

	14.2 Separable Problems and Their Duals
	Decomposition

	14.3 The Augmented Lagrangian and Interpretation
	The Penalty Viewpoint
	Geometric Interpretation

	14.4 The Augmented Lagrangian Method of Multipliers
	Inequality Constraints

	14.5 The Alternating Direction Method of Multipliers
	Convergence Speed Analysis

	14.6 The Multi-Block Extension of the Alternating Direction Method of Multipliers
	14.7 Cutting Plane Methods
	General Form of Algorithm
	Kelley's Convex Cutting Plane Algorithm
	Convergence

	Modifications
	Dropping Nonbinding Constraints

	14.8 Exercises
	References

	15 Primal–Dual Methods
	15.1 The Standard Problem and Monotone Function
	The System of Equations of Monotone Functions
	Strategies

	15.2 A Simple Merit Function
	15.3 Basic Primal–Dual Methods
	First-Order Method
	Convergence Speed Analysis

	Second-Order Method: Newton's Method
	Convergence Speed Analysis
	A Path-Following Method

	15.4 Relation to Sequential Quadratic Optimization
	Modified Newton's Method
	Absolute-Value Penalty Function

	15.5 Primal–Dual Interior-Point (Barrier) Methods
	Logarithmic Barrier Function
	Interior-Point Method for Convex Quadratic Programming
	Potential Function as a Merit Function

	15.6 The Monotone Complementarity Problem
	The Interior-Point Method for the Complementarity Problem

	15.7 Detect Infeasibility in Nonlinear Optimization
	15.8 Summary
	15.9 Exercises
	References

	A Mathematical Review
	A.1 Sets
	Sets of Real Numbers

	A.2 Matrix Notation
	A.3 Spaces
	A.4 Eigenvalues and Quadratic Forms
	A.5 Topological Concepts
	A.6 Functions
	Convex and Concave Functions
	Taylor's Theorem
	Implicit Function Theorem
	o, O Notation

	B Convex Sets
	B.1 Basic Definitions
	B.2 Hyperplanes and Polytopes
	B.3 Separating and Supporting Hyperplanes
	B.4 Extreme Points

	C Gaussian Elimination
	C.1 The LU Decomposition
	C.2 Pivots

	D Basic Network Concepts
	D.1 Flows in Networks
	D.2 Tree Procedure
	D.3 Capacitated Networks

	Bibliography
	Index

